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for the Internet of Things 
• Small and flexible: can be attached to almost anything

• Harvest energy, form a wireless network 
and exchange basic information
– Tag IDs, Partial location

• Can communicate with other EnHANT friendly devices
– Laptops, mobile phones, access points

• Internet of Things 

Searching Objects: 
Where are my keys?

Monitoring of ObjectsSmart Buildings



Energy Source Characterization 

• Large-scale energy harvesting installations: energy availability -
very well known 

• Energy in commonplace environments: much less explored
 Indoor light 

 Object and human motion 

Maps source: NREL 

What are the properties of environmental energy 
sources for ultra-low-power energy harvesting nodes? 



Our Previous Work: Indoor Light Energy Study   

• First of its kind long-term indoor light energy 
measurement campaign 

 Radiometric TAOS TLS230rd sensor + LabJack U3 DAQ + 
custom monitoring system 

 Long-term (1.5 years) indoor measurements

 Mobile device experiments

• Established energy budgets

• Obtained insights into energy predictability, variability, 
correlations  
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• Traces as energy feeds for simulators and emulators 

 Used to evaluate algorithm performance  

 On enhants.ee.columbia.edu and on

 M. Gorlatova, A. Wallwater, G. Zussman, Networking Low-Power Energy Harvesting Devices: 
Measurements and Algorithms, Proc. IEEE INFOCOM’11, Apr. 2011. IEEE Transactions on Mobile 
Computing, Sept. 2013. 

 J. Sarik, K. Kim, M. Gorlatova, I. Kymissis, G. Zussman, More than Meets the Eye - a Portable 
Measurement Unit for Characterizing Light Energy Availability, in Proc. IEEE GlobalSIP’13, Dec. 2013

 M. Gorlatova, M. Zapas, E. Xu, M. Bahlke, I. Kymissis, G. Zussman, Dataset: Light Energy 
Measurements CRAWDAD dataset, Apr. 2011. 
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Kinetic Energy Study: Summary 
POWER

Acceleration 
Traces

Motion Harvester

Yun’11, Zhu’11

Mitcheson’04, 
Aktakka’11, …   
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2nd order mass-spring 
model

m: proof mass
ZL: displacement limit
k: spring constant
b: damping coefficient

• Goal: insights into node and algorithms design for 
Internet of Things (IoT) applications 

• Object and human motion energy availability 

 Record acceleration, convert it to power

 Particular human motions 

 Day-long human routines

• Develop and evaluate energy harvesting adaptive 
algorithms 

Harvester
Model
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Related Work
• Particular human motions: 

 Existing work: small number of participants, walking on a treadmill

• 10 participants in Huang’11, 8 participants in Buren’06

 We examine free-motion 40-participant dataset Xue’10 

• 7 motions, 3 sensing unit placements

• Not examined from energy harvesting point of view before 

• Day-scale human motion acceleration traces: 
 Previous work: Yun’11 - Traces not available; only first-order statistics 

under different assumptions

 We collect data, characterize process variability and properties not 
considered before

• Energy harvesting adaptive algorithms 
 Previous work: continuous energy spending rates, concave utility 

functions, battery for energy storage - Chen’12, Devillers’12

 We consider an ultra-low-power node model: discrete energy spending 
rates, general utility functions, battery and capacitor models



Harvester
Model

Methodology: Inertial Harvester Model 

POWERMotion Harvester

Yun’11, Zhu’11

Mitcheson’04, 
Aktakka’11, …   
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m: proof mass
ZL: displacement limit
k: spring constant
b: damping coefficient

• Key design parameters: m, ZL

 Application weight and size considerations 

 1 gram harvester proof mass, 10 mm 
harvester size – Von Buren’06 

Harvester
Model
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Optimizing Inertial Harvester Parameters 

• Optimizing parameters: optimizing over a multi-dimensional 
surface of unknown geometry 
 Short motion samples: exhaustive search over 𝑘, 𝑏

 Longer samples:  select 𝑘 such that 𝑓𝑟 matches 𝑓𝑚, exhaustive search over b
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• Tunable: 𝑘, 𝑏. Control harvester response: 

