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Abstract—Proportional Fair (PF) scheduling algorithms are
the de-facto standard in cellular networks. They exploit the
users’ channel state diversity (induced by fast-fading), and are
optimal for stationary channel state distributions and an infinite
time-horizon. However, mobile users experience a non-stationary
channel, due to slow-fading (on the order of seconds), and are
associated with basestations for short periods. Hence, we develop
the Predictive Finite-horizon PF Scheduling ((PF )2S) Framework
that exploits mobility. We present extensive channel measurement
results from a 3G network and characterize mobility-induced
channel state trends. We show that a user’s channel state is highly
reproducible and leverage that to develop a data rate prediction
mechanism. We then present a few channel allocation estimation
algorithms that rely on the prediction mechanism. Our trace-based
simulations consider instances of the PF2S Framework composed
of combinations of prediction and channel allocation estimation
algorithms. They indicate that the framework can increase the
throughput by 15%-55% compared to traditional PF schedulers,
while improving fairness.

Keywords—Cellular networks, Mobility, Proportional fairness,
Measurements, Channel state prediction, Slow-fading.

I. INTRODUCTION

3G and 4G (LTE) cellular networks incorporate oppor-
tunistic schedulers [9]. These schedulers allocate resources to
users with good channel conditions by leveraging channel state
variations, due to fast-fading,' as well as multi-user diversity.
Proportional Fair (PF) scheduling algorithms are the de-
facto standard for opportunistic schedulers in cellular networks
[13]. They aim to provide high throughput while maintaining
fairness among the users. PF scheduling algorithms have been
extensively studied in the past (e.g., [5], [8], [15]). These
algorithms are optimal under the assumptions that the wireless
channel state is a stationary process (i.e., it is subject only to
fast-fading) and the users’ association times are long (e.g.,
static users or pedestrians) [17], [25]. However, when these
assumptions do not hold (which is the case for mobile users),
the performance of these algorithms is suboptimal [4].

For example, Fig. 1 illustrates a trajectory of a car along a
Skm path, and the signal quality (E./I,) to 3 different sectors
(we collected the E./I, values during 3 drives on the path).
As can be seen, the channel has a dominant slow-fading com-
ponent? on which the fast-fading component is overlaid. Since

!Fast-fading is characterized by rapid fluctuations in the received signal
strength (due mainly to multipath) [22].

2Slow-fading is characterized by slow (on the order of seconds) changes of
the received signal strength (e.g., due to path loss and shadowing) [22].
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Fig. 1. Mobile user trajectory along a road through 3 cellular sectors: (a) map
outline and interactions with the cellular network and (b) measured values of
channel quality (E./I,) during 3 different drives.
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E./I, has noticeable trends over several seconds, the channel
state distribution is non-stationary. Additionally, movement
along the path initiates hand-offs between the sectors, and
therefore, the association periods are short.

Since PF schedulers are not optimized for mobility, we
design the Predictive Finite-horizon PF Scheduling ((PF)2S)
Framework which is tailored for mobile nodes and that takes
advantage of both slow- and fast-fading. It includes three
components: (i) data rate prediction, (ii) estimation of future
channel allocations, and (iii) slow-fading aware scheduling.

To characterize slow-fading, to provide input to the design
of the rate prediction mechanism, and to obtain traces for the
evaluation of the framework and algorithms, we conducted
an extensive measurement campaign. In particular, we discuss
fine-grained (i.e., millisecond resolution) measurements, col-
lected from a 3G network.? Specifically, we measured wireless
channel attributes in drives spanning 810km and during a pe-
riod of over 1,300 minutes. Unlike a few previous studies (e.g.,
[24]) which measured the Received Signal Strength Indicator
(RSSI) which is the total received power in a frequency band,
we measured the signal quality to each sector (E./I,). This
allows us to obtain important insights, since E./I, is the most
relevant predictor of a user’s data rate.

We analyze the traces and show that mobile users experi-
ence pronounced slow-fading. However, the slow-fading trends
cannot be simply tied to line-of-sight metrics, and therefore,
developing simple channel state predictions is infeasible. Yet,
the slow-fading component of E./I, is remarkably repro-
ducible for multiple drives on the same path (e.g., Fig. 1(b)),
lending itself to data-driven prediction approaches.

Based on these observations, we develop a 2-phase rate pre-
diction mechanism (referred to as the Coverage Map Prediction

3The measurements were collected from a 3G network, due to lack of
ubiquity of LTE networks. Yet, our observations regarding slow-fading apply
to 4G networks, as they operate at similar time-scales.



Mechanism (CMPM)). In an offline phase, measurement traces
are processed to construct channel quality maps. The online
phase is conducted by the sector and includes determination
of the user’s location and velocity, and thereby the predicted
data rate. The localization can be simply done by querying
the user’s GPS. However, since this imposes energy and
computation burdens on the user, we also develop the Channel
History Localization Scheme (CHLS) which requires some
knowledge of the user’s trajectory.* CHLS uses a variation
of the Dynamic Time Warping (DTW) algorithm (originally
developed for speech recognition [21]).

The (PF)2S Framework also requires algorithms that es-
timate the future channel allocations based on the rate pre-
dictions. We propose three such heuristic algorithms with dif-
ferent degrees of robustness to prediction errors and different
performance levels for relatively accurate predictions. Using
test cases generated from the collected traces, we perform an
extensive simulation evaluation of the (PF)2S Framework. We
consider 9 framework instances, representing combinations of
rate prediction mechanisms and channel allocation estimation
algorithms. We show that various instances of the frame-
work consistently outperform the PF scheduler. Specifically,
throughput improvements in realistic mobile scenarios range
from 15% to 55% (with maintained or improved fairness
levels). Finally, we study the sensitivity of the framework and
algorithms to various network parameters and assumptions,
including number of users and delay constraints.

