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Abstract—Core and aggregation optical networks are remark-
ably static, despite the emerging dynamic capabilities of the
individual optical devices. This stems from the inability to address
optical impairments in real-time. As a result, tasks such as adding
and removing wavelengths take a substantial amount of time, and
therefore, optical networks are over-provisioned and inefficient
in terms of capacity and energy. Optical Performance Monitors
(OPMs) that assess the Quality of Transmission (QoT) in real-
time can be used to overcome these inefficiencies. However, prior
work mostly focused on the single link level. In this paper, we
present a network-wide optimization algorithm that leverages
OPM measurements to dynamically control the wavelengths’
power levels. Hence, it allows adding and dropping wavelengths
quickly while mitigating the impacts of impairments caused by
these actions, thereby facilitating efficient operation of higher
layer protocols. We evaluate the algorithm’s performance using
a network-scale optical simulator under real-world scenarios and
show that the ability to add and drop wavelengths dynamically
can lead to significant power savings. Moreover, we experimen-
tally evaluate the algorithm in an optical testbed and discuss the
practical implementation issues. To the best of our knowledge,
this paper is the first attempt at providing a global power control
algorithm that uses live OPM measurements to enable dynamic
optical networking.

Index Terms—Optical networks, network management, power
control algorithms, performance evaluation, energy efficiency.

I. INTRODUCTION

Optical networks are the underlying infrastructure of core
and aggregation networks [29]. In order to handle peaks in
traffic demand, these networks are usually static and over-
provisioned [38]. This leads to inefficient use of capacity
and energy (due to the need to keep inactive lightpaths
available). The increase in traffic demand and heterogeneity
as well as the need to support energy-efficient operation [25]
already pose challenges that cannot be addressed by over-
provisioning. Dynamic adaptation of the network will become
more pronounced as the fiber capacity is approached [15]
and the energy consumption of the IT sector becomes more
prominent [25]. Requirements for dynamic adaptation stem not
only from ongoing changes in Internet traffic patterns (e.g., due
to diurnal cycles), but also from the emerging needs to quickly
provision high-bandwidth inter-data-center links [21, 24].

B. Birand, H. Wang, K. Bergman, and G. Zussman are with the De-
partment of Electrical Engineering, Columbia University, New York, NY
(e-mail: {berk,howard,keren,gil}@ee.columbia.edu). D. Kilper is with the
Center for Integrated Aggregation Networks, College of Optical Sciences,
University of Arizona, Tucson, AZ (e-mail: dkilper@optics.arizona.edu).
T. Nandagopal is with the National Science Foundation, Arlington, VA (e-
mail: tnandago@nsf.gov). Partial and preliminary versions of this paper
appeared in OSA OFC’13 [8] and IEEE ICNP’13[7].

Fig. 1. The optical infrastructure of the Géant academic network[2], whose
topology is used in order to evaluate the proposed algorithms. The highlighted
nodes are used as part of the topology considered in the simulations in
Section VI.

Wavelength-Switched Optical Networks (WSONs) (see e.g.,
Fig. 1) include various emerging dynamic optical devices
which have the potential to address these challenges. Dy-
namic devices include, for example, Reconfigurable Add/Drop
Multiplexers (ROADMs) that can transparently switch the
transmissions from one lightpath to another [29], modulators
that can adapt to the link state [16], and bandwidth variable
transceivers that can modify band gaps between adjacent
channels [17]. While the flexibility provided by such de-
vices allows the network to adapt to the link conditions and
traffic demands, optical networks are still mostly static, due
to potential impairments that are hard to predict or model
[6, 38]. Sources of these impairments are related to the
optical transmission and fiber properties [29], and to factors
such as temperature, component drift, component aging, and
maintenance work [33]. Due to these impairments, lightpaths
are rarely modified once assigned. This means that Routing
and Wavelength Allocation (RWA) (e.g.,[6]) is done primarily
at the planning phase, with significant over-provisioning. Any
changes are executed manually which is both time-consuming
and expensive [14].

Hence, our goal is to enable lightpath configuration, setup,
and teardown with convergence times in the order of tens of
seconds. This will allow higher layer protocols to adapt to
traffic variations and customer demands, thereby leading to
significant energy savings (e.g., [22, 35]). We build on the
capabilities of the dynamic optical devices as well as various
Optical Performance Monitors (OPMs) that have been recently
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Fig. 2. Schematic view of the interaction of the control algorithm with the
optical devices, and the higher layer algorithms and SLAs.

developed [33]. OPMs can measure Quality-of-Transmission
(QoT) parameters such as the Optical Signal-to-Noise Ratio
(OSNR), Bit Error Rate (BER), and chromatic dispersion in
real-time. Yet, while OPM capabilities have improved, most
control schemes that use them operate at the link-scale rather
than at the network-scale [28]. Extensions of per-link policies
to the entire network do not produce globally optimal results,
and may not converge within the desired time [8].

We develop an impairment-aware, network-wide power con-
trol algorithm. As illustrated in Fig. 2, the algorithm will
allow operators to control the dynamic devices such that
the network will be maintained in a state that satisfies the
QoT constraints and higher layer requirements. The algorithm
would support quick reaction to changes (e.g., addition or
removal of lightpaths), and can therefore facilitate the dynamic
operation of higher layer RWA algorithms. We note that
schemes that require close interaction between the layers are
only starting to gain attention in the node/link-level of optical
networks [36, 39]. The development of network-scale schemes
has rarely been addressed and is a challenging open problem,
due to the following reasons:

• Continuous Operation – Most optimization problems
associated with optical networks are solved offline during
the network planning phase or when lightpaths are added
or removed. Dynamically solving these problems on a live
production network requires always maintaining a feasi-
ble solution, which is challenging given the unpredictable
and time-varying nature of the optical links.

• Unknown Performance Functions – The analytical ex-
pressions (and derivatives) for the BER and the OSNR
as functions of the power levels in the network are
intractable, and therefore, most optimization algorithms
are inapplicable.

• Limited Performance Evaluation Infrastructure – Op-
tical testbeds based on off-the-shelf networking equip-
ment are limited in conducting dynamic experiments. The
exposed functionality usually only allows higher-layer
operations such as lightpath provisioning.

To overcome these limitations, we formulate the Multi
Link Optimization (MLO) problem and present the Simulta-
neous Multi-Path Lambda Enhancement (SiMPLE) algorithm
which controls the power levels of the wavelengths. Since
the analytical models of BER and OSNR are intractable,
the SiMPLE algorithm uses real-time OPM measurements.
The functions are unknown and the measurements are noisy,
and therefore, evaluating derivatives via finite-differences is
unreliable. Moreover, the algorithm should operate on a live
network (restricting the type of points that can be evaluated)

and evaluations are costly in terms of time and energy. As a
result, most convex solution methods cannot be used. Hence,
the SiMPLE algorithm is based on derivative-free optimization
(DFO) methods [12] and computes a live configuration of the
wavelengths’ power levels throughout the optical network.

