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FNHANTss for the Internet of Things

Small and flexible: can be attached to almost anything
Harvest energy, form a wireless network
and exchange basic information

— Tag IDs, Partial location

Can communicate with other EnHANT friendly devices
— Laptops, mobile phones, access points

Internet of Things industrial intemet
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Searching Objects:
Where are my keys?

Smart Buildings Monitoring of Objects



What are the properties of environmental energy
sources for ultra-low-power energy harvesting nodes?

e Large-scale energy harvesting installations: energy availability -

very well known

PV Solar Radiation

(Flat Plate, Facing South, Latitude Tilt)

Annual

UNITED STATES ANNUAL AVERAGE WIND POWER

* Energy in commonplace environments: much less explored

» Indoor light

» Object and human motion
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| Our Previous Work: Indoor Light Energy Study
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First of its kind long-term indoor light energy T |
= 200
measurement campaign ? D ANEVAW

» Radiometric TAOS TLS230rd sensor + Lablack U3 DAQ + Days
custom monitoring system '

| (nW/em?)
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» Long-term (1.5 years) indoor measurements 1530 45 60

» Mobile device experiments
Established energy budgets

Obtained insights into energy predictability, variability,

correlations
Traces as energy feeds for simulators and emulators

» Used to evaluate algorithm performance

» On enhants.ee.columbia.edu and on éRAWDAD

M. Gorlatova, A. Wallwater, G. Zussman, Networking Low-Power Energy Harvesting Devices:
Measurements and Algorithms, Proc. IEEE INFOCOM’11, Apr. 2011. IEEE Transactions on Mobile

Computing, Sept. 2013.

Q J. Sarik, K. Kim, M. Gorlatova, |. Kymissis, G. Zussman, More than Meets the Eye - a Portable

Measurement Unit for Characterizing Light Energy Availability, in Proc. IEEE GlobalSIP’13, Dec. 2013

O M. Gorlatova, M. Zapas, E. Xu, M. Bahlke, I. Kymissis, G. Zussman, Dataset: Light Energy

Measurements CRAWDAD dataset, Apr. 2011.



Kinetic Energy Study: Summary
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* Goal: insights into node and algorithms design for
Internet of Things (loT) applications 7 [

* Object and human motion energy availability b|=|=4 i R

5

» Record acceleration, convert it to power

2"d order mass-spring

éRAWDAD model
m: proof mass

* Develop and evaluate energy harvesting adaptive | 7 : displacement limit

algorithms k: spring constant
b: damping coefficient

» Particular human motions
» Day-long human routines




Related Work

* Particular human motions:
» Existing work: small number of participants, walking on a treadmill
e 10 participants in Huang’11, 8 participants in Buren’06
» We examine free-motion 40-participant dataset Xue’10
* 7 motions, 3 sensing unit placements
* Not examined from energy harvesting point of view before

e Day-scale human motion acceleration traces:

» Previous work: Yun’11 - Traces not available; only first-order statistics
under different assumptions

» We collect data, characterize process variability and properties not
considered before

* Energy harvesting adaptive algorithms

» Previous work: continuous energy spending rates, concave utility
functions, battery for energy storage - Chen’12, Devillers’12

» We consider an ultra-low-power node model: discrete energy spending
rates, general utility functions, battery and capacitor models



Methodology: Inertial Harvester Model

2"d order mass-spring
model

m: proof mass

Z, : displacement limit
k: spring constant

b: damping coefficient

Mitcheson’04,
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Harvester

Model
Yun’ll, Zhu’11

Key design parameters: m, Z,

» Application weight and size considerations
» 1 gram harvester proof mass, 10 mm

harvester size — Von Buren’06
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Optimizing Inertial Harvester Parameters

* Tunable: k, b. Control harvester response: 0.015 F R S
£ %@l a2
» Harvester resonant frequency, f, = 2m\/k/m _ oon .
* Key parameter ;? ;
—0.005
e Should be reasonably close to f, :

» Harvester quality factor, Q = ,/k/m/_b 0

1000

Optimizing parameters: optimizing over a multi-dimensional
surface of unknown geometry

» Short motion samples: exhaustive search over k, b
» Longer samples: select k such that f, matches f,,, exhaustive search over b




Collecting and Processing Motion Information

* Tri-axial accelerometers, sampling frequency 100 Hz Shirt
» Our measurements: ADXL345 Waist

" belt

» 40-person dataset Xue’11: ADXL330 .
* Different accelerometer placements Pocket

e Collect acceleration, obtain its magnitude ‘\
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* Convert to proof mass displacement
: 4 a(s)
g . I 20= 16l =——
= “) o %451 4 (27 )’
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e Obtain power