The main contributions of this paper are 3-fold: (i) it
demonstrates, based on an extensive measurement campaign,
that mobile users experience a reproducible but non-stationary
slow-fading channel; (ii) it provides a cellular scheduling
framework (and corresponding algorithms), tailored for mobile
users; and (iii) it shows (using trace-based simulations) that the
framework can significantly improve performance.

The paper is organized as follows. Section II discusses
related work and Section III reviews channel state metrics and
formulates the problem. Section IV presents the scheduling
framework. Section V discusses the measurements and char-
acterization of slow-fading. A rate prediction mechanism is
presented in Section VI and algorithms to estimate future chan-
nel allocations are presented in Section VII. The framework
and algorithms are evaluated in Section VIII. We conclude and
discuss future work in Section IX. Due to space constraints,
several simulation results are omitted and can be found in [20].

II. RELATED WORK

Opportunistic Scheduling: As mentioned, opportunistic and
PF scheduling have been extensively studied (e.g., [5], [9],
[15], [17], [25]). PF scheduling algorithms using fast-fading
channel state predictions appear in [6], [11] (without a predic-
tion mechanism). Scheduling for mobile users is considered
in [2], [8], [24], where the underlying assumption in [2], [8]
is that the user’s mobility patterns induce a stationary (and
known) slow-fading channel. The algorithm of [24] schedules
a single user using an RSSI-based prediction method at time
scales on the order of minutes. On the other hand, we solve
a multi-user scheduling problem at finer time scales (tens of
seconds) using an E,./I,-based prediction mechanism.

4As such, it is highly applicable to users on highways and major roads.

Channel Measurements and Predictions: Wireless channel
measurement studies have been conducted for decades [3],
[12]. Recently, [18] studied the interaction of applications and
the physical layer attributes in the 1x-EVDO network (using a
predecessor to our measurement tool). Slow-fading is studied
in controlled environments in [26]. Methods for short-term
(over a few milliseconds) prediction of non-stationary wireless
channel states appear in [19]. The measurements in [27], [28]
focus on the repeatability of achieved bandwidth in a 3G
network. Unlike previous works, we conduct measurements
of wireless channel quality in a 3G network to characterize
and predict slow-fading patterns over tens of seconds.

Localization and Mobility Prediction: Localization in cel-
lular networks includes approaches that utilize time of ar-
rival, time-difference of arrival, angle-of-arrival, cell-ID, and
received signal strength (see [14] and references therein).
Mobility prediction schemes that utilize pattern tracking and
learning algorithm are reviewed in [16]. The method in [10]
uses the DTW algorithm, albeit for velocity estimation. The
closest related works are [14], [24] that utilize RSSI in GSM
networks to localize users via fingerprinting. On the other
hand, our scheme uses multiple channel attributes (i.e., E./I,
and RSSI) as well as recent history and is evaluated via trace-
based simulations.

III. MODEL AND PROBLEM FORMULATION
A. Channel States in 3G Networks

In a 3G network [13], each basestation covers a cell which
is divided into (typically 3) sectors. As illustrated in Fig. 1(a),
for data scheduling and hand-off purposes, users estimate the
wireless channel quality to each nearby sector. It is estimated
as the ratio between the power of a sector-specific pilot signal
and the total in-band power (including interference and noise),
and is denoted by E./I,. In Section V, we will consider these
values in our measurement study.

A user associates (connects) with the strongest neighboring
sector, termed the serving sector, and is assigned a dedicated
buffer at the sector. When the serving sector E. /I, value drops
below a threshold (e.g., due to mobility), the user hands-off
wherein it disassociates from the serving sector and connects
to a new sector with a higher E./I, value.

The downlink channel from the sector to the users is time-
slotted. We will denote by E./I,[j] the value in time slot j.
The users periodically report their E./I, to the sector. Then,
an appropriate channelization code is selected and mapped to
a feasible data rate.> The feasible data rate of user i in slot
j is denoted 7;;. An opportunistic scheduler implemented in
the sector utilizes the multiuser diversity of the data rates to
allocate downlink slots to users (see Fig. 1(a)).0

B. Scheduling Problem Formulation

The common 3G scheduler solves a Proportional Fair (PF)
Scheduling Problem [13], [15] and aims to achieve high overall
throughput while maintaining fairness among the users. The

SThe mapping from E./I, to data rates is described in [20]. The mapping
is phone specific and for our phones, the maximum data rate is 20Mbps.

SMultiple users (typically, no more than 4) may share a slot. Practically, it
is uncommon, and we assume that exactly one user is allocated a slot.



common assumptions regarding stationary channels and long
association times do not hold in mobile scenarios (as will
be shown in Section V). Hence, we formulate the downlink
scheduling problem as a variant of the PF Scheduling Problem
while utilizing a formulation similar to [4] (which studied
adversarial channels). Unlike previous work, (e.g., [8], [17],
[25]), we do not make assumptions regarding the channel state
distributions and optimize over a finite time horizon.

