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ABSTRACT

We focus on cascading line failures in the transmission sys-
tem of the power grid. Recent large-scale power outages
demonstrated the limitations of epidemic- and percolation-
based tools in modeling the cascade evolution. Hence, based
on a linearized power flow model, we obtain results regarding
the various properties of a cascade. Specifically, we consider
performance metrics such as the distance between failures,
the length of the cascade, and the fraction of demand (load)
satisfied after the cascade. We show, for example, that due
to the unique properties of the model: (i) a set of initial line
failures may have a smaller effect than a failure of one of the
lines in the set, (ii) the distance between subsequent failures
can be arbitrarily large and the cascade may be arbitrar-
ily long, and (iii) minor changes to the network parameters
may have a significant impact. Moreover, we show that find-
ing the set of lines whose removal has the most significant
impact (under different metrics) is NP-hard. Finally, for
specific graphs, we develop a fast algorithm to determine if
a set of line failures initiates a cascade. The results can pro-
vide insight into the design of smart grid measurement and
control algorithms that can mitigate a cascade.

Categories and Subject Descriptors: C.4 [Performan-
ce of Systems]: Reliability, availability, and serviceability;
G.2.2 [Discrete Mathematics]: Graph Theory—Graph algo-
rithms, Network problems.
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Metrics, Computational Complexity, Survivability.

1. CASCADING FAILURE MODEL

We adopt the linearized (or DC) power flow model, which
is widely used as an approximation for the non-linear AC
power flow model. In particular, we follow [2,3] and rep-
resent the power grid by a graph G = (V, E) where V and
E are the set of nodes and edges representing the buses and
transmission lines, respectively. P, is the active power sup-
ply or demand at node v € V. Each node is classified either
as a supply node (P, > 0), a demand node (P, < 0), or
a neutral node (P, = 0). We assume pure reactive lines,
implying that each edge {u,v} € E is characterized by its
reactance Ty, = Toy.

Given an active power vector P, a power flow is a solution
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Cascading Failure Model

Input: A connected graph G = (V, E) and an initial edge
failures event Fy C E.

Output: The length of the cascade t > 0, the sequence
(Fo, F1,...,F}) of the sets of edge failures at each round,
and the power flows f.(F}) Ve € E, at stabilization.

1: Fy + Fp and i + 0.

2: while F; # () do

3:  Adjust the total demand to total supply within each
connected component of G = (V, E\ F;*) by decreasing
the demand (supply) by the same factor at all demand
(supply) nodes.

4:  Compute the new flows f.(F;") Vee€ E.

5:  Find the set of new edge failures Fji.

6: Ffy\y <« FfUFj4 and i <3+ 1.

7: return t=i—1, (Fy,...,F), and f.(F})) Ve € E.

(f,0) of the following system of equations:

z fuv:Pu., VUEV (1)
vEN (u)
eu_ev_xuvfuvzo, V{U,U}GE (2)

where N(u) is the set of neighbors of node u, fu., is the
power flow from node u to node v, and 6,, is the phase angle
of node u. Note that the edge capacities are not taken into
account in determining the flows.

The cascading failure model described above is similar to
the model used in [1,3,4]. We assume that each edge e =
{u,v} € E has a predetermined power capacity cc = cu» =
Cvu, which bounds its power flow (we define feo = |fuo| =
| fou|) in a normal operation of the system (that is, fe < ce).
The cascade proceeds in rounds. We denote by F; C E the
set of edge failures in round ¢ and by F;" = F;"; U F; the
set of edge failures until the end of round 7 (i > 1). fe(F)
denotes the flows in G\ F. We assume that before the initial
failure event Fy C E, the power flows satisfy (1)-(2), and
fe < ceVee E. We use a deterministic outage rule [1]
assuming that edge e € E fails as soon as the flow exceeds
its capacity (fe > ce). To avoid cases in which all edges
of an induced path fail (due to path flow exceeding their
capacities), we assume that only one edge in the path fails.

We present the metrics for evaluating the grid vulnerabil-
ity following an initial failure:

Yield (Y (G, Fov)): The ratio between the demand sup-
plied at stabilization and its original value. Accordingly,



Y(G,k) = ming,cg, r <k Y (G, Fo) is the minimum yield
for any Fp of size at most k.

Number of edge failures (|F} (G, Fy)|): The number
of edges that fail until the system stabilizes. Accordingly,
|FE(G, k)| = maxp,cp, my <k |FE (G, Fo)l.