 Harvester resonant frequency, 𝑓𝑟 = 2𝜋 𝑘/𝑚

• Key parameter 

• Should be reasonably close to 𝑓𝑚

 Harvester quality factor, 𝑄 = 𝑘/𝑚/b



Collecting and Processing Motion Information 
• Tri-axial accelerometers, sampling frequency 100 Hz 

Our measurements: ADXL345 
40-person dataset Xue’11: ADXL330  

• Different accelerometer placements 
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• Collect acceleration, obtain its magnitude 

• Convert to proof mass displacement 

• Obtain power

• Efficiency 𝜂= 20%, 𝑐𝑡𝑥 = 1nJ/bit (IoT-suitable ultra low power transceiver) → 
data rate 𝑟

P



Scenario P, μW Scenario P, μW

Taking a book off a shelf <10 Spinning in a swivel chair < 10

Putting on reading glasses <10 Opening a building door <1

Reading a book <10 Opening a drawer 10 - 30

Writing with a pencil 10 - 15 Shaking an object >3,000

Energy Availability: Object Motion 

System parameters: 1 gram harvester proof mass, 10 mm harvester size, 20% efficiency 

For comparison, human walking: 120 - 280 μW
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H1

H2 • Low for non-periodic motions 

• Low for some periodic motions: drawer, door, swivel chair 

 Motions damped (softened) 

• Possibility: Combining harvesters with mechanical dampers 

• Shaking: 12 - 29 times more power than walking

 Can quickly recharge depleted nodes 

• Experiments: planes, trains, and automobiles 



Energy Availability: Human Motion, Short Samples  

• Examined free-motion 40-participant dataset Xue’10 
 Collected and used for pattern recognition  

 7 motions, 3 sensing unit placements, indexed with human physical parameters
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Figure 5: Charact er izat ion of k inet ic energy

for common human act iv i t ies, based on a 40-

par t icipant st udy: (a) average absolut e devia-

t ion of accelerat ion, D , (b) dom inant mot ion fre-

quency, f m , and (c) power harvest ed by an opt i -

m ized iner t ial harvest er , P .

ergy availability on the part icipant ’s physical parame-

ters.

5.1 Study Summary

The dataset we examine [33] contains mot ion sam-

ples for 7 common human act ivit ies – relaxing, walk-

ing, fast walking, running, cycling, going upstairs, and

going downstairs, – performed by over 40 different par-

ticipants and recorded from the 3 sensing unit place-

ments, shown in Fig. 2(b). For each 20-second mot ion

sample, we use the accelerat ion, a(t) t race to calculate

D , f m , P , and r . To obtain P, we use the exhaus-

t ive search harvester opt imizat ion algorithm, described

in Sect ion 3.4. By determining the best harvester for

each mot ion, we can offer important insights into the

harvester design.

To validate the data from [33], we replicated the mea-

surements with our sensing units. The results of our

measurements were consistent with the provided data.

We note that the f m values calculated for the different

mot ions in the dataset are consistent with the physiol-

ogy of human mot ion.

The stat ist ics of the calculated D , f m , and P are

summarized in the boxplots in Fig. 5. For each of

the 7 mot ions the leftmost (black), middle (red), and

rightmost (blue) boxes correspond to shirt pocket, waist

belt, and trouser pocket sensing unit placements, respec-

t ively. For each mot ion and sensing unit placement , the

number of part icipants that had a(t) samples appears

on the top of Fig. 5(a). At each box, the cent ral mark is

the median, the edges are the 25t h and 75t h percent iles,

the “ whiskers” extend to cover 2.7σ of the data, and

the out liers are plot ted individually. In Table 3 we sep-

arately summarize the results and the data rates for 4

important mot ions.

5.2 Energy for Different Activities

We discuss below the energy availability and proper-

t ies for the different examined mot ions.

R elaxing: As expected, almost no energy can be har-

vested when a person is not moving (P < 5 µW).

W alk ing and fast walk ing: Walking is the predom-

inant periodic motion in normal human lives and thus

part icularly important for mot ion energy harvest ing.