We assume that a sector has K associated users with
backlogged downlink buffers.” Denote by «;; the scheduler
allocation (cy;; = 1, if user ¢ is allocated slot j, and «;; = 0,
otherwise). We denote the feasible data rate and the scheduler
allocation matrices by R = {r;;} kxr and a = {oi; } k<7,
respectively. We assume a finite time horizon of 7" slots that
corresponds to the users’ association times. By the end of slot
T, user ¢ accrues a cumulative service ZJTZI ayjr;j. Hence,
we formulate the following problem where the objective is to
maximize a proportional fair cost function.®

Finite-horizon Proportional Fair (FPF) Scheduling:

K T
max, C = Zi:l log(zj:1 Oéijrij) (1)
K
subject to Z_il ;=1 Vj=1...T 2)
Q5 € {07 1} (3)

Even with full knowledge of R, this problem is NP-hard (we
omit the proof, see [20]). In practice, this problem has to
be solved in an online (causal) manner. Users are scheduled
slot-by-slot, based only on knowledge of the history and
without full knowledge of R. While the objective in the FPF
Scheduling Problem is to maximize the proportional fairness
metric (1), when evaluating the framework (Section VIII), we
also consider the following metrics.

Definition 1 (Throughput): The average data rate allocated
to all users, 1 Z;‘Ll ;15 /T is referred to as throughput.

Definition 2 (Delay): The number of consecutive time
slots in which a user 7 does not receive an allocation is
referred to as the delay and is denoted d;. User i is starved if
d; > Dgarved, Where Dggrveq 18 @ delay threshold.

We note that in Section VIII, the time horizon is sometimes
considered in seconds, and is denoted by 7'.°

IV. PREDICTIVE FPF SCHEDULING (PF)2S FRAMEWORK

In this section, we review the widely deployed PF schedul-
ing algorithm and present an online scheduling framework
for solving the FPF Scheduling problem which combines two
components: (i) data rate predictions and (ii) an estimation
of future channel allocations. The design of these components
will be presented in Sections VI and VII, respectively. We first
describe the PF scheduler deployed in 3G networks [13] which
is used in later sections as a benchmark.

TWhile in practice the number of associated users varies with time, we focus
on a specific time-period with a given number of users.

8 Although we focus on proportional fairness, the general approach can be
applied to other concave cost functions (e.g., the a-fairness class).

9In HSDPA, which is the 3G technology used in our measurement cam-
paign, the slot length is 2ms and hence, 7' =T - 2ms.

Predictive FPF Scheduling (PF)2S Framework

1: Predict future data rates R = {Fij rxT.

2: Estimate future allocations & = {&; }kx-

3: for slot j =1 to 7 do
: Compute M;; =

7",,:]‘ v .
i i€ K
— - —
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Definition 3 (PF-EXP [17], [25]): The scheduler which
sets o« = 1 where +* = argmax;cx T‘ij/Ri[j], and R; []] =
(1 —€)Ri[j — 1] + eajryj, is referred to as PF-EXP.

In the definition of the PF-EXP scheduler, ¢ determines the
tradeoff between throughput and delay. With large values of
€ (= 1), the scheduler puts more weight on the users’ current
feasible rates, thereby improving throughput at the expense of
delay performance. With small values of € (= 0) the users
allocation history has more weight, and therefore, the delay
performance improves at the expense of throughput. The PF-
EXP scheduler approaches optimal proportional fairness [17],
[25] when the wireless channel state is a stationary process
and users have long association times (i.e., 7" — 00).

Our Predictive FPF Scheduling (PF)?S Framework follows
a similar approach as the PF-EXP scheduler to make slot-by-
slot allocations. It utilizes a gradient ascent approach [7] to
maximize the objective function (1). In each time slot, the
channel is allocated to the user corresponding to the largest
objective function increase. Temporarily relaxing the integer
constraints in (3), the gradient for user ¢ in time slot j is:

oC Tij Tij

Z Qe Tt
t=1

i—

80&1'3' 1 T
QitTit + Qg + Y. QT
t=1 t=j+1

Computing the above gradient requires knowledge of the
entire data rate matrix R and is not feasible for an online
algorithm, which only has knowledge of the past. Hence, the
denominator of (4) is broken up into three components (from
left to right): past, present, and future. From the perspective
of an online scheduler, the first two components are known
in any time slot. To enable slot-by-slot scheduling, the future
component of (4) is computed as part of the (PF)?S Frame-
work, which is described in pseudo-code above.

Predictions of future data rates (r;;) and estimates of
future channel allocations (cv;;) are denoted by 7;; and d&;;,
respectively, with matrix representations denoted by R and &.
At time 0, predictions of R and & are pre-computed for the
entire horizon (next 7" slots). These matrices can be generated
using the methods described in Sections VI and VII but the
framework can support other methods. For each user 7 in each
slot j, a ranking M;; which corresponds to (4), is computed
using R and &. The user with the highest ranking is selected.

For a stationary channel, the future channel statistics are
captured in the past component of the denominator (4). Hence,
algorithms that rely only on past information (i.e., PF-EXP)
are optimal. However, for non-stationary channel distribu-
tions, this does not hold. Hence, unlike in PF-EXP, step 4
in the framework considers the future channel component.



TABLE 1. SUMMARY OF COLLECTED MEASUREMENTS
Time Total
Logged ‘ D.tu.
(min) (km)

Av. Dist.
(km)

Num
Logs

Av. Velocity
(m/s)

Total Serving

Dat:
Sectors proe

(MB)

‘ ‘ Label ‘ Total Sectors

Total ‘ ‘

RI 7 305.4 205.5 29.4 6.6 282 67 246
R2 4 85.2 33.0 8.2 10.7 245 42 254
R3 6 252.4 220.8 36.8 21.9 210 68 251
R4 10 359.5 351.0 35.1 16.8 963 336 1538
Static 5 383.4 - - 58 9 895

Towl | 32 | 13861 | 8108 | - | - [ 1758 ] 512 |

By incorporating the predicted future, the (PF)?S Framework
can leverage slow-fading trends. In addition, by making slot-
by-slot decisions, the framework also leverages fast-fading
components, similar to PF-EXP.