P(t) (mW)

> m P(t):bo(%) * Average: 5

0 5 10 15 20
Time (s)

* Efficiency n=20%, c;, = 1nJ/bit (loT-suitable ultra low power transceiver) -
data rate r



Energy Availability: Object Motion

. Experlments planes, trains, and automobiles

UNITED

System parameters: 1 gram harvester proof mass, 10 mm harvester size, 20% efficiency

Taking a book off a shelf <10 Spinning in a swivel chair
Putting on reading glasses <10 Opening a building door <1
Reading a book <10 Opening a drawer 10-30
Writing with a pencil 10- 15 Shaking an object >3,000

For comparison, human walking: 120 - 280 uW

% H1

i Low for non-periodic motions

* |y

o005 K . . . . .
=" ., * Low for some periodic motions: drawer, door, swivel chair

o > Motions damped (softened)
e Possibility: Combining harvesters with mechanical dampers

e,

e Shaking: 12 - 29 times more power than walking
» Can quickly recharge depleted nodes




Energy Availability: Human Motion, Short Samples

 Examined free-motion 40-participant dataset Xue’10

» Collected and used for pattern recognition
» 7 motions, 3 sensing unit placements, indexed with human physical parameters

Shirt
Pocket

Waist
" belt

Trouser
Pocket

Boxplots: left box: shirt pocket,
middle box: waist belt, right

box: trouser pocket Relax ~ Walk Fastw. Run  Cycle Upst. Downst.

 f_values consistent with human physiology
» E.g., f.increases from walking to fast walking to running



Energy Availability: Human Motion, Short Samples

* Harvester optimized for each motion

1 gram harvester proof mass 1000k e e IR Power —

10 mm harvester size shi < R
. . poCI;tet %_ ) lgg - 3 T -

20% efficiency Waise |v 500F R R T e S e R e h
) Wais o | Tob | | L
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Pocket Relax Walk Fastw. Run  Cycle Upst. Downst.

 Walking: 120 - 280 pW
» In comparison, indoor light:
50-100 pW/cm?

* Running: 610 — 810 pW

* Relaxing:
almost no
energy

@ §° Cycling: 40 - 50 pW * Exertion # power
4

- » High cadence, low harvested
: N, O displacement » Pis1.6-2.1times
4 > For cycling-specific loT [ —_— higher for going
applications, harvester down§ta|rs than
placements on lower legs upstairs

should be considered



Energy Availability: Human Physical Parameters

e Dataset indexed with height and weight

"
e

I

Higher f

Higher f

fmnegatively correlated with
participants’ height and weight

» Different harvesters integrated in
clothing of different sizes

PPN i
m’

Running - P for taller half of
participants is 20% higher than for
the shorter half

na

Develop different harvesters for different demographics

Provide performance guarantees based on human parameters



Daily human routines

Day-long Human Motion: Methodology

Previous studies: Yun’11

» Study under different assumptions

* We needed: insights into energy harvesting adaptive algorithm
design

5-participant study

» Carried sensing units where convenient
h
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25 days, over 200 hours of acceleration information

a(t) (m/s?)

O Data available on CRAWDAD: M. Cong, K. Kim, M. Gorlatova, J. Sarik, J. Kymissis, G. Zussman,
Dataset: Kinetic Energy Measurements CRAWDAD dataset, May 2014.



Day-long Human Motion: Power Budgets

P, -average power generated over 24-hour interval

* 14 —corresponding continuous data rates

m-

M1
M2
M3
M4
M5

R N O W U

Total dur. (h) | P4z (W),

60.4
27.7
62.0
80.1
11.0

Normal daily activities: 1-2 Kb/s
» Comparable with dim indoor lights

min/avg/max
4.8/6.5/8.1
8.4/115/17.7
0.6/2.02/3.6
0.6/5.6/10.7
7.5

Low energy availability - working from home

(Kb/s)
1.3
2.3
0.4

1.1
1.5

1 gram harvester proof mass
10 mm harvester size

20% efficiency

1nJ/bit communication cost

Daily routines with a lot of walking = higher energy availability

U Data available on CRAWDAD: M. Cong, K. Kim, M. Gorlatova, J. Sarik, J. Kymissis, G. Zussman,

Dataset: Kinetic Energy Measurements CRAWDAD dataset, May 2014.