We evaluate the performance of the SiMPLE algorithm in
two ways. First, we use a network-scale optical simulator that
provides fine-grained control over the optical physical layer.
We then evaluate the algorithm’s performance in a small-
scale testbed that is built using commercial optical devices.
We demonstrate that desirable convergence which does not
impact the network reliability can be obtained through a proper
choice of algorithm parameters. Furthermore, we show that the
ability to add and drop wavelengths dynamically (as enabled
by SiMPLE) can lead to significant power savings.

We note that our approach requires deploying OPMs at
many locations throughout the network, and continuous com-
munication between the OPMs and a central controller. While
migrating to such a deployment may increase costs, new
devices that have integrated OPMs may facilitate this tran-
sition and reduce the CAPEX [26]. Furthermore, transceivers,
amplifiers, and ROADMs already consume a large share of
the power in modern optical networks. Through a better use
of resources, fewer such devices may need to be deployed,
as the ones that are already in place can be configured to
dynamically address the demands. As such, dynamic optical
networks can have a positive impact both in terms of CAPEX
and OPEX.

In summary, the main contributions of this paper are three-
fold: (i) we develop a measurement-based power control
algorithm that enables the dynamic addition and removal of
lightpaths anywhere in the network at any time, (ii) we evalu-
ate the performance of the algorithm using an optical simulator
and in an optical testbed, and (iii) we estimate the possible
energy savings based on the simulation results. To the best of
our knowledge, this is the first attempt at providing a global
power control algorithm that uses live OPM measurements to
enable dynamic optical networking. The proposed algorithm
can support optical network control in near real-time while
allowing the higher layer protocols to dynamically adapt to
traffic patterns. In other words, we take one of the first steps
towards designing software-defined optical networks that may
be able to reduce the energy consumption of the network
backbone via better resource allocation.

The rest of the paper is organized as follows. We introduce
related work in Section II and present the model that captures
the dynamics of a single link in Section III. In Section IV, this
link model is generalized to the entire network and the MLO
problem is formulated. The SiMPLE algorithm is introduced
in Section V, followed by extensive evaluations via simulation
and experimentation in Sections VI and VII, as well as the
energy savings analysis. We conclude and discuss future work
in Section VIII.

II. RELATED WORK

Recent years have seen all-optical networks garner increased
attention as a viable option for reducing the power consump-
tion of data-transport networks [25]. A recent special issue of
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the Proceedings to the IEEE [5] addresses several important
problems in all-optical networks, such as reconfigurablity,
optical flow switching, optical network control, and cross-layer
impairment-aware optical networks [36]. The end goal is to
realize an all-optical network, and the problem posed in this
paper is one of the building blocks needed to achieve this goal.

Modifying traffic patterns in an operational optical network
requires one to be aware of the physical network constraints,
the QoT requirements, and Physical Layer Impairments (PLI).
This is true whether impairment-aware RWA algorithms are
used [6, 13] or decisions are made in an optical switching
fabric [20, 28]. A lot of algorithmic research of optical network
control has looked into efficient Routing and Wavelength
Allocation (RWA) problems. Recent developments focus on
finding routes by considering impairments [6], and on the
reduction of overall energy consumption [39]. Our work is
independent of the type of RWA algorithm used, and will take
the network-wide output of such an algorithm to determine the
appropriate per-wavelength power assignments, if it is feasible,
on a per-link basis, in near real-time.

The energy consumption of the ITU sector recently received
a lot of attention [25, 30]. For instance, the GreenTouch
Consortium aims to reduce the carbon footprint of telecommu-
nications equipments and networks by several orders of mag-
nitude [3]. Research in this area considered energy-reduction
strategies for switching off optical devices at times of low
demand[22]. In [35], the authors propose RWA algorithms that
minimize the energy consumption based on the current load in
the network. In both approaches, the algorithms use analytical
models rather than measurements, and therefore, are unlikely
to be implemented as-is in real systems given the unpredictable
nature of optical transmissions.

OPMs offer real-time inspection of transmissions [33] by
measuring OSNR and BER. OPMs have been successfully
applied for dynamic optical network control, e.g., switching in
an optical switch using BER as a metric [28] and changing the
modulation format in real-time according to link OSNR [16].
Another important work considers minimizing the sum of
convex cost functions (e.g., wavelength powers) of a single
link based on the OSNR constraints on individual wavelengths
[32]. In this paper, we go beyond a single link, and discuss
the solution of this problem for a network of optical links.

III. OPTICAL LINK MODEL

We now focus on a single optical link of a network. Such
a link consists of several spans of fiber connected by various
optical devices such as amplifiers. The signal originates at a
node with a transponder and is amplified at intermediate nodes.
The receiver at the destination decodes the signal. Source and
destination nodes can be, for example, ROADMs or Optical
Cross Connects (OXCs) that connect several links.

On a single fiber of a Wavelength-Division Multiplexed
(WDM) network, several transmissions can take place on
different wavelengths, as illustrated in Fig. 3. We denote by
E the set of spans. Each span u ∈ E supports a set of
wavelengths denoted by Λ(u). The following definition will
be useful in refering to individual wavelengths of each span.
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Fig. 3. The correspondence between a physical link and its spans, and our
optical link model. The leftmost node includes an optical source composed of
a laser (L) and a modulator (M). The intermediate nodes consist of amplifiers
and Variable Optical Attenuators (VOAs). The rightmost span ends the link
with a Receiver (R). OPMs can be located at any node.

Definition 1 (λ-span): A λ-span (u, λi) represents the
transmission on fiber span u ∈ E and wavelength λi ∈ Λ(u).

Controllable parameters of the λ-spans include launch
power, amplification, bandwidth, and modulation format. In
this paper, we focus on power control1. Properties of a span,
such as BER and OSNR, can be measured using an OPM.

A. Optical Power Dynamics

Each λ-span (u, λi) has an associated optical power-level
pui . All power levels are expressed in dBm. If the head of a
span is a transmitter (laser), pui is the power of the signal
as it leaves the transmitter. If the head of the span is an
amplifier, the power is the amplified signal power. During
the transmission through the span, the signal power is first
attenuated by a distance-dependent fiber loss αu which is
around 0.2 dB/km for single-mode fiber. The power at the
receiving end of span is therefore pui − αu (in dBm).

At an intermediate node, the power can be modified in
several stages, as shown in Fig. 3. The received signal pui −αu

is first amplified by an amount Gu
i . The power can then

be reduced using a variable optical attenuator (VOA) by a
specified amount Du

i . The launch power pvj of the signal at
an intermediate node is

pvi = pui − αu +Gu
i −Du

i . (1)

Depending on the network, different values of this expres-
sion will be the control variables. If a constant gain amplifier is
used at λ-span (u, λi), the corresponding variable Gu

i will be
a constant whose value is set to the gain of the amplifier. If the
amplifier gain is configurable, Gu

i will be a decision variable
that can be modified while adjusting the optical power levels.
While these decision variables are real numbers, they can be
rounded to the nearest value supported by the amplifier. Most
optical amplifiers are ideally designed to amplify the entire
spectrum by the same gain factor, i.e., Gu

i = Gu
j , for any two

wavelengths i and j in the same span. If the power can be

1Extensions to other parameters such as modulation format and transmis-
sion wavelength will be considered in future work.
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Fig. 4. Illustration of the relationship of BER and the optical launch
power for a few modulation formats denoted M1, M2, M3 [23]. Prominent
impairments in each region are marked (see [29] for detailed descriptions).

controlled at the launch of the λ-span, then the initial power
pui is a decision variable. Otherwise, it is a constant.