Since the (PF)?S Framework aims to schedule users during
slow-fading peaks (which may occur at several second inter-
vals), it is essential to ensure that this does not result in long
delays. Hence, in each slot, the framework first considers the
set of starved users whose wait time d; (from the last slot
of service) exceeds Dygirved (defined in Defn. 2) and selects
one. If no user is starved, it selects among all users. Thereby,
the framework can handle delay constraints. Note that delay
considerations can be ignored by setting Dggaryved = 00.

V. SLOW-FADING MEASUREMENTS

We now describe the measurements collected from a 3G
network. Our analysis demonstrates that mobile users experi-
ence pronounced and reproducible slow-fading. The observa-
tion regarding reproducibility provides insights into the design
of the data rate prediction (R) mechanism (Section VI).

A. Measurement Setup and Test Drives

The measurement campaign was conducted with Samsung
Galaxy S II (GSII) Skyrocket phones [23]. The phone was
connected via USB to a laptop running the Qualcomm eXten-
sible Diagnostic Monitor (QXDM) software. QXDM queries
the phone in real-time and captures various physical layer
attributes (described below) as well as GPS reports of location
and velocity. QXDM records these measurements every 20ms,
capturing the fast-fading and slow-fading components.

For the mobile measurements, the setup was placed in a car
which traversed 4 different routes that span both highways and
suburban roads (see Table I). For control purposes, we also
performed measurements with a static (immobile) setup. Dur-
ing the measurements, a continuous download was conducted
to ensure a sustained network connection. In summary, we
measured wireless channel attributes during drives spanning
810km and during a period of over 1,300 minutes. Further
details of the measurements appear in [20].

B. Channel State Metrics and Dynamics

QXDM stores three physical layer attributes: the total in-
band power (including interference and noise), termed RSSI,
the received pilot-power (RSCP), and the ratio between the
pilot power and the total interference (E./I,).!° These key
attributes characterize the channel quality and are periodically
reported by the user to the serving sector [13]. While the
latter two are specific to each nearby sector’s pilot channel,
the former (RSSI) is not. Moreover, while RSSI was com-
monly logged and used in previous work (e.g., [24]), from a
scheduling perspective, E./I, is the most relevant indicator of
a user’s channel quality [13].

0F,/I,(dB) = RSCP(dB) — RSSI(dB).
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Fig. 2. (a) Distribution of sector association times for 27 drives along routes
R1-R4 and (b) measured values of the RSSI and the serving sector E./I,
for a drive on part of route R4 (vertical bars indicate hand-offs).
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Fig. 3. Comparison of E./I, (measured), E./I} (normalized), and E./I}
(smoothed): (a) a mobile trace from route R4 and (b) a static trace.

We highlight the slow-fading phenomenon with an exam-
ple. Fig. 2(a) shows a histogram of the users’ association times
for 27 drives on all routes, demonstrating that association
times are on the order of tens of seconds. As a specific
example, Fig. 2(b) shows measured traces of the RSSI and the
serving sector F. /1, for part of a single drive along route R4.
Clearly, RSSI does not always reflect the same trend as E./I,.
Additionally, the E./I, experiences slow-fading on the order
of several seconds. Since in most cases, the user’s association
times are tens of seconds, the slow-fading peaks and troughs
occur within each sector. Therefore, we focus in the next two
subsections on E. /I, slow-fading trends, which are leveraged
by the (PF)2S Framework.

C. Slow-Fading and Mobility

We first demonstrate that the slow-fading phenomenon is
closely tied to user mobility. We then characterize the corre-
lation between slow-fading and mobility metrics and show (in
contrast to assumptions in past work, e.g., [2]) that slow-fading
trends cannot be tied to simple line-of-sight metrics.

To quantify the slow-fading in a user’s E./I, trace of T'
slots, we define a slow-fading metric as described below. First,
the mean is removed and the trace is normalized to obtain:

EC/IO[j] B EC/IO
maxi<;j<r | Ee/lo[j] — Ec/1o |

The operation does not affect E./I, trends, but removes the
amplitude which can vary depending on the sector, thereby
enabling a comparison of E./I, traces from different sectors.
Then, E./I} is smoothed by using wavelet transforms to
remove the fast-fading components (with frequencies greater
than 1Hz). The smoothed version of E. /I is denoted by E./I*
(details regarding the smoothing operation appear in [20]).
Fig. 3 provides visual examples of % and E./I for a
mobile user and a static user. Using E,./I# clearly illustrates

Ee/I;[j] =

. 5)
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Fig. 4. (a) Characterization of slow-fading using the CDF of the slow-fading
metric (S) for mobile and static traces. (b) Correlation coefficients of measured
E./I, values across 10 drives on route R4.

the presence (absence) of a trend in the values of E./I, over
the time-period of observation.

Finally, we define the slow-fading metric as S(E./I) =
Z;‘Ll E./I:[j)*/T. E./I, traces with no appreciable trends

will have E,,\//I;; values close to zero (Fig. 3(b)) and hence S
will be small. On the other hand, E../I, traccﬁ\w/ith noticeable
trends (Fig. 3(a)) will have large values of E./I* (positive or
negative) and hence larger values of S. As it is normalized by
T, S is used to compare E./I, traces with varying association
times from different sectors.

