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ABSTRACT
This paper revisits models of cascading failures in the trans-
mission system of the power grid. It has been recently shown
that since power flows are governed by the laws of physics,
these models significantly differ from epidemic/percolation-
based models. Yet, while some numerical results have been
recently obtained based on these models, there is a need to
investigate the sensitivity of the results to various param-
eters and to evaluate the models’ accuracy. In this paper,
through numerical experiments with real grid data, we study
the effects of geographically correlated outages and the re-
sulting cascades. We consider a wide range of parameters,
such as the power lines’ Factor of Safety and the sensitivity
of the lines to power flow spikes. Moreover, we compare our
numerical results to the actual events in a recent blackout
in the San Diego area (Sept. 2011), thereby demonstrating
that the model’s predictions are consistent with real events.

Categories and Subject Descriptors: C.4 [Computer
Systems Organization]: Performance of Systems — Relia-
bility, availability, and serviceability

General Terms: Design, Reliability, Performance

Keywords: Power Grid, Geographically-Correlated Fail-
ures, Cascading Failures, Resilience, Survivability.

1. INTRODUCTION
The power grid is vulnerable to natural disasters, such

as earthquakes and solar flares [22] as well as to physi-
cal attacks, such as an Electromagnetic Pulse (EMP) at-
tack [14, 22]. Failures following such large-scale events will
have devastating effects on almost every aspect in modern
life, as many systems (e.g., telecommunications, gas and wa-
ter supply, and transportation) highly depend on the power
grid. These adverse effects were recently demonstrated in
several large-scale blackouts in North America (e.g., the
Aug. 2003 blackout in the northeastern United States and
in Canada [21], and the Sept. 2011 blackout in southwestern
United States and in Mexico [7]), Europe (e.g., the Sept.
2003 blackout in Italy [10] and the Apr. 2012 blackout in
Cyprus [16]), and Asia (India’s blackout in July 2012 which
left 670 million people without power [24]).

Hence, the power grid and its robustness have drawn a
lot of attention recently [2], where cascading failures have
been a major concern [2,9,13]. One approach to study these
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Figure 1: The power grid graph of the Western In-
terconnect (including some sections of neighboring
states’ grids). Green dots represent demand nodes
and red dots represent supply nodes.

phenomena is by probabilistic failure propagation models
(e.g., based on percolation theory) on graphs with specific
topological properties, which are common to contemporary
power grids [8,15,17].

Alternatively, in this paper, as in [4], we focus on an ap-
proach which is based on (microscopic) power flow models.
Specifically, the flow in the power grid is governed by the
laws of physics and there are no strict capacity bounds on
the lines [3]. Instead, there is a rating threshold associated
with each line, such that when the flow through a line ex-
ceeds the threshold, the line heats up and eventually faults.
Such an outage, in turn, causes another change in the power
grid, that can eventually lead to a cascading failure.

We use a linearized (i.e., DC) power flow model and a
cascading failure model (originated from [9]) to obtain re-
sults despite the problem’s complexity. Previous works use
these models to identify a few vulnerable lines throughout
the network [5, 6, 19], where the initial failure events (caus-
ing eventually the cascading failures) are assumed to be spo-
radic link outages, with no correlation between them. On
the contrary, we focus on geographically-correlated failures:
events that cause a large number of failures in a specific
geographical region (e.g., [14,22]).

To the best of our knowledge, geographically-correlated
failures have been studied only in the context of commu-
nication networks [1, 11]. Recently, a survivability analysis
of power networks to geographically-correlated failures was
performed in [4]. This paper complements the results of [4]
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by providing a sensitivity analysis of the results. Specifically,
we present the results of numerical experiments performed
on the real U.S. power grid data, taken from the Platts Ge-
ographic Information System (GIS) [20] (see Figure 1). The
results provide a sensitivity analysis of the models to var-
ious parameters, such as the grid’s a-priori resilience, the
power lines’ Factor of Safety, and the sensitivity to power
flow spikes. We also compare the results obtained using our
model to the events in a real cascade which took place in
the San Diego area on Sept. 8, 2011 [7]. This allows us to
assess the accuracy of our methods and parameters.

2. PRELIMINARIES

2.1 The Linearized Power Flow Model
We follow [6] and represent the power grid as a directed

graph G = 〈N , E〉, whose nodes are either supply nodes
(“generators”), demand nodes (“loads”), or neutral nodes.
Let D ⊆ N denote the set of the demand nodes, and for
each node i ∈ D, let Di be its demand. Also, C ⊆ N de-
notes the set of the supply nodes and for each node i ∈ C, Pi

is the active power generated at i. The edges of the graph G
represent the transmission lines. The orientation of the lines
is arbitrarily and is simply used for notational convenience.
We also assume pure reactive lines, implying that each line
(i, j) ∈ E is characterized by its reactance xij .