Regardless of the choice of parameters Gu
i and Du

i , it is
possible to express the power dynamics of the network as a
function of the power variables, pui . We will therefore write
all future equations with respect to the λ-span power levels
puj , and use the notation p for the power vector of all power
levels in the network.

B. Performance Measurements
There are direct relationships between power levels, BER

and OSNR values, and these originate from the physical
interactions of the optical transmission with the fiber. As
such, they are difficult to characterize analytically, but can
be measured experimentally. Fig. 4 provides an illustration
of the relationship between the BER value and the launch
power for a specific λ-span. The prominent impairments for
different power levels are noted on the figure, and can be
found in [29]. For instance, at low power levels, increasing
the power improves the BER by mitigating the effects of
Amplified Spontaneous Emission (ASE) noise. However, at
higher power levels, increasing the power may negatively
impact the BER, due to other, non-linear impairments such
as Cross-Phase Modulation (CPM). The exact shape of Fig. 4
may depend on the characteristics of the fiber, amplifiers, and
other equipment. Other factors, such as the used modulation
format, temperature, component drift, aging, and fiber plant
maintenance [33] affect the specifics of the curve, but the
overall nature of the relationship remains the same [23].

In our setup, OPMs are used at the receiving end of a span
to measure the quality of the transmission, including the BER
and the OSNR. The BER and the OSNR metrics depend on
the power pui on λ-span (u, λi), and are denoted by BERu

i (p)
and OSNRu

i (p), respectively, for a λ-span u.
There are no analytical expressions for BER and OSNR

functions, due to the presence of many impairment factors.
However, BERu

i (p) is convex, while OSNRu
i (p) is con-

cave [18, 23]. We use our experimental testbed described in
Section VII to show this fact. Fig. 5 shows a logarithmic
plot of the BERu

i (p) function when two lightpaths λ1 and
λ2 on the same λ-span are gradually attenuated. The cuts
along the x- and y-axes of this function yield convex curves
similar to Fig. 4. However, this does not imply that the
multidimensional function is convex over both variables. We

Fig. 5. The experimentally obtained 3-dimensional function that demonstrates
the convexity of the BER curve of λ2 with respect to the attenuation levels
of λ1 and λ2.

verify this numerically by calculating the Hessian of this curve
at all points, and making sure that it is positive semidefinite.
This convexity property is leveraged in the next section to
develop a network-wide power control algorithm.

We note that the problem formulations in Section IV and
corresponding convergence results also hold under more gen-
eral assumptions. Namely, when the BER and OSNR functions
are not convex, but are quasi-convex2. Quasi-convex functions
form a very large family that contains convex functions.

IV. MULTI-LINK OPTIMIZATION PROBLEM

In this section, the optical model for a single link introduced
in Section III is generalized to the network setting and an
optimization problem is formulated.

A. Network Model

We model the network as a directed graph (V,E). The nodes
v ∈ V represent ROADMs, OXCs, and amplifiers in which, it
is possible to control the power and to perform measurements
using OPMs.3 The edges u ∈ E are fiber spans between
devices. In a WDM network, each fiber span can support
several wavelengths which correspond to several λ-spans.

A lightpath P is a single optical stream of data that
traverses several spans. Most lightpaths maintain the same
wavelength throughout their route, although converters can
be used to modify their wavelength along the route[29].
Lightpaths are represented as sequences of λ-spans P =
{(u, λi), (v, λi), (w, λi), . . .}.

As shown in Fig. 1, nodes can have several incoming links.
At these locations, cross-connect devices such as ROADMs
bridge the lightpaths from one span to another[34]. The
assignment of routes and wavelengths to links is out of scope,
as these are assumed to be handled by an RWA algorithm [6].

Not all λ-spans have all the capabilities introduced in
Section III. We denote by ΛBER and ΛOSNR the sets of λ-
spans that are equipped with the OPMs that measure BER
and OSNR, respectively. Similarly, the set Λp correspond to
the sets of λ-spans that have the ability to control the power.

2A function is said to be quasi-convex if its sublevel sets are convex.
3An optical link between two regional offices that includes several ampli-

fiers is modeled as a path of several nodes.
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B. Optimization Problem

The key requirement of network operators, as specified by
their Service Level Agreements (SLAs), is to maintain the
BER within a certain threshold value. Any network changes
that are performed should also satisfy this requirement. Since
network operators are unable to continuously adjust the power
levels of the lightpaths in response to impairments, they
typically compute an offline solution with added margins
to the BER requirements, which leads to over-provisioning.
While this approach works when network demands are largely
static, with traffic variations seen in today’s networks (e.g.,
diurnal patterns for video consumption, inter-data center traffic
[21, 24]), a dynamic approach that can continuously guaran-
tee BER requirements while adjusting to traffic demands is
needed.

The Multi-Link Optimization (MLO) problem represents this
requirement as a relationship between the desired threshold
levels and the current outputs of the OPMs, provided by
the BER and OSNR functions. The control variables are the
power levels that need to be adjusted to change the OSNR or
BER values. There can be several possible configurations that
provide this guarantee, and the one that consumes the least
amount of optical power is considered through the objective
function hMLO(p,D). Based on the linear relationship of
eq. (1), the power levels are adjusted by either minimizing
the power levels p or by maximizing the attenuations D. The
formulation for this optimization problem is as follows.

Problem 1 (Multi-Link Optimization - MLO):

minimize
p,D

∑
(u,λi)

pui −
∑
(u,λi)

Du
i =: hMLO(p,D) (O1)

subject to BERu
i (p) ≤ BERu

i , ∀(u, λi) ∈ ΛBER (C1)

OSNRu
i (p) ≥ OSNRu

i , ∀(u, λi) ∈ ΛOSNR

(C2)
0 ≤ p ≤ SAF, (C3)

where BERu
i and OSNRu

i are the respective performance
thresholds on λ-span (u, λi), and SAF is the limit on the link
power due to safety restrictions. Note that in this formulation,
the objective function hMLO(p,D) effectively minimizes the
difference of the power and the attenuation throughout the
network. Bounding the power levels by the safety parameter
SAF in constraint (C3) assures that the power levels are always
reasonable. This effectively eliminates corner cases in which
the difference can be small, while both the power levels p and
the attenuation D are very large. We refer to a power vector
p as feasible, if constraints (C1)-(C3) are all satisfied.

When an RWA algorithm needs to add a lightpath, the
MLO formulation can be modified by adding constraints for
the new λ-spans. To remove a lightpath, constraints involving
the affected lightpath can be removed progressively. In the
same manner, modifications in the threshold values for some
lightpaths can be executed by changing the BERu

i and OSNRu
i

parameters.
The MLO problem is convex due to the nature of the

OSNR and BER functions, similar to the single-link case.
They are also zero order oracle problems [12] because their

analytical functions and first-order derivatives are unavailable
(see Section III-B).

V. POWER CONTROL ALGORITHM

In this section, we present the Simultaneous Multi-Path
Lambda Enhancement (SiMPLE) Algorithm that uses the
characteristics of the MLO problem to solve it efficiently.