We computed S for every E. /I, trace collected from every
serving sector (see Table I). Fig. 4(a) shows the Cumulative
Distribution Function (CDF) of the slow-fading metric values
for routes R1-R4, as well as for the static traces. The mobile
routes have much larger values of the slow-fading metric,
confirming empirically that S accurately distinguishes mobile
traces with slow-fading from immobile traces.

Previous work assumed a strong correlation between slow-
fading and line-of-sight parameters (i.e., distance or veloc-
ity) [2], [9], supporting a functional prediction of the chan-
nel quality. However, our analysis indicates weak correlation
between slow-fading and line-of-sight metrics. For example,
in our traces, the correlation coefficient between S and the
distance or velocity is less than 0.2 (for more details, see [20]).
Instead, slow-fading is governed by factors such as hand-
offs, landscape, and movement-induced shadowing, which are
complex to model even in controlled scenarios [26].

D. Slow-Fading Reproducibility

As described above, the slow-fading trend is not directly
associated with line-of-sight factors, and therefore, simple
functional predictions are infeasible. Yet, the slow-fading com-
ponent of E./I, is remarkably reproducible, enabling a data-
driven prediction approach. Specifically, we observed that the
E./I, from multiple measurements (from separate drives) is
predictable with an error of 1-3dB (a similar result appears
in [24] for RSSI). To illustrate the reproducibility, we divide
part of route R4 into 25m segments'! and show in Fig. 1(b)
the F./I, observed across a subset of segments for 3 of the
drives on the route through 3 sectors. The overlap of the curves
indicates the similarity across all drives.

We strengthen this observation by computing the cross-
correlation of E./I, across all drives for each route, as
follows. Each route is divided into 25m segments and each

1125m is the minimum guaranteed GPS resolution.

drive on this route is then represented by a vector of E./I,
values, one for each segment (e.g., if a route includes n
segments, each drive is represented by a n-length vector, with
multiple observations in the same segment represented by their
average). We then compute the correlation coefficients of all
the vectors (drives). Fig. 4(b) shows the correlation between
10 drives on route R4. Across all of the drives, the correlation
coefficient is between 0.9-0.98 indicating a very high degree
of correlation. Similar results are available in [20] for the other
routes. The high correlation across all repeated drives implies
that location-tagged historical measurements of E./I, can be
used to accurately predict future slow-fading.

VI. FEASIBLE DATA RATE PREDICTION (R)

The (PF)2S Framework requires a mechanism to predict
the users’ feasible data rates for 7 slots (R). We design such
a mechanism, based on the observation that the slow-fading
component of E./I, is highly reproducible, and refer to it as
the Coverage Map Prediction Mechanism (CMPM). In an
offline phase, measurement traces are processed to construct
geographic coverage maps. The online phase is conducted by
the sector and is composed of two steps. First, the user’s
location and velocity are determined. Then, this information
is used in conjunction with the coverage map to predict user
1’s feasible rates 7;; V1 < j <T.

The first step can be implemented by querying the user’s
GPS. However, since this imposes energy and computation
burdens on the user, we also develop the Channel History Lo-
calization Scheme (CHLS). The scheme assumes that knowl-
edge of the user’s overall trajectory exists. In Section VIII, we
evaluate the framework using both alternatives.

A. Coverage Map Construction

The coverage map is constructed offline (once for each
route) by placing a lattice over the geographic plane, and
dividing it into square segments (see Fig. 5). Each segment,
denoted by b, is covered by a set of sectors to which a user
residing in it can associate, denoted by Uy. Cellular carriers
routinely measure the channel quality on major routes. These
measurements can be used to compute, for each segment b, an
average RSSI value as well as average values of E./I, and
RSCP for every nearby sector v € Uy. These are denoted by
RSSI(b), E./I,,(b), RSCP,(b). To compute these values for
our evaluations, each sample measurement was tagged with a
GPS location and tied to the appropriate segment.

B. Channel History Localization Scheme (CHLS)

The first step of the CMPM online phase localizes the user
in the coverage map. To do this without GPS, we develop
the CHLS. It matches the user’s historical channel quality to
coverage map segments on the user’s trajectory, based on the
differences between the channel metric values. Then, the user’s
location is estimated as the segment paired with its current
channel quality value. Matching the channel quality history
(i.e., a time-series) to segments (i.e., locations) depends on
the user’s velocity, which can vary. Hence, we utilize the
Dynamic Time Warping (DTW) Algorithm'? to ‘unwarp’ the
user’s historical channel qualities to best fit the coverage map.

12A similar dynamic programming algorithm is used in speech recogni-
tion [21] to align two phrases which are offset (in time, amplitude, etc.).
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Fig. 5. Illustration of the CHLS: the coverage map segments are labeled
starting from 1 (at time slot 1, the user is in segment 1). At the present time
slot (T}), the user is located in one of the segments between By and Bmax,
which fall within the coverage area of the serving sector.

The CHLS requires knowledge of the user’s trajectory and
the user’s location at a time slot in the recent history.'> The
user’s historical channel measurements are available at no
extra cost as they are periodically reported to the network for
scheduling and hand-off purposes.