We adopt the linearized (or DC) power flow model, which
is widely used as an approximation for more realistic non-
linear AC power model [3]. Given supply and demand vec-
tors (P,D), a power flow is a solution (f, θ) of the following
system of equations:

∑

(i,j)∈δ+(i)

fij −
∑

(j,i)∈δ−(i)

fji =











Pi, i ∈ C

−Di, i ∈ D

0, otherwise

(1)

θi − θj − xijfij = 0, ∀(i, j) (2)

where δ+(i) (δ−(i)) is the set of lines oriented out of (into)
node i, fij is the (real) power flow along line (i, j), and θi is
the phase angle of node i. The equations guarantee power
flow conservation and consider the reactance of each line.

2.2 Cascading Failure Model
We use the cascading failure model proposed in [9] (also

used in [4–6,18]). We assume that each line (i, j) has a pre-
determined power capacity uij , which bounds its power flow
in a normal operation of the system (that is, |fij | ≤ uij).
Upon a failure, some lines in a specific geographic areas are
removed from the graph. Specifically, we consider a circular
and deterministic initial failure, where all lines and nodes
within a radius r of the failure’s epicenter are removed from
the graph (this includes lines that pass through the affected
area). This, in turn, implies that the graph may become
disconnected. Thus, within each component, the demand
(supply) is decreased by the same factor at all loads (gen-
erators), so that the total demand is equal the total supply.
Then, the power flows in the new graph are recalculated
by (1)–(2). The new flows may exceed the capacity and
as a result, the corresponding lines will become overheated.
Thermal effects cause overloaded lines to become more sen-
sitive to a large number of factors, each of which could cause
failure. Such outages are modeled by a moving average of
the power flow f̃ t

ij = α|fij |+(1−α)f̃ t−1
ij . Lines (i, j) whose

f̃ t
ij is above the power capacity uij are removed from the
graph. To first order, this approximates thermal effects, in-
cluding heating and cooling from prior states. The process is
repeated in rounds until the system reaches stability, namely
until there are no overloaded lines in the graph. The model
does not have a notion of exact time. However, the relation
between the elapsed time and the corresponding time can be
adjusted by using different values of α. Smaller value of α
implies that we take a more microscopic look at the cascade.

Our metric to assess the severity of a cascading failure is
the post-failure yield which is defined as:

Y !
The actual demand at the stability

The original demand
. (3)

2.3 Parameters Set-up
In the cascading failure model, the power capacities uij of

the lines are given a-priori. In practice, however, these ca-
pacities are hard to obtain and are usually estimated based
on the actual operation of the grid. In this paper, we take
the N − k contingency analysis approach [6] to estimate the
power capacities. Namely, we set the capacities so that the
network is resilient to failure of any set of k out of the N
lines. In addition, we consider over-provisioning of line ca-
pacities by a constant fraction of the required capacity of
each line. This over-provisioning parameter, denoted by K,
is often referred to as the Factor of Safety (FoS) of the grid.

Specifically, we consider two cases: (i) N-resilient grids
(that is, k = 0): we solve (1)–(2) for the original grid graph
(without failures) and set the power capacity to uij = K ·fij ,
where K ≥ 1; and (ii) (N − 1)-resilient grids (that is,
k = 1): we solve (1)– (2) for N graphs, each resulting from
a single line failure event. The power capacity is set to
uij = K · maxr f

r
ij , where fr

ij is the flow assigned to line
(i, j) when considering the r-th failure event.

The real power grid is usually assumed to be at least N-
resilient with K ≈ 1.2 [12]. On the other hand, some data
shows that certain lines (or, more generally, paths) are more
resilient than others. For example, a historical transmission
paths data found in [23] shows that some transmission paths
have power capacities which are 1.1 times their normal flows,
while others have an FoS larger than 2. Nevertheless, the
average FoS is indeed around 1.2. In addition, utility com-
panies usually guarantee that their grid is at least (N−1)-
resilient [6].1 Therefore, we examine in this paper both N-
and (N−1)-resilient grids with different FoS values K.

3. SENSITIVITY ANALYSIS
We use real power grid data of the western U.S. taken

from the Platts Geographic Information System (GIS) [20].
This includes the information about the transmission lines,
power substations, power plants, and the population at each
geographic location. The nodes of the graph are substations,
while the arcs are the transmission lines. In order not to ex-
pose the vulnerability of the real grid, we used a part of the
Western Interconnect system which does not include most of
the Canada and Mexico sections. On the other hand, we at-
tached to the grid the Texas, Oklahoma, Kansas, Nebraska,
and the Dakotas’ grids, which are not part of the Western
Interconnect. In order to obtain a connected graph of the
network that can be used to simulate the cascading failure
1We note that early reports on the recent San Diego black-
out indicate that this was not the case.
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model, we performed different processing steps of the raw
data, whose details can be found in [4]. At the end of this
process, we obtained a fully-connected graph with 13,992
nodes and 18,681 lines. Overall, 1,117 nodes were classi-
fied as generators (supply nodes), 5,591 as loads (demand
nodes), and 7,284 as neutral. We assumed that all lines have
the same physical properties (other than length) and used
the length to determine the reactance.