Computing an optimal solution for the convex MLO
problem is not straightforward. The functions BER(p) and
OSNR(p) can be evaluated for given points but their overall
curves are unknown. Each evaluation of a performance func-
tion requires using an OPM device which is expensive both
in terms of time and energy. The measurement process can
be disruptive to existing traffic in the network, and the OPM
readings may contain noise. Therefore, a general-purpose
convex solver cannot be used for the solution of the MLO
problem, and these special characteristics must be accounted
for during the design of a novel algorithm.

We denote by p(k) the value of the power vector at iteration
k (contrasted with pui which is the power of λ-span (u, λi)).
Similarly, the measurements from all the OPMs at iteration k
are captured by vectors BER(p(k)) and OSNR(p(k)).

A. Design Considerations (DCs)

The requirement for the SiMPLE algorithm to operate in a
live production network has several important implications:

(DC1) An algorithm that solves the MLO problem needs to
evaluate the BER/OSNR functions at intermediate power lev-
els while converging to a solution. To obtain these intermediate
power levels, the amplifiers and attenuators need to be tuned
throughout the network. A proper algorithm therefore must
guarantee that these intermediate evaluations do not cause
any disruptions to active lightpaths. Specifically, the algorithm
needs to perform small perturbations and ideally the result of
the most recent iteration needs to be the best one.

(DC2) For the network operator, it is more important to
adhere to the SLA requirements than to find a setup with
the optimal optical power allocation. Since satisfying the con-
straints (C1)-(C2) is the priority, the main aim of the algorithm
is to obtain a feasible solution as quickly as possible. Once
a feasible solution is reached, the algorithm must guarantee
that the subsequent steps do not cause any of the feasible
constraints to be violated by a large amount.

(DC3) Most convex optimization solvers need the first
or second derivatives of the functions used in the problem
formulation[31]. However, these methods are not appropriate
for cases where the functions are not known and can be noisy.
Therefore, derivative-free optimization (DFO) algorithms [12]
are the most suitable solution methods.

B. SiMPLE Algorithm

We begin with a high-level overview of the SiMPLE algo-
rithm. This algorithm is based on a constrained direct-search
algorithm [12], and incorporates the design considerations dis-
cussed in Section V-A. Starting from a power vector p(0), the
algorithm makes small changes to the power levels according
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to a set of computed direction vectors, and evaluates the BER
and OSNR functions. If there are two devices whose power
can be modified, this set could be as simple as

Dk =

{[
1
0

]
,

[
0
1

]}
, ∀k.

To improve convergence, search directions are generated dy-
namically as the set Hk according to a number of heuristic
rules, denoted by H1-H3. When a direction that improves
the current point is found, the next iteration begins. If an
improvement direction is not found, the search starts over
from the same point, with a smaller step size. The value of
this step size variable αk is changed throughout the run of
the algorithm according to the parameters (θ−, θ+). These
parameters have a large effect on the convergence properties,
as shown in Section VI-D. An illustration of the high-level
operations of SiMPLE for a one-dimensional case is shown in
Fig. 6.

The pseudocode for the SiMPLE algorithm is shown above.
It takes as input an instance I of the MLO problem and
an initial power assignment p(0). The problem instance I
corresponds to a set of constraints to MLO, as determined by
the higher-layer algorithms and SLAs.

The first step is to create an augmented objective function
f(p(k)) by incorporating the constraints (line 6). Depending
on the feasibility of the current point p(k), one of functions
AUGMENTLOG or AUGMENTQUAD, defined below, is used.

If the initial point is feasible, the subsequent power levels
must stay feasible for the remaining iterations (this is due to
DC1). This is guaranteed by AUGMENTLOG, which returns
the following log-barrier function:

f(p(k);µ) = hMLO(p(k))

− 1

µ

∑
(u,λi)∈ΛBER

log(BER
u

i − BERu
i (p(k)))

− 1

µ

∑
(u,λi)∈ΛOSNR

log(OSNRu
i (p(k))−OSNR

u

i ),

where µ is parameter of the augmentation function[31]. Since
the performance functions BER(·) and OSNR(·) are embed-
ded in f(·), each evaluation of this function causes the OPMs
to make a measurement. With this augmented function, SiM-
PLE can try power levels that violate the thresholds, as there
is no knowledge of the feasible region boundary. However,
evaluations outside the feasible region yield infinite values
under the logarithm, and such points will not be accepted for
the next iteration.

If the initial power levels are not feasible, the priority is
to find a feasible point (due to DC2). The AUGMENTQUAD
function returns an augmented function that is finite for
infeasible points, and forces the points p(k) to feasibility:

f(p(k)) =
∑

(u,λi)∈ΛBER

([
BERu

i (p(k))− BERu
i

]+)2

+
∑

(u,λi)∈ΛOSNR

([
OSNRu

i −OSNRu
i (p(k))

]+)2

,

Algorithm 1 Pseudocode of Simultaneous Multi-Path Lambda
Enhancement (SiMPLE)

1: Input: Problem instance I and initial power levels p(0)
2: Parameters: θ+, θ−, and αtol

3: loop
4: αk ← 1
5: repeat
6: if p(k) is feasible then
7: f(p(k))← AUGMENTLOG(I)
8: else f(p(k))← AUGMENTQUAD(I)
9: end if

10: Hk ← GENERATE(p(k)) ; Dk ← Hk ∪ G
11: // Try directions in Dk

12: if ∃di ∈ Dk with f(p(k) + αkdi) < f(p(k)) then
13: p(k + 1)← p(k) + αkdi; αk+1 ← θ+αk

14: else p(k + 1)← p(k); αk+1 ← θ−αk

15: end if
16: until αk ≤ αtol

17: end loop

where [x]+ = max(x, 0) is the positive projection of x.
Under this function, infeasible power levels will evaluate
to finite values. Yet, reducing the infeasibility decreases the
function value. If the thresholds are attainable, the power levels
are forced within the feasible region. Note that unlike other
qudratic augmenting functions (e.g., [31]), the priority is to
reach a feasible solution, and therefore, the objective function
is not captured in this augmentation procedure.

It is also possible to selectively use AUGMENTQUAD
and AUGMENTLOG for even more fine-grained control over
feasibility of individual constraints. For instance, when a
lightpath is first added, the corresponding new constraints
will be infeasible by design. The AUGMENTQUAD function
can be applied to the new constraints, and SiMPLE will
progressively try to make that constraint feasible. Meanwhile,
the AUGMENTLOG function can be applied to the constraints
that are already feasible. This way, the lightpaths that are
already provisioned are guaranteed to remain feasible. If the
threshold of these constraints are violated even by a small
margin in an intermediate iteration, the logarithm function will
evaluate to infinity, thereby disallowing the acceptance of this
point.

The direct search step in line 11 tries several directions dk
from a search set Dk to improve the objective function value.
Each of these directions is tried with step size αk. For each dk
of this set, it changes the power levels, and collects the OPM
measurements. This search set consists of the union of two
sets. G is a positive spanning set of the entire search dimension
space, which means that for all v ∈ Rn, there exists ηk ≥ 0
such that v =

∑
ηkgk with gk ∈ G. We use the columns of

the block matrix G =
[
I;−I

]
where I is the identity matrix.