The notation used to describe the scheme is defined below
(see also Fig. 5). The sector keeps a history of the user’s
E./I,,[j]. RSCP,[j], and RSSI[j] for the past T}, time slots,
which are numbered sequentially from 1 to 7}, (present slot).
The coverage map segments are sequentially numbered, start-
ing with the segment which is the user’s estimated location
at slot 1. The segments are numbered up to B, which is
the furthest segment in which the user could reside within
the sector coverage area. The serving sector covers a range of
segments B = {b: Been < b < Bpax }-

The DTW Algorithm is applied to identify the cost of
selecting each b € B as the location estimate for the user. It
constructs [, a matrix of size Bpax X T),. The value of entry
hy,; represents the minimum cost of pairing time slots from
1 to 5 with segments 1 to b. The constraint is that segment 1
is paired with slot 1 and segment b is paired with slot j (e.g.,
the end points are paired). The entries in the first row and
column are, hy j, hy1 = coVb, j, and the rest of the matrix is
computed using hy ; = c(b, j)+min(hp—1,;, ho j—1, ho—1,j-1),
where the cost of matching segment b to time slot j is

(b, §) = (RSSI[j] — RSSI(5))*+

Y (Be/Io,lj] = Be/To,(b))* + (RSCP,[j] — RSCP, (b))*.
uelUy

If channel quality history does not exist for u € U, at slot j,
then ¢(b, j) = co. Note that the CHLS uses all three channel
quality attributes to increase accuracy. Moreover, for each
time slot, it utilizes channel quality attributes corresponding
to several sectors. The scheme concludes by estimating that
the user resides in b* = argmin,cghy,1,. To complete step one,
the user’s velocity is estimated, using training data to compute
an average of past velocities near the estimated location.

The CHLS was evaluated via simulations. We set T, =
3,000 slots (which corresponds to a horizon of 60s), set the
segment size to 25mx25m, and assumed that the serving sector
coverage radius is 1,000m. We created coverage maps using
half of the traces reported in Table I. From the remaining
traces, we selected 500 random instances of 60s-length. The
distribution of localization errors is shown in Fig. 6(a). The
scheme has a median error of 23m and average error of 123m.
For comparison, our evaluation of the RSSI-based localization
scheme of [24] showed a median error of over 300m.

3For mobile users on highways and major roads, the trajectory can be
estimated using mobility prediction techniques (e.g., [16]). The historical
location can be reported based on past localization.
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Fig. 6. Evaluation of the Coverage Map Prediction Mechanism (CMPM):

(a) CHLS error distribution for 500 tests and (b) an example CMPM data rate

prediction when location and velocity are determined using GPS or CHLS.
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C. Feasible Data Rate Prediction

Recall that the FPF Scheduling Problem formulation is
based on feasible data rates. Hence, we now transition to using
data rates. The relation between E./I, and data rates (pro-
vided in [20]) is monotonic, and therefore, the reproducibility
conclusions from Section V also apply to data rates.

A simple online algorithm that operates in the sector
estimates the user’s future data rates using a coverage map and
an estimate of the user’s current location and velocity (either
from GPS or the CHLS). First, future locations are predicted
assuming that the velocity is constant for future time slots.
Each location is then mapped to a segment in the coverage
map which in turn yields a data rate.

Fig. 6(b) shows an example data rate prediction for the
CMPM using the two variations, to which we refer as CMPM-
GPS and CMPM-CHLS. In Section VIII, we demonstrate
that the CMPM-CHLS captures enough of the slow-fading
effects when integrated into the (PF)2S Framework to improve
scheduling performance.

VII. ALLOCATION ESTIMATION (&)

The (PF)?S Framework (described in Section IV) requires a
channel allocation (&) estimation algorithm based on the data
rate predictions. This can be viewed as obtaining a solution
to the FPF Scheduling Problem using the predicted data rate
matrix R. As the framework operates in an online manner,
the main design considerations are simplicity and robustness
to prediction errors. We now introduce three algorithms which
trade fairness and throughput performance for robustness to
prediction errors. These algorithms will be evaluated with the
rest of the framework in Section VIII.

Round Robin Estimation (RRE): This simple heuristic as-
sumes that future time slots are allocated in a round-robin
manner and each user receives an equal number of slots,
resulting in an estimated allocation of &;; = 1/K V1, j.

Blind Gradient Estimation (BGE): This heuristic utilizes (4)
to select a user in each slot, but without the future component
(since it is not known). Specifically, starting from j = 1, it
sets d=; = 1 where i* = argmax; y (7;)/> 1_; Qitfir. The
expression contains only slot indices < 7, and is similar to
PF-EXP. BGE requires O(KT') operations.

Local Search Estimation (LSE): This greedy algorithm,
described below, initiates with an objective function value C
based on & composed of random values. It iterates slot-by-slot,
greedily allocating slot j to the user with the largest gradient



Local Search Estimation (LSE) Algorithm

Input: Predicted data rates R = {Pij b xT.
Output: Estimated allocations & = {&u; }k xT-
: Choose an initial random &.
10g(Z (TZJO‘U))

1

2: j =1, LastChange =1, C' = Z

3: repeat i* = arg max;ck n]/zte{l (7 Ltazt)
4: azjfla”fo Vi # "

5: =k log(X r”aU))

6 it (C' > C) then d' C’, LastChange = j
7: j=(mod T)+1

8: until j # LastChange

value, assuming all other time slots are fixed. The algorithm
proceeds cyclically (returning to slot 1 after 7) until reaching
a local-maxima (i.e., no change in 7' iterations). Termination
is guaranteed as the objective value is bounded from above.
Each cycle of LSE takes O(KT) computations. Practically, it
usually terminates after a few cycles.

An example of & values obtained by each of the algorithms
appears in Fig. 7(a). LSE’s estimates are tightly clustered near
the predicted slow-fading peaks. The estimates from BGE
are more diffused and those of RRE are uniform. Conse-
quently, if the rate predictions are accurate, the framework
using LSE provides the best performance, since it correctly
allocates slots near the peak rates. The framework using BGE
allocates slots around the peak rates, resulting in moderately
good performance. The framework with RRE allocates slots
uniformly, occasionally occurring during the peaks. On the
other hand, if the prediction is erroneous, LSE would suffer,
since it pushes the framework to schedule the user’s slots at the
predicted slow-fading peaks. BGE provides some robustness to
prediction errors, and RRE is the most robust.