We present results for an attack radius r = 50 kilometers,
which is small enough to capture realistic scenarios [14,22],
while it is large enough to generate a cascading failure in
most cases. A computational-geometry–based algorithm to
discretisize the entire plane to finite search space was pre-
sented in [1, 4]. In our case, the algorithm identified 61,327
potential failure locations. For each failure location v, we
performed the simulation of the cascading failure model
(Section 2), assuming that all lines within radius r of v fail.
Our program used CPLEX and Gurobi optimization tools
in order to solve the power flow equations efficiently.

Most of our results using the N contingency analysis to
set the capacities of the network, with FoS K = 1.2, can be
found in [4]. In this paper, we perform a sensitivity analy-
sis for different FoS values and also use N − 1 contingency
analysis for comparison.

The first set of experiments was performed using the N
contingency analysis with FoS K = 2. We plot specific
failures to show the evolution during the first five rounds of
the cascade. Figure 2 shows three failure: Two in California,
both leading to severe blackouts, and another one around
the Idaho-Montana-Wyoming border, which had a negligible
effect. A comparison with the results in [4] shows that higher
FoS usually leads to less severe blackout effect. Interestingly,
the Idaho-Montana-Wyoming border failure with FoS K =
1.2 leads to low yield (0.39), although the development of the
failure is very slow—after 5 rounds only few lines faulted.
However, the same event with K = 2 leads to near-unity
yield. This suggests that the assumption that K = 1.2 for
all lines is quite pessimistic, as also can be seen from the
actual data (see Section 2.3 for more details).

We now analyze the failures severity once stability is
reached (namely, when no more line failures occur) using
the N − 1 contingency analysis to set the capacities of the
network, with FoS K = 1.2. Figure 3 shows the yield values
upon cascades which start at the possible attack locations
that we identified. It can be seen that the most vulnera-
ble areas are the highly populated areas of the West Coast:
San-Francisco, Los Angeles, and Seattle. We compare these
results to those of N-resilience experiments from [4]. As ex-
pected, it can be seen that (N−1)-resilience helps when the
initial event is not significant (such as the Idaho-Montana-
Wyoming border event). However, it makes little difference
when the initial event is significant (such as San Diego or
San Francisco events). In particular, note that the failures
in the artificially attached part of Texas do not lead to cas-
cades when the network is (N−1)-resilient, since this part
is connected to the whole network using a small number of
lines (which in practice carry no power in normal operation).
However, when the network is only N resilient, these failures
do propagate to the whole network2.

2This happens also even when the FoS is 2 (these results are
not shown due to space constraints).

0.696

(a) San Diego area failure event

0.788

(b) San Francisco area failure event

0.999

(c) Idaho-Montana-Wyoming border failure
event

Figure 2: Illustration of cascading failures over 5
rounds for N-resilient grid with FoS K = 2. The col-
ors represent the rounds in which the lines faulted.
The final yields are (a) 0.696, (b) 0.788, and (c)
0.999.

4. SAN DIEGO BLACKOUT (SEPT. 2011)

4.1 Description of the Blackout
On Sept. 8th, 2011, over 2.7 million people in southwest-

ern U.S. and in Mexico experienced a massive power black-
out. Although the full details are not known yet, several
publicly available sources, such as [7], make it possible to re-
construct an approximate chain of events during this black-
out. As a case study, we compare the reported chain of
events to our simulation results. In particular, since such
blackouts are rare, we use this blackout in order to calibrate
the various model parameters so that the simulation results
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Figure 3: Vulnerability analysis (at stability) of fail-
ure locations for N−1-resilient grid with FoS K = 1.2.
The color of each point represents the yield value
corresponding to a cascade whose epicenter is at
that point.

Figure 4: The development of the San Diego black-
out according to [7].

match as closely as possible that cascade.
The blackout occurred around the San-Diego county area,

and involved six utility companies: San-Diego Gas and
Electric Co. (SDG&E), Southern California Edison (SCE),
Comision Federal de Electricidad (CFE), Imperial Irrigation
District (IID), Arizona Public Service (APS), and Western
Area Power Association (WAPA). The power grid map of
that area (using our data) is shown in Figure 4. There
are two import generation paths into this area: (i) SWPL:
represented by the 500KV Hassayampa-North Gila-Imperial
Valley-Miguel transmission line. This path transfers power
from the Palo Verdi Nuclear Generating Station in Arizona;
and (ii) Path 44 : represented by the three 500KV transmis-
sion lines that connect SCE and SDG&E through the San
Onofre Nuclear Generating Station (SONGS). In addition,
there are several SDG&E local power plants and there is
(relatively small) import of power from CFE.