For walking, the median P is 155 µW for shirt pocket

sensing unit placement , 180 µW for waist belt place-

ment , and 202 µW for t rouser pocket placement . These

P values are in agreement with the previous, smaller-

scale, studies of mot ion energy harvest ing for human

walking [13, 31]. In comparison, indoor light energy

availability is on the order of 50–100 µW/ cm2. Taking

harvester energy conversion efficiency est imates into ac-

count [11, 35], a similar ly sized harvester would harvest

more energy from walking than from indoor light. Fast

walking (which was ident ified as “ fast ” by the part ic-

ipants themselves) has higher D and f m than walking

at a normal pace (Fig. 5) and generates up to twice as

much P.

R unning: Running, an intense repet it ive act ivity, is

associated with high D and f m (Fig. 5(a,b)), and hence

results in 612 ≤ P ≤ 813 µW.

Cycl ing: For the examined unit placements, cycling

generates relat ively lit t le energy – the median P values

are 41–52 µW, 3.7–3.9 t imes less than the P for walk-

ing. While the high cadence of cycling mot ion results

in relat ively high f m (Fig. 5(b)), a harvester not on the

legs will be subject to only small displacements, result -

ing in small values of D (Fig. 5(a)) and P (Fig. 5(c)).

For cycling IoT applicat ions, harvester placements on

the lower legs should be considered.

W alk ing upst ai r s and downst ai r s: Our examina-

t ion demonstrates that human exertion (perceived ef-

for t and energy expenditure) does not necessar ily corre-

spond to higher motion energy harvesting rates. While

people exert themselves more going upstairs, the P for

going downstairs is substantially higher than for going

upstairs. Specifically, for the downstairs mot ion, the

median P is 1.78 t imes higher than the upstairs mo-

t ion for shirt unit placement , 2.1 t imes higher for waist

placement , and 1.65 t imes higher for t rouser placement .

6

• fm values consistent with human physiology
 E.g., fm increases from walking to fast walking to running

Boxplots: left box: shirt pocket, 
middle box: waist belt, right 
box: trouser pocket 

Dominant motion frequency 



Energy Availability: Human Motion, Short Samples 

1 gram harvester proof mass

10 mm harvester size

20% efficiency 

• Relaxing: 
almost no 
energy 
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5.1 Study Summary

The dataset we examine [33] contains mot ion sam-

ples for 7 common human act ivit ies – relaxing, walk-

ing, fast walking, running, cycling, going upstairs, and

going downstairs, – performed by over 40 different par-

ticipants and recorded from the 3 sensing unit place-

ments, shown in Fig. 2(b). For each 20-second mot ion

sample, we use the accelerat ion, a(t) t race to calculate

D , f m , P , and r . To obtain P, we use the exhaus-

t ive search harvester opt imizat ion algorithm, described

in Sect ion 3.4. By determining the best harvester for

each mot ion, we can offer important insights into the

harvester design.

To validate the data from [33], we replicated the mea-

surements with our sensing units. The results of our

measurements were consistent with the provided data.

We note that the f m values calculated for the different

mot ions in the dataset are consistent with the physiol-

ogy of human mot ion.

The stat ist ics of the calculated D , f m , and P are

summarized in the boxplots in Fig. 5. For each of

the 7 mot ions the leftmost (black), middle (red), and

rightmost (blue) boxes correspond to shirt pocket, waist

belt, and trouser pocket sensing unit placements, respec-

t ively. For each mot ion and sensing unit placement , the

number of part icipants that had a(t) samples appears

on the top of Fig. 5(a). At each box, the cent ral mark is

the median, the edges are the 25t h and 75t h percent iles,

the “ whiskers” extend to cover 2.7σ of the data, and

the out liers are plot ted individually. In Table 3 we sep-

arately summarize the results and the data rates for 4

important mot ions.

5.2 Energy for Different Activities

We discuss below the energy availability and proper-

t ies for the different examined mot ions.

R elaxing: As expected, almost no energy can be har-

vested when a person is not moving (P < 5 µW).

W alk ing and fast walk ing: Walking is the predom-

inant periodic motion in normal human lives and thus

part icularly important for mot ion energy harvest ing.