This condition guarantees that all points in the search space
are reachable through a positive linear combination of these
vectors and is crucial for the proof of convergence of direct
search methods. Note that in this approach, neither the full
BER curves, nor their derivatives are used, satisfying DC3.

The function GENERATE returns a set Hk of additional
search directions based on the current and previous iterations.
These directions are checked first, since they are more likely
to be descent directions. There are several ways to obtain the



7

1.

2.

3.

hMLO(p,D)

p,D

Fig. 6. Illustration of SiMPLE’s convergence in one dimension. The objective
function is dashed to indicate that its realization is unknown. The first step
(marked “1.”) achieves a larger objective value and is discarded. The step
size α1 is reduced by θ−, and the second iteration is successful. For third
step, the “rightward” direction di ∈ Hi is attempted first (not shown), but
the “leftward” direction is picked instead.

set of search directions Hk, and we consider three heuristics:
H1: Hk = ∅, for comparison to the other methods,
H2: Hk = dk−1, the last successful search direction,
H3: Hk = dk−1 and a set of points around dk−1. This

corresponds to searching around p(k) + dk−1 in
addition to searching around p(k).

These heuristics vary in the size of the set Hk they produce. If
the search set contains many direction vectors, the likelihood
of one of them being a descent direction is higher. However,
larger sets will also result in wasted OPM evaluations, if
none of the directions are viable, and the right strategy is
to reduce the step size. The effects of the choice of heuristics
are explored further in Section VI-D.

Once the directions are exhausted, there are two possible
outcomes. If a descent direction is found, the step size param-
eter αk is multiplied by θ+ ≥ 1 to try a larger step in the next
iteration. If no successful search direction is found, the step
size is multiplied by 0 < θ− < 1, and a smaller one is tried.

The inner loop exits when the step size αk is reduced
below a tolerance value αtol. If AUGMENTQUAD was used
as an augmentation function, a feasible power level is found
at the end of the run (if such a value exists), and all the
performance thresholds are met. The algorithm then restarts,
using AUGMENTLOG to further optimize this new point.

The SiMPLE algorithm runs continuously in an outer loop
and constantly optimizes the solution. If the MLO Problem
constraints change (e.g., due to the addition or removal of a
lightpath), these changes are reflected to the problem instance
I. A new penalty function f(·) is constructed by the appropri-
ate augmentation function, and the algorithm is initiated again
from its last successful point p(k).

As mentioned in Section III-B, the MLO formulation can
be used under more general quasi-convexity assumptions re-
garding the BERu

i (p) and OSNRu
i (p) functions. In that case,

the SiMPLE algorithm can be modified by using a standard
method for solving quasi-convex optimization problems given
in [9, Section 4.2.5]. This framework effectively transforms the
quasi-convex optimization problem into a sequence of convex
problems that are solved repeatedly. The downside of this
method is that it may require a large number of evaluations.

The SiMPLE algorithm is unique in that it uses two different
augmentation procedures to satisfy its design considerations.
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Fig. 7. The topology of a subnetwork of the Géant network (see Fig. 1) that
was used for the evaluation of the SiMPLE algorithm. The solid lines indicates
fibers between nodes. The solid arrows indicate the location and number of
lightpaths that are present in the low-capacity assignment. The dotted arrows
indicate the location and number of additional lightpaths that are provisioned
in the high-capacity assignment, when extra capacity is needed.

Arguments for its convergence can be found in Appendix A.

VI. SIMULATION EVALUATION

In this section, we evaluate the performance of the SiMPLE
algorithm and demonstrate the benefits of dynamic optical
networks with regards to energy efficiency.

A. Evaluation Metrics

In order to evaluate the performance of the heuristics H1-H3
under different parameters and noise scenarios, we introduce
several metrics. These metrics correspond to the objective
of minimizing the disruptions and power fluctuations and
reaching the target power levels as quickly as possible. We let
P = {p(k)}k≥0 denote the set of all power vectors throughout
the run of the algorithm.

The running standard deviation (RStd) corresponds to the
variability of the power levels. It is obtained by first finding the
running average of the last 20 evaluations of the power vectors
p(k). The standard deviation from this running average is then
computed as follows:

RStdp(k) = Std
(
p(k)−

k∑
j=k−20

p(j)/20
)
,

where Std is the standard deviation operator. The FeasTime
metric measures the time until all the constraints are satisfied
and the solution is feasible. It is measured in the number of
iterations, and is defined as follows:

FeasTime(P) := min
p(i)∈P

{
i : ||BER(p(i)) ≤ BER

}
.

The duration of a single iteration can be analyzed by
separating it into three phases: measuring the BER/OSNR,
computing the result, and making the appropriate modification.
With current technology, it is possible to have an OSNR
measurement in the order of microseconds (a photodiode takes
the measurement in nanoseconds, and an FPGA processes
in microseconds). Using a photonic integrated device, it is
possible to have 80 such measurement on a single chip for
obtaining a reading across all the wavelengths[11].

The processing time would currently be in the order of
a hundred milliseconds due to the centralized nature of our
architecture. Through the use of distributed algorithms, we
believe it is possible to reduce this to the order of milliseconds.
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The actuation phase of changing the power levels can be
done almost instantaneously, within picoseconds. Under the
current architecture, we therefore estimate the duration of a
single iteration to be in the order of 100s of milliseconds,
with the prospect of a dramatic decrease through distributed
computation.

Finally, the feasibility probability FeasProb is defined as the
probability that SiMPLE finds a feasible solution to the given
problem. It is computed as the ratio between the number of
simulation runs that result in a feasible assignment and the
total number of simulations runs.

For each of these metrics, we collect the result of every
measurement, even if these measurements are not selected
as the optimal point of an iteration. This is in contrast to
most evaluations of convex algorithms where the number
of iterations until convergence is used as a benchmark for
computational complexity. In our setting, the measurement and
actuation overheads of each OPM dominate the running time
rather than the operations of the algorithm.

B. Simulation Setup

We developed a simulator which is based on a detailed
physical model of an optical amplifier developed at Bell Labs
[10]. The network level functionality was written in Python,
and the code was designed to run in a parallelized manner
on a computing cluster. The simulations were executed on an
8-core virtual machine running on the Amazon EC2 system.

This optical network simulator models a large-scale WSON
that contains lasers, receivers, and ROADMs in a mesh topol-
ogy. Many concurrent transmissions can take place across sev-
eral lightpaths, and the optical power levels can be measured
at every span of the lightpaths. The OSNR is estimated at
the receiver by comparing the received signal power with the
noise floor.

In the simulations, a subset of the Géant network topology
was considered. It consists of 6 nodes and 27 lightpaths that
follow four routes as shown in Fig. 7. Between the nodes,
lightpaths go through several spans separated by ROADMs as
shown in Fig. 3. The optical power of each lightpath can be
modified at ROADM nodes on their path using an attenuator
(VOA). The same attenuation level is used for all the ROADMs
during the entire lightpath. The dimension of the optimiza-
tion problem is therefore 7, one for each lightpath group
in Fig. 7. The received power levels are measured at each
destination node, amounting to a total of 4 OPMs. The MLO
formulation has 7 OSNR constraints, one for each lightpath
group. Gaussian noise with different standard deviation values
was added to the OPM evaluations to emulate measurement
noise. In terms of the parameters, we set the launch power
of the transceivers to 20 dBm and the gain of the amplifiers
to 15 dB. The OSNR thresholds are 20 dB. A tolerance value
of αtol = 0.5 was used to terminate the simulation runs.