Day-long Human Motion: Variability and Properties

* People are stationary the vast majority of the time
» >95% energy collected during 4-7% of the day

11wl \ =
—_ Q2 ’5\4
S 10 i 8\./ 2
vo 5 1 g 2
Ll .
0 50 100 150 200 250 300 0 50 100 150 200 250 300
P, () (W) P(t) (nW)

Ponorr Process: Py occ <ONif P(t) > y, P,,,rr < OFF otherwise

m (TI(:)t alur. | % ON, min/ave/max % ON: typically low
: 30 min of activity per day: ~ 9% of an

60.4 5.4/9.9/12.2 11-hour trace
M2 3 27.7 13.6 /16.1/18.4 ON intervals: typically short
M3 9 62.0 3.6/6.0/9.95 » 78-89% shorter than 30 seconds
M4 7 30.1 2.8/12.7/18.1 > Medlan.lntervals: 5-9.5s
» Longer intervals are rare (1 — 3%),
M5 1 11.0 11.5 correspond to commuting

* Overall, P(t) low the majority of the time; if high, stays high for a short interval

Need energy harvesting adaptive algorithms



Harvesting Process vs. i.i.d. and Markov Processes

 Many energy harvesting adaptive algorithms developed for i.i.d. or Markov
energy sources Huang’13, Wang’13

* Kinetic motion process: not i.i.d. or Markov
> p(P(®) >v| P(t-1) >v) # p(P(t) >y [ P(t-1) > v, P(t-2) <)
* Performance not similar to i.i.d. or Markovian processes

Example: Scheme-LB policy, Chen’12  Examine Scheme-LB for different energy

* Controls: energy spending storage sizes C
* Decision made on: average incoming
energy, energy in storage > Pooas Ponosy: Observed processes

» P;iq, Pmarkov: derived processes

Dramatic performance differences

-Pooit ¢ Different performance trends

» No dependency on C for P;;4, Prigrkov

Need to evaluate policy performance with real traces



Energy Allocation (EA) Problem Formulation

* Model: an ultra low power Internet of

Things node T s(i)
» Limited set of energy spending modes - 1 i
Energy spending s(i) in a finite set S K

> Different options for communicating with a 5(1)- energy spending, in finite set S

particular energy spending level s(i) 2

Arbitrary utility functionU(s(i)) | Energy Storage
» Capacitor possible for energy storage > :" C \E
Allowing for non-linearity in energy storage i Q(i)T i
* EA problem: max Y U(s(i), s.t. i B(i) i
» Starting and ending energy levels By, Bk i s()/n(i) ¢ i
» Energy availability i (i) ‘1’ i
> Energy storage evolution dynamics (SR A /

* Integer optimization problem

Theorem: EA problem is NP-hard.

* Even for “easy” cases, e.g., battery energy storage and linear utility function



Energy Allocation Algorithms

* Dynamic programming-based algorithm, offline
> Complexity O(K? + U(Smay) * I1SD
* FPTAS, offline

> Scaling factor u = &+ U(S;q)/K, utility function U = [U(s)/ul
> Invoke dynamic programming algorithms for U

Theorem: The algorithm runs in times poly e, K). The solution is a
1 — £ approximation.

* Greedy online algorithm

» In every time slot, maximizes the utility, while not letting the energy
storage go below By

Theorem: The algorithm is optimal for battery energy storage model,
ifB,=0,U(x+y) = UXx)+U(),S ={-sj=1,..|S|}

» E.g., node using a fixed power level, changing its transmission rate by
transmitting a different number of equal-sized packets




Trace-based Algorithm Performance Evaluations

* Each data point: one run of algorithm with a day-long trace
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Ratio of FPTAS to optimal solution, as a
function of the approximation ratio
» For both battery (ALG-FB) and capacitor
(ALG-FC)
» Performance is close to the optimal
» Much closer than the theoretical bound

Capacitor: Average data rates for ALG-GC
(greedy), ALG-OC (optimal), and ALG-FC (FPTAS),

for different energy storage sizes C
» FPTAS performs similar to the optimal

» For the greedy algorithm, performance
decreases as C increases

i

For a capacitor, larger energy storage may worsen the overall performance



Kinetic Energy Availability for the Internet of Things

Measurement-based study of object and human motion

Examine implications for loT node and algorithm design

» Demonstrate energy budgets

» Demonstrate dependency of energy on different parameters

» Examine properties of energy generation process

Consider an loT node model, and design and evaluate energy

allocation algorithms T
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Big thanks to contributors!
» Sonal Shetkar, Craig Gutterman, Chang Sun, Kanghwan Kim

Questions?

]
Foundation

> Please e-mail me at: maria.gorlatova@caa.columbia.edu

» Project website: enhants.ee.columbia.edu WINNER

O Data available on CRAWDAD: M. Cong, K. Kim, M. Gorlatova, J. Sarik, J. Kymissis, G. Zussman,
Dataset: Kinetic Energy Measurements CRAWDAD dataset, May 2014.
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