Number of rounds (L(G, Fy)): The number of cascade
rounds until the system stabilizes. Accordingly, L(G, k) =
maXFOgE’|FO|§k L(G, Fo), and L(G) = L(G, |E|)

Distance between consecutive failures (D(G, Fy)): We
define the distance sequence (di,dz,...,d:) associated with
(Fo, F1,...,F}) as follows. For any 4, 1 < ¢ < t, d; =
d(Fi-1, F;) where d(Fi—1, F;) = mineep, , er, dle,e’) and
d(e, €’) is the distance between edges e and €’ in G. The min-
imum distance between consecutive failures is D(G, Fo) =
min; 1<i<¢ di. Accordingly,

D(G, k) = MaXp,CE,|Fy|<k D(G, Fo), and D(G) =

2. CASCADE PROPERTIES

The observations below demonstrate unique properties of
the power flow and cascading failure models. Obs. 1 de-
scribes non-monotonicity effects of failures (i.e., a set of edge
failures may have less significant impact than some of its
subsets). It is shown in [1, Lemma 4.3] that a failure event
Fo may result in a lower yield than a failure event F' O Fp.
However, in the proof in [1], G\F is disconnected. Obs. 2
and 3 show that the metric values may be arbitrarily large
or small even for a single edge failure event. In [1, Lemma
4.2] it was shown that cascading failures may happen within
arbitrarily long distance of each other, and in [1, Lemma
4.7] it was shown that they can last arbitrarily long time.
However, Obs. 3 shows that these two events can happen
simultaneously. Obs. 2 and 3 are summarized in Table 1.
Obs. 4 and 5 show that small changes of the parameters
may have a large effect on the metric values.

OBSERVATION 1  (NON-MONOTONICITY). There ezists a
graph G = (V,E), an initial failure Fo = {e}, e € E,
and Fy D Fy, such that (V,E \ F{) is a connected graph,
Y (G, Fy) =0 and Y(G, Fy) = 1.

OBSERVATION 2 (ROUNDS, FAILURES, AND YIELD). For
any m > 2, there exists a graph G = (V, E) with |E| > m,
such that L(G,1) = |E|—1, |F{(G,1)| = |E|, and Y (G, 1) =
0.

OBSERVATION 3 (ROUNDS AND DISTANCE). For any I,
d > 1, there exists a graph G = (V, E) such that L(G,1) > 1
and for any i, 1 <1 <1, d; > d. As a result D(G,1) > d.
Define graphs G4 and G4 as modified versions of the
graph G = (V, E) with a small difference in the parame-
ter of a particular edge e € E (in G%, ¢& = c. +¢; and in
G%,zf =x.+e).
OBSERVATION 4 (PARAMETERS DECREASE). For any
e > 0 and any m > 2, there exists a graph G = (V, E) with
|E| > m, an edge e € E, and an initial failure Fy C E with
|Fo| = 1, such that:
L(G, Fy) =0, |Fi(G, Fo)| = |Fo| =1, Y(G, Fo) = 1; but
(a) L(GS, Fy) = |F{ (G, Fy)|—1=|E|-1, Y(G%, Fy) =0,
(b) L(G* | Fy) = |F{(G* ,Fy)|—-1=|E|-1, Y(G*, F,) = 0.
OBSERVATION 5  (CAPACITY INCREASE). There exists a
graph G = (V, E), an edge e € E, and an initial failure
Fo C E with |Fo| =1, such that:
L(G,Fy) =1, |Fi(G, Fo)| = |Fo| +1 =2, Y(G, Fo) = 1/3;
but L(GS, Fo) =1, |Fi (G, Fo)| =3, Y(GS, Fo) = 0.

D(G, |E]).

Table 1: Worst case values of the metrics for cascades caused
by a single edge failure.

Metric ‘Worst case
Yield Y (G, 1) 0 Obs. 2
Number of edge failures [F7 (G, 1)) |E| Obs. 2
Number of rounds L(G,1) |[E] —1 | Obs. 2
Distance between failures D(G,1) O(|E]) | Obs. 3

3. HARDNESS RESULTS

The following lemmas show that finding an initial set of
failures Fy that minimizes the yield, maximizes the number
of rounds, or maximizes the distance between consecutive
failures are all hard problems.

LEMMA 1. Given a graph G, a real number y, 0 <y <1,
and an integer k > 1, the problem of deciding if Y (G, k) <y

is NP-complete.

LEMMA 2. Given a graph G and an integer t > 1, the
problem of deciding if L(G) > t is NP-complete.

LEMMA 3. Given a graph G, the problem of computing
D(G) is not in APX.

4. ALGORITHMS

Inspired by circuit theory methods, we introduce the (r, h)-
decomposition of the single supply—single demand graph G.
It consists of replacing the network between arbitrary pairs
of nodes by edges with equivalent reactance values such
that the flow between the supply and demand nodes is pre-
served. We show below that using the pre-computed (r, h)-
decomposition of the graph, it is possible to compute and
recompute the flows with low complexity. When r and h are
relatively small, this allows checking if a cascade has been
initiated in a more efficient method than the classical one
(which requires O(|V[|®) time [5]).

LEMMA 4. Given a constant integer r > 1, the problem
of deciding if G = (V, E) admits an (r, h)-decomposition for
some h > 0, can be solved in O((|V||E|)?) time.

LEMMA 5. Given an (r, h)-decomposition of a given graph
G = (V,E), and Fo of any size, fe(Fy) Ve € E, can be
computed in O(r3|E|) time.

LEMMA 6. Given an (r, h)-decomposition of a given graph
G = (V,E), and Fy of any size, deciding if Fo initiates a
cascade can be done in O(r3h|Fy|) time.
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