C. Traffic Data

Traffic demand between each pair of cities in the Géant
network obtained at 15 minute intervals for a four month
period in 2005 is available in [37]. This data was averaged

Fig. 8. Sample traffic pattern between two cities in the Géant network over a
period of one week. The dashed line corresponds to the required capacity to
satisfy the demand. In peak times, additional lightpaths are needed to provide
higher capacity.

Fig. 9. Evolution of the attenuation of three lightpaths in our simulation
while the SiMPLE algorithm transitions from the low-capacity assignment to
the high-capacity one in order to satisfy the extra demand. Two lightpaths are
progressively added by decreasing their attenuation.

over a week-long period to obtain traffic variations for each
weekday, for all the nodes that are part of the subtopology.
A sample of the traffic variations for two specific nodes over
a week is shown in Fig. 8. The data was scaled tenfold to
accommodate the traffic growth statistics based on [4]. Optical
networks are also typically overprovisioned to account for
bursts in traffic, so the data was further scaled by a factor
of five.

Many approaches can be used to generate the optimal
wavelength assignment that satisfy these traffic demands. In
the most complex case, a new assignment can be computed in
real-time using the live traffic matrices. Since the focus of this
paper is not RWA algorithms, two specific assignments are de-
signed to satisfy the traffic demands. In particular, based on the
physical topology of Fig. 1, we define two virtual topologies
referred to as the high-capacity and low-capacity assignments.
The high-capacity assignment has enough capacity to satisfy
traffic demands at peak times, while the low-capacity one is
used when the demand is low on nights and weekends. The
capacities for two specific source and destination nodes are
illustrated in Fig. 8 as the dashed line that covers the traffic
demands. The objective of the SiMPLE algorithm is to switch
between such two assignments to optimize resource usage,
as desired in dynamic optical networks. While this approach
seems simple, it already provides a vast improvement over
current optical networks, in which such drastic changes rarely
occur over timescales less than the order of weeks.

D. Simulation Results

Parameters and Heuristics: For a given network deploy-
ment, two types of parameters should be considered: the
(θ−, θ+) parameters for adjusting the step size (line 2 of
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(a) (b)

(c) (d)
Fig. 10. Values of the RStd and FeasTime metrics that demonstrate the
fluctuations and convergence time of the SiMPLE algorithm when switching
from the low capacity to the high capacity assignment. Two sets of parameters
are plotted: (a)-(b) θ+ is fixed and θ− is modified, and (c)-(d) θ− is fixed
and θ+ is modified.

Algorithm 1), as well as the search direction heuristics H1-
H3. We ran extensive simulations on the Géant subtopology
to evaluate the effects of these parameters and heuristics
on the convergence of SiMPLE. Specifically, we simulated
the transition from the low capacity assignment used during
nights and weekends, to the high capacity assignment used
during peak times. In this setup, only the minimally necessary
lightpaths are initially turned on. Additional lightpaths that
can support the peak traffic are off, and therefore, have a very
low OSNR. A problem instance is created for this scenario that
requires all the lightpaths to have high OSNR. This problem is
used as an input to SiMPLE which instructs the attenuators to
bring up the additional lightpaths, while monitoring the other
lightpaths.

Fig. 9 shows the attenuation evolution over time for a single
run of simulation. In this setup, heuristic H1 was used with
θ− = 0.6 and θ+ = 1.2. The green lightpath is initially active,
while the red and blue lightpaths are being provisioned. The
SiMPLE algorithm progressively decreases the attenuation of
these lightpaths until the OSNR constraints are satisfied. The
process of adding these lightpaths takes around 400 OPM
evaluations. However, it can be seen that this process causes
fluctuations in the power levels.

To understand the fundamental tradeoff between fluctuations
and convergence speed, we repeated this experiment and
averaged the results over 250 runs for each parameter and
heuristic combination. The results are shown in Fig. 10.

Figs. 10(a)-10(b) show the effect of the θ− parameter
when θ+ = 1.2. One can notice that smaller values of θ−

cause larger fluctuations, as measured by the running standard
deviation metric (RStd). However, these small values also
decrease the convergence time dramatically by almost 80%
compared to larger values. These observations are explained
by recalling the definition of θ− which affects the amount

by which the search directions are reduced in unsuccessful
iterations. Large reductions (e.g., when θ− = 0.6) cause large
fluctuations. However, the algorithm can also adapt faster to
the topology of the feasible region to reduce convergence
times.

The results for the three heuristics are also plotted on
Figs. 10(a)-10(b). The tradeoff between fluctuations and con-
vergence time is also present among the heuristics. Namely,
H3 achieves convergence at the expense of larger fluctuations.
Recall that the H3 heuristic has a large set of candidate
directions that is considered at every iteration. These trials
create larger variations, but improve the algorithm capability to
find the correct direction. Heuristic H2 adds an extra direction
to H1, but its benefit over H1 is not evident in this figure.

Figs. 10(c)-10(d) illustrate the metrics for different values
of θ+, when θ− = 0.6. The parameter θ+ governs the
amount by which the search directions are increased after a
successful iteration. Therefore, larger values of θ+ do increase
the fluctuations, as the step sizes become larger. However,
we surprisingly find that there is no significant improvement
in the convergence time with larger values. This is because
the inability to take large steps is not the main bottleneck.
Increasing the step size therefore plays a smaller role, since
SiMPLE operates close to the boundary of the feasible region.

The previous observations on the heuristics also hold when
observing the effects of θ+. H3 achieves better convergence
times, compared to the other two. One interesting point to note
is the very large convergence time in Fig. 10(d) for H1. If the
step size is not allowed to increase (when θ+ = 1), H1 takes an
unusually long time to converge, as it takes many small steps.
The other two heuristics avoid this by choosing their search
directions more intelligently, thereby making better progress.

Noise: OPMs deployed in a real network will suffer from
measurement noise as part of their operation. Furthermore,
faster OPMs will have larger measurement noise. To operate
in realistic scenarios, the SiMPLE algorithm needs to perform
well in a noisy environment. It is also important to understand
the magnitude of the tolerable noise. We applied our evaluation
metrics to different noise conditions, and plotted them across
the three heuristics in Fig. 11. Each point on this plot is
averaged over 250 iterations as in Section VI-D.

The probability that SiMPLE will reach a feasible solution
is plotted in Fig. 11(a). For reasonable noise levels where the
variance of the Gaussian noise is less than 10−1, the algorithm
finds a feasible solution with high probability (greater than
90%). This behavior is independent of the choice of heuristics.

Fig. 11(b) shows the running standard deviation RStd of
the power levels, with respect to the noise variance. It can
be observed that large noise variations cause large power
fluctuations. This suggests that when picking the θ− and θ+

parameters, it is also important to factor the noise performance
of the OPMs. Also note that for very large noise values
for which SiMPLE does not find a feasible solution, the
fluctuations in the network are small.