Prior to the event, SWPL delivered 1370MW, Path 44 de-
livered 1287MW, and the local generation was 2229MW [7]
(this includes the generation of both SDG&E and CFE
power plants). The cascade started at 15:27:39, when the
500KV Hassayampa-North Gila transmission line tripped at
the North Gila substation. Several sources indicate that this
failure was caused by maintenance works performed at this
substation at that time. Initial investigation suggested that
this single line failure caused the blackout. The actual cas-
cade development is shown in Figure 4.

4.2 Simulation Results
We performed two sets of experiments. In the first set,

instead of performing simulation on the entire Western In-
terconnect, we chose to use a part of the grid which includes
only the affected area. The initial conditions were set to

Figure 5: The development of the San Diego black-
out in the first eight rounds using our simulation.

match as close as possible the actual conditions prior to the
event. In particular, we set the generation of the Palo Verde
nuclear plant (which is the main contributing import gener-
ation unit) to 3,600 MW out of its nominal 4,300MW. This
resulted in the following initial conditions of the import gen-
eration: SWPL = 1,386MW and Path 44 = 1,284MW.

Moreover, since in the actual event there was no (N − 1)-
resilience with respect to the faulted North Gila–Hassyampa
line, we used an N-resilient grid with different values of FoS
K (recall Section 2.3). In addition, according to [7], the ac-
tual capacity of Path 44 is almost 2.7 times the flow in nor-
mal operation. This information also correlates with other
sources (e.g., [23]) which indicate that the power capacities
are not based on a uniform FoS parameter. Since Path 44
was a major factor of the cascade development, as it carried
most of the lost SWPL power, we adjusted its FoS accord-
ingly and set it to 2.5. After experimenting with the value of
K for other lines, we found that K = 1.5 leads to a behavior
that most resembles that of the actual event. The resulting
cascade development is shown in Figure 5.

Table 1 presents a brief comparison of the simulation re-
sults and the known details of the actual event. The descrip-
tion of the actual event is presented exactly as in [7], without
any interpretation. It can be observed that although the
simulated cascade does not follow exactly the actual one,
both of them developed in a similar way. This suggests that
our model and data can be used to identify the vulnerable
locations and design corresponding control mechanisms that
will allow stopping the cascades in the early stages.

The second set of experiments was performed on the whole
Western Interconnect, and the goal was to examine the effect
of the moving average parameter α on both the maximum
line overloads and the length of the cascade. Large α corre-
sponds to the case in which the faults are mostly determined
by the very recent flow values, while small α corresponds to
the case in which the historical flow values affect the faults.
In other words, with large α values, lines are more sensitive
to power flow spikes. The results (see Figure 6) show that
the larger α is, the higher is the maximum load and the
shorter is the cascade. Moreover, when α is small (i.e., less
than 0.5), there is a period of time when the maximum over-
load is smaller than that at the initial round. This suggests
that a control mechanism applied at that time will stop the
cascade with relatively high yield in early rounds.

5. CONCLUSION
We performed a sensitivity analysis of the power grid cas-

cading failure model. We used detailed GIS data of the
western U.S. power grid and performed numerical experi-
ments that demonstrate the effects of different parameters.
In addition, we used a recent major blackout event in the
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Figure 6: Maximum line overload for different values
of α.

Actual Simulation

1 Path 44: 1415MW;
El Centro substation internal
line overload of 100MW.

15:27 Path 44: 2407MW; 2 Path 44: 1438MW;
Problems with Imperial El Centro internal line trip.
Valley-El Centro line
resulting in 100MW
swing.

15:32 Path 44: 2616MW; 3 Path 44: 1992MW;
Two lines trip at
Niland-WAPA and
Niland-Coachella Valley.

15:35 Path 44: 2959MW; 4 Path 44: 3043MW;
IID and WAPA are Niland-Coachella Valley
separated. line overload.

15:37 Path 44: 3006MW; 5 Path 44: 2991MW;
IID tie line to WAPA Niland-WAPA and Niland-
trips. Coachella Valley lines trip.

15:38 Path 44 trip; 6 Path 44 trip;
SONGS trips. 4 out of 7 lines from SONGS

to San Diego trip.
7 SONGS stabilizes with total

generation of 1350MW
out of 2253MW.

Table 1: Comparison of the actual event and the
simulation results.

San Diego area as a case study to demonstrate the consis-
tency of the models and to calibrate different parameters. In
general, the vulnerability results can be used when designing
new power grids, when making decisions regarding shielding
or strengthening existing grids, and when determining the
locations for deploying metering equipment.
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