VIII. PERFORMANCE EVALUATION

We now use trace-based simulations to evaluate the per-
formance of the (PF)?S Framework described in Section IV.
Framework instances use combinations of CMPM implemen-
tations and channel allocation estimation algorithms. The test
cases are generated using measurement traces and the perfor-
mance metrics are proportional fairness (1) and throughput
(Defn. 1). We show that various instances of our framework
consistently outperform the deployed scheduler (PF-EXP),
with throughput improvements in realistic scenarios ranging
from 15% to 55%. We then study the framework’s sensitivity
to the time horizon, number of users, mobility, R accuracy,
delay threshold, and coverage map resolution.

A. Generation of Coverage Map and Test Cases

From the dataset presented in Section V, half of the drives
on each route were used as training measurements for coverage
map construction (using a 25mx25m segment size). The
remaining measurements were used for test case generation.
A single test case was generated for every sector that had
enough measurement data. Each test case is comprised of K
users and 7" time slots and it emulates users starting at different
locations within the sector coverage area and traveling with
varying velocities in both directions along a route.

For each user ¢, the data rates 7;;, 1 < j < T were
generated by selecting a segment of 7' random contiguous

>
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Fig. 7. (a) An example of predicted data rates for a user with 7" = 15s

and the corresponding & estimations computed by the LSE, BGE, and RRE
algorithms. (b) The data rates (r;;) for a test case with K = 7 and T = 15s.

slots from part of the trace where the user was associated with
the sector. In half of the cases, the vector was time-reversed,
emulating travel in the opposite direction. Fig. 7(b) shows the
d~ata rates (r;;) for an example test case with K = 7 and
T = 30s (recall that 7" is the time horizon in seconds).

Finally, for each generated rate matrix R, weAconsider 3
approaches for obtaining the predicted rate matrix R: clairvoy-
ant (a.k.a., complete knowledge, R = R), the CMPM which
uses GPS information for location estimation (referred to as
CMPM-GPS), and the CMPM which uses the CHLS (referred
to as CMPM-CHLYS). Using these approaches enables evalu-
ating the framework with different qualities of R prediction.

B. Baseline Comparison and Upper Bound

The (PF)2S Framework is compared to the deployed sched-
uler, PF-EXP (see Defn. 3), by normalizing the throughput and
fairness values by the corresponding values obtained by PF-
EXP. Hence, metric values greater than 1 show improvements
over PF-EXP. As an upperbound, the optimal solution to the
FPF problem (referred to as OPT) is obtained using CVX, a
MATLAB solver [1]. Note that OPT is obtained ignoring the
integer constraints (3), using R, and without delay constraints.

As mentioned in Section IV, the parameter e implicitly
controls the throughput-delay tradeoff for the PF-EXP sched-
uler. The (PF)2S Framework explicitly controls the throughput-
delay tradeoff using the parameter Dgiprveq. Unless otherwise
specified, we fix Dgyrveda = 0.5s (We discuss the sensitivity to
this assumption in Section VIII-D). Correspondingly, based on
extensive simulations, we set € = 0.01 to provide similar delay
performance as our framework, thus ensuring a fair compari-
son. See [20] for additional discussion on the throughput-delay
tradeoff.

C. Throughput and Fairness Gains

We evaluate the throughput and fairness performance for
various (PF)2S Framework instances and confirm experimen-
tally that the & estimation algorithms provide different degrees
of robustness to rate prediction errors.

Figures 8(a) and (b) present box plots14 of the framework’s
fairness and throughput performance gains for 22 randomly
generated test cases with K = 7 and T = 30s (gains
greater than 1 indicate improvements over PF-EXP). Since the
objective function is logarithmic, the fairness gains are at the

14Box plots include a whisker at maximum and minimum samples, a box
at the 25th and 75th sample quantile, and a line at the sample median.
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Fig. 8. (PF)%S Framework performance for various framework instances

(combinations of R, and & prediction algorithms): statistical evaluation of 22
test cases with K = 7 and 7" = 30s, and the resulting (a) fairness and (b)
throughput gains over PF-EXP.

order of a few percent. The throughput gains over PF-EXP for
all framework instances are significant (up to 70%). Clearly,
the performance of a framework instance depends on the rate
prediction accuracy (R) and the channel allocation estimation
(&) algorithm. H§nce, we consider framework instances, cat-
egorized by the R prediction mechanism:

R Clairvoyant: The throughput gains are substantial (20%
to 70%). As expected, based on the framework instance
performance, the estimation algorithms are ranked by LSE >
BGE > RRE. In general, the LSE performance with complete
knowledge was near optimal'> (an observation we justify
analytically in [20]).

R from CMPM-GPS: Fig. 8 shows that the ranking between
the & estimation algorithms is BGE > RRE > LSE. As
described in Section VII, BGE provides relative robustness
to prediction errors, and hence with CMPM-GPS it often
outperforms LSE with throughput gains of 20% to 55%.

R from CMPM-CHLS: The instances using LSE and BGE
show the largest performance decrease (compared to using
complete knowledge). Yet, they still result in gains over PF-
EXP. In general, we found that RRE is most resilient to errors
and results in significant throughput gains of 15% to 50%.