E. Energy model
A major motivator for dynamic optical networks is better

use of resources, specifically with respect to energy consump-



10

(a) (b)
Fig. 11. The performance of SiMPLE as a function of the measurement noise
variance, for two metrics: (a) the probability that SiMPLE finds a feasible
solution (FeasProb), and (b) the running standard deviation (RStd).

tion. In this section, we analyze the benefits of the SiMPLE
algorithm in terms of the energy consumption of the network
equipment. The topology outlined in Fig. 7 is considered and
the traffic data that will satisfy the needs based on the time of
day is used. We begin by analyzing the power consumption
for the low-capacity and high-capacity assignments.

The power consumption of both the electrical and the optical
components of a network stand to gain from dynamic behavior.
However, the WDM portion of the transmission network
typically consumes much less power compared to the electrical
components. Indeed, the power density of a ROADM is about
three orders of magnitude less than that of a core router[19].
Furthermore, the relationship between minimizing the optical
power through the hMLO(p,D) objective function and the
power consumption of optical devices is nontrivial. In general,
it is not necessarily true that reducing the optical output power
of a device translates into a power saving, and developing
devices that exhibit this behavior is an active research area [3].
Due to these reasons, we focus our analysis on the benefits
of the dynamic operation over the electrical components only,
noting that this is effectively a lower bound analysis.

We assume a network based on the Cisco CRS-1 routers
[1] . The optical transmission originates at WDM optical
linecards each consuming 500 W. Depending on the number of
wavelengths used at each node, we accounted for a 4-, 8-, or
16-shelf chassis, consuming roughly 2200 W each. For certain
nodes, a multi-shelf system consisting of two 16-shelves were
necessary to satisfy the high traffic demands.

Based on these estimates, the high capacity assignment
consumes 47 kW when all the linecards and chassis are active.
For a static network, this would be the permanent power
consumption of this network. At times of low demand, a
portion of this equipment is turned off, and the low capacity
assignment consumes 32 kW.

Based on the traffic patterns described in Section VI-C,
on average, the high capacity assignment is needed 41% of
the time. A first order approximation would conclude that the
average power consumption of a dynamic optical network in
this scenario would be 38 kW, resulting in a saving of 19%.

However, the previous reasoning corresponds to the best
case energy savings, in which SiMPLE’s overhead is not
accounted for. In reality, each time the wavelength assignment
needs to change, energy is spent on the convergence of the al-
gorithm. Furthermore, the amount of energy spent depends on
the parameters and heuristics. The worst-case energy overhead

(a) (b)
Fig. 12. The potential energy savings provided by the SiMPLE algorithm for
the heuristics H1-H3, when (a) θ+ = 1 and θ− is varied, and (b) θ− = 0.6
and θ+ is varied.

of the SiMPLE algorithm can be computed as follows:

Eoverhead =
1

pconv
× tconv × tround × Pdiff ,

where pconv is the probability of convergence measured by
the metric FeasProb, introduced in Section VI-A. Therefore,
the expressions 1/pconv correspond to the expected number of
rounds the algorithm will take until convergence. Each such
round of the algorithm takes on average tconv evaluations,
measured by the metric FeasTime and plotted in Fig 10. The
duration for the OPM evaluation, the message transmission
duration to the central server, and the actuation is taken to
be tround = 5 s, which is fairly realistic by the standards of
current equipment. Finally, Pdiff = 15 kW is the difference in
power consumed between the two assignments that is wasted
during the convergence of the algorithm.

Fig. 12 shows the energy savings in the simulated topology
due to the SiMPLE algorithm, as a percentage of the energy
consumed by the static network. The savings are plotted with
respect to different (θ+, θ−) parameters, as well as heuristics
H1-H3. It can be observed that the effect of θ+ on the energy
savings is insignificant compared to the effect of θ−. On
the other hand, the right choice of θ− can lead to greater
energy savings (18%). Note that these large values come at the
expense of large variations in the power levels, as indicated
in Fig. 10(a) which may negatively affect the availability
of the network by causing unpredicted downtime. Therefore,
the choice of parameters plays a critical role in obtaining a
desirable convergence behavior.

A key value that affects these savings is the measurement
and actuation time tround. While we assume that tround = 5 s,
advances in OPMs and actuation technology is expected to
bring this value further down, which will reduce the overall
energy consumption. For example, decreasing tround to 1 s will
reduce the energy consumption by 18% for all (θ−, θ+) values.
This is within 1% of the ideal savings of 19%.

VII. TESTBED EVALUATION

A small-scale testbed was built using commercial optical
devices to evaluate SiMPLE in a real-life scenario.

A. Experimental Setup

The experimental setup is shown in Fig. 13. Eight closely-
spaced Continuous-Wave (CW) laser sources in the ITU C-
band are partitioned into two contiguous wavebands–Λlong
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Controller

Fig. 13. Schematic of the experimental setup. Two wavebands each consisting
of four wavelengths are modulated with a PRBS pattern and are transmitted
via an amplified link segment. The optical powers of each waveband are
controlled by a computer configured as a controller that runs the SiMPLE
algorithm.

and Λshort–of 4 wavelengths each. A 215−1 Pseudo-Random
Bit Sequence (PRBS) is inscribed using a single intensity
modulator to produce a 10 Gb/s On-Off-Keyed (OOK) Non-
Return-to-Zero (NRZ) pattern on each channel. In order
to provide individual fine-tuned control, the injected power
of each waveband is independently set via Variable Optical
Attenuators (VOA) preceeding the optical modulator.

Inter-channel impairments are induced through a segment
consisting of an Erbium-Doped Fiber Amplifier (EDFA),
VOA, and 25 km of single-mode fiber. The EDFA is tuned
to operate in saturation within a subrange of the operating
powers of the incident wavebands. As a result, at significantly
high powers, each waveband will “steal gain” from the other,
resulting in mutual degradation.

Representative channels in each waveband are isolated for
observation using a tunable grating filter (λ). Each data stream
is recovered using a photoreceiver assembly with an inline
digitizer (comparator) and subsequently fed into a Bit-Error-
Rate Tester (BERT). Using the BERT, we can quantify the
effect of the experimentally induced impairments on each
waveband to not only characterize the parameter space of our
system, but to serve as a real-time performance metric utilized
by the experimental implementation of SiMPLE.

The SiMPLE algorithm runs in an automated fashion on a
laptop configured as a central controller. This controller inter-
faces with the VOAs, tunable optical filter, and BERT using
the IEEE-488 General Purpose Interface Bus (GPIB) interface.
Through this interface, the algorithm collects measurements
from each data stream and iteratively modifies the attenuation
levels of the wavebands.

B. Results

To demonstrate the effects of the (θ−, θ+) parameters, we
ran an experiment in our testbed corresponding to a series of
changes in a dynamic optical network. This experiment was re-
peated for various sets of θ− and θ+ parameters. Fig. 14 shows
the result for two different sets of θ− and θ+ parameters. The
experiment has several stages, as labeled in Fig. 14(a). First,
the red lighpath is added similarly to the simulation scenarios
(see Section VI-D). Then, after 160 evaluations (marked as
step 2 in Fig. 14(a)), the threshold constraint BER for the blue
lightpath is significantly increased (BER = 10−1). As a result,

(a)

(b)
Fig. 14. Evolution of the attenuation and the BER of two lightpaths in our
testbed for the lightpath lifecycle scenario. Two sets of (θ+, θ−) parameters
are considered, resulting in (a) slower but more gradual convergence, or (b)
high fluctuations but fast convergence.

SiMPLE readjusts the power levels, effectively dropping the
blue wavelength. Next, a second BER constraint is modified
in step 3, and finally the red lightpath is dropped in step 4.
This experiment is designed to capture the full scale of actions
that future dynamic optical networks are expected to perform,
based on higher-layer requests. Note that the attenuation level
at step 5 in Fig.14(a) is larger compared to that just before
step 2, even though BER levels at these steps are the same.
This illustrates that the same QoT constraint can be met using
less optical power.

Fig. 14(a) shows the variations of the power level and the
corresponding BER when θ− = 0.9 and θ+ = 1. It can be
seen that the variations in power and BER are low, and the
convergence is smooth. This smoothness comes at a penalty
in time, since the entire scenario takes about 650 OPM eval-
uations. This may be long with current OPMs, if evaluations
are in the order of minutes. However, as future OPMs are
expected to perform evaluations in the order of milliseconds,
the SiMPLE algorithm can complete this scenario in under a
second, with reasonable convergence behavior.

Fig 14(b) shows the same scenario when θ− = 0.6 and
θ+ = 1.2. Similar to the insight obtained from simulations,
these parameters cause large variations in the step size, lead-
ing to large fluctuations in the power levels and the BER.
However, these parameters also allow the entire test sequence
to complete in about 170 OPM evaluations, substantially faster
than in the scenario illustrated in Fig 14(a).

Similar to the simulations, the algorithm was evaluated
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TABLE I
AVERAGE VALUES OVER 5 EXPERIMENTS OF THE RUNNING STANDARD

DEVIATION (RStd) AND FEASIBLE TIME (FeasTime) METRICS FOR
SEVERAL PARAMETER COMBINATIONS WHEN USING HEURISTIC H3.

(θ−, θ+) RStd
(
×10−3

)
FeasTime

(0.9, 1) 1.80 76
(0.9, 1.1) 9.16 30
(0.6, 1.2) 5.83 28
(0.6, 1.3) 66.2 31

on the experimental testbed for different set of parameters
(θ−, θ+). Due to the longer duration of the experiments,
the results were averaged over 5 runs, for each heuristic
and a representative set of parameters. The averaged running
standard deviation (RStd) and feasible time (FeasTime) for
heuristic H3 are shown in Table I. The results are comparable
to the simulation results obtained in Fig. 10. When the
parameters are picked such that the step size does not vary
greatly with θ−, θ+ = (0.9, 1.1), there are less fluctuations,
but the convergence time is larger. At the other extreme,
when θ−, θ+ = (0.6, 1.3), the power levels fluctuate a lot,
but the convergence is faster. Unlike the simulation, there is
an optimal set of parameters for these experiments. When
θ−, θ+ = (0.6, 1.2), the best possible convergence is obtained.
It should be noted that noise is present naturally in the
experiments and can be the cause for this somewhat different
behavior.

To conclude, we tested the SiMPLE algorithm running on
a computer that controlled optical devices. We showed that
the insights obtained from simulations also hold with real
equipment, and that proper selection of parameters for the
SiMPLE algorithm can enable complex operations in future
dynamic optical networks.

VIII. CONCLUSIONS

In this paper, we formulated a global optimization problem,
MLO, that captures the QoT constraints in optical networks.
This problem is unique since analytical models that capture
impairments in optical fibers do not exist, and measurements
are the only practical way to characterize performance. We
designed a power control algorithm, SiMPLE, for solving this
problem by using feedback from OPMs. The convergence
of SiMPLE to the optimal solution was demonstrated using
extensive simulations on a network-scale optical network
simulator, as well as experiments with commercial optical
network equipment. We evaluated the performance of SiMPLE
and showed that even relatively simple dynamic policies can
result in substantial power savings through a better use of
resources.

The SiMPLE algorithm enables dynamic control of optical
networks in near real-time, compared to the days-long setup
times for lightpaths in the existing optical networks. Hence,
SiMPLE is the first step towards allowing optical networks to
react rapidly to user demands and traffic variations. Namely,
it is a step towards software-defined optical network.

In future work, we will expand the model and consider
other variables that can be controlled in dynamic optical
networks. For example, through the use of adaptive modulation
techniques, the OSNR of a lightpath can be improved without

modifying its power level. Similarly, spectrum utilization can
be improved by decreasing the guard bands between light-
paths. An extended version of the SiMPLE algorithm can be
used to monitor the QoT in such transmission systems, and
adapt the bandwidth and modulation schemes as necessary.
Finally, we also intend to evaluate the performance of the SiM-
PLE algorithm by incorporating in the simulation a different
constant-gain optical amplifier model, and by experimenting
in a large-scale testbed.

APPENDIX A
CONVERGENCE OF SiMPLE

Being a general convex solution algorithm, SiMPLE can
be used to solve a wide variety of problems. First the case
of deterministic functions is discussed, followed by functions
that have probabilistic noise.

The convergence of SiMPLE when the BERu
i (p) and

OSNRu
i (p) functions are not affected by random noise follows

from several well-known results. We outline these results for
completeness. The proof of convergence for the family of
direct search algorithms is given in [27]. In the simplest
case, when the MLO problem does not have constraints (C1)-
(C2) but only has an objective function, the proof follows
from bounding the step size parameter αk from above. The
algorithm converges since the step size can be shown to get
arbitrarily close to zero. The proof for the case in which
the constraints (C1)-(C2) are present follows from similar
arguments, as the augmentation procedures AUGMENTLOG
or AUGMENTQUAD are used to transform the constrained
problem to an unconstrained one.

To the best of our knowledge, it was not proved that direct
search methods converge if measurement noise is present.
However, our application of these methods differs from other
typical scenarios in that SiMPLE runs the algorithm continu-
ously. In our setting, if there is a positive probability that the
direct search method converges, it can be shown that SiMPLE
will also converge. While in practice this convergence may
take a long time, it is not as crucial because the priority for
MLO is to reach feasibility, and not necessarily optimality.

The use of two different augmenting functions in a single
setting is unique to the formulation of the MLO problem.
The fact that the algorithm converges when the log-barrier
function AUGMENTLOG is used is well-known [31]. AUG-
MENTQUAD generates a function that is similar to the well-
known quadratic penalty function, which converges when the
parameter µ → ∞. The proof that SiMPLE yields a feasible
point (not necessarily optimal) follows from the following
argument. When a typical quadratic penalty function is used,
the algorithm converges to an optimal solution when µ → ∞.
It therefore follows that for µ large enough, an intermediate
value of the augmenting quadratic penalty function is feasible.
Using the AUGMENTQUAD function effectively corresponds
to finding this intermediate value, thereby yielding feasibility.
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