In summary, the evaluations with real-world measurements
show that practical (PF)?S Framework instances consistently
provide higher performance than the PF-EXP algorithm with
throughput gains typically between 15% and 55%.

D. Sensitivity Analysis

The results below are for the framework using RRE and
CMPM-CHLS (similar results for other instances are in [20]).

Time Horizon (7): Fig. 9(a) shows the fairness and through-
put gains for test cases with varying time-horizons 7T'. Intu-
itively, larger 1" provides the framework additional opportu-
nities to benefit over PF-EXP, which does not account for
future data rates. For small to moderate values of 1" (5s,15s),
the framework shows 10%-30% throughput improvements.
The performance gain for 7" = 60s increases to 20%-60%.
Eventually, as 7' grows, the framework becomes limited by
the accuracy of the prediction, which decays with time.

Number of Users (K): Fig. 9(b) shows the fairness and
throughput gains for 20 test cases with 1" = 30s, and vary-
ing number of users. With additional mobile users, multi-

I5For all test cases, when Dggrved = 00, the throughput when using LSE
with complete knowledge is within 0.05% of the OPT throughput.

1
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Fig. 9. (PF)2S Framework performance gains when using RRE with CMPM-
CHLS: statistical evaluation of (a) 10 test cases with K = 10, varying the
time horizon (7") and (b) 20 test cases of 7" = 30s, varying the number of

users (K).

[

112 - - -Fairness L é
8 1.008 = E 1021 + |—Throughput =
k= 5 £ o 148
S 1.006[ O O rosii ] v T . -
O : ": 5 3 af Ll b33
2 1.004 : 1052, 2 R I I 2
& : S o LonEf Ll ] )
£ 1.002 : 5 o £ sHuH T e s
gl S = HegoHuH E:
= ' < S 1005 H i ‘,:‘, =
ST o8 = ) RN B i I B =
: = s LI =
0998 OP’I: LSE BGE RRE o Spati U
Number of Static Users

(a) (b)

Fig. 10. (PF)2S Framework performance gains: (a) a test case generated

from static traces with T" = 30s and K = 5, and (b) statistical evaluation of
10 test cases using RRE with CMPM-CHLS with 7" = 30s, 10 mobile users,
and varying number of static users.

user diversity increases and the performance improves. The
throughput gains increase from up to 25% with 3 users to up
to 45% with 10 users.

Effect of Mobility: To ascertain the affect of static users, we
evaluate test cases created from the mobile and the static (im-
mobile) measurements. With static measurements, the wireless
channel state distribution is stationary. Fig. 10(a) considers
the framework performance for all algorithms (with complete
knowledge, as predictions are irrelevant in this case) in a test
case with K = 5 and T" = 30s. The framework performance
is very similar to PF-EXP (with throughput gains within 6%)
and is very close to OPT. Fig. 10(b) shows gains for 10 test
cases of T' = 30s with 10 mobile users and a varying number
of static users. With the addition of static users, PF-EXP
performance improves (approaches optimal), and therefore, the
gains decrease. Yet, with 10 mobile users, the gains are still
significant, with throughput gains of over 30% in some cases.

Slow-fadjng Peak Prediction: As indicated, the accuracy
of the R prediction impacts the framework performance.
Through careful inspection, we found that a key factor in
prediction accuracy is the location of the slow-fading peaks.
Framework evaluations using a controlled R prediction suggest
that predicting the slow-fading peak within S5s of the actual
peak will result in significant performance improvements. Due
to space constraints, these are provided in [20].

Delay Threshold (Dygypveq): It is important that, with the
improved performance, the framework does not result in
significant delay increases. The framework uses the delay
threshold Dgyveq to prioritize ‘starved’ users. For the example
test case in Fig. 7(b), we vary Dgared and observe the
framework performance tradeoffs in Fig. 11(a). Tightening the
delay threshold by an order of magnitude from 2s to 0.25s
decreases the throughput gains from approximately 35% to
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Fig. 11. (PF)?S Framework performance gains when using RRE with the

CMPM-CHLS: (a) varying the delay threshold Dggaryeq for the test case given
in Fig. 7(b), and (b) statistical evaluation of 15 test cases with K = 10 and
T = 30s for varying coverage map resolution values.

25%. This comparison was done with PF-EXP at a fixed value
of e = 0.01, which yields maximum delays of the order of 0.2—
0.4s. Hence, the framework provides similar delay performance
along with higher throughput and fairness.

Coverage Map Resolution: In the results above, the coverage
map segment size is 25mx25m. Fig. 11(b) shows the frame-
work gains for 15 test cases with K = 10 and 7" = 30s as a
function of the map segment size. The performance does not
degrade significantly as the segment size becomes reasonably
large, since larger segments result in averaging of channel
quality attributes over a larger area. This indicates that coarse
channel measurements are useful for the framework.

IX. CONCLUSIONS AND FUTURE WORK

We described an extensive wireless measurement study as
well as the design and trace-based performance evaluation of
the (PF)2S Framework. We showed that by leveraging slow-
fading, the framework (composed of various algorithms) can
provide significant throughput gains while improving or main-
taining fairness levels. Finally, we investigated the sensitivity
of the results to different parameters and assumptions.

Future work will focus on relaxing the assumptions. Partic-
ularly, we plan to consider dynamic user populations handing-
off between sectors. Additionally, we plan to extend the evalu-
ations to consider policies that select appropriate & estimation
algorithms in different scenarios. Moreover, we will extend the
localization scheme for cases in which trajectory information
is unavailable or limited. Finally, as 4G networks become
ubiquitous, we will conduct a corresponding measurement
study and develop tailored resource allocation algorithms.
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