For walking, the median P is 155 µW for shirt pocket

sensing unit placement , 180 µW for waist belt place-

ment , and 202 µW for t rouser pocket placement . These

P values are in agreement with the previous, smaller-

scale, studies of mot ion energy harvest ing for human

walking [13, 31]. In comparison, indoor light energy

availability is on the order of 50–100 µW/ cm2. Taking

harvester energy conversion efficiency est imates into ac-

count [11, 35], a similar ly sized harvester would harvest

more energy from walking than from indoor light. Fast

walking (which was ident ified as “ fast ” by the part ic-

ipants themselves) has higher D and f m than walking

at a normal pace (Fig. 5) and generates up to twice as

much P.

R unning: Running, an intense repet it ive act ivity, is

associated with high D and f m (Fig. 5(a,b)), and hence

results in 612 ≤ P ≤ 813 µW.

Cycl ing: For the examined unit placements, cycling

generates relat ively lit t le energy – the median P values

are 41–52 µW, 3.7–3.9 t imes less than the P for walk-

ing. While the high cadence of cycling mot ion results

in relat ively high f m (Fig. 5(b)), a harvester not on the

legs will be subject to only small displacements, result -

ing in small values of D (Fig. 5(a)) and P (Fig. 5(c)).

For cycling IoT applicat ions, harvester placements on

the lower legs should be considered.

W alk ing upst ai r s and downst ai r s: Our examina-

t ion demonstrates that human exertion (perceived ef-

for t and energy expenditure) does not necessar ily corre-

spond to higher motion energy harvesting rates. While

people exert themselves more going upstairs, the P for

going downstairs is substantially higher than for going

upstairs. Specifically, for the downstairs mot ion, the

median P is 1.78 t imes higher than the upstairs mo-

t ion for shirt unit placement , 2.1 t imes higher for waist

placement , and 1.65 t imes higher for t rouser placement .

6

Power

• Walking: 120 - 280 μW

 In comparison, indoor light: 
50-100 μW/cm2

• Running: 610 – 810 μW

• Exertion ≠ power 
harvested 

 P is 1.6 – 2.1 times 
higher for going 
downstairs than 
upstairs 

• Cycling: 40 – 50 μW

 High cadence, low 
displacement 

 For cycling-specific IoT
applications, harvester 
placements on lower legs 
should be considered  

• Harvester optimized for each motion 



Energy Availability: Human Physical Parameters 

• 𝑓𝑚negatively correlated with 
participants’ height and weight 
 Different harvesters integrated in 

clothing of different sizes

• Running - P for taller half of 
participants is 20% higher than for 
the shorter half   

Higher fm Higher fm

• Dataset indexed with height and weight 

• Develop different harvesters for different demographics 

• Provide performance guarantees based on human parameters 



• Daily human routines 

• Previous studies: Yun’11 
 Study under different assumptions 

• We needed: insights into energy harvesting adaptive algorithm 
design

• 5-participant study
 Carried sensing units where convenient 

• 25 days, over 200 hours of acceleration information
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 Data available on CRAWDAD: M. Cong, K. Kim, M. Gorlatova, J. Sarik, J. Kymissis, G. Zussman, 
Dataset: Kinetic Energy Measurements CRAWDAD dataset, May 2014. 



1 gram harvester proof mass

10 mm harvester size

20% efficiency 

1nJ/bit communication cost

• 𝑃𝑑 - average power generated over 24-hour interval  

• 𝑟𝑑 – corresponding continuous data rates 

Day-long Human Motion: Power Budgets 

• Normal daily activities: 1-2 Kb/s 
 Comparable with dim indoor lights   

• Low energy availability → working from home 

• Daily routines with a lot of walking → higher energy availability 

 Data available on CRAWDAD: M. Cong, K. Kim, M. Gorlatova, J. Sarik, J. Kymissis, G. Zussman, 
Dataset: Kinetic Energy Measurements CRAWDAD dataset, May 2014. 

Part. # days Total dur. (h) 𝑷𝒅 (μ𝑾), 
min/avg/max

𝒓𝒅, avg
(Kb/s)

M1 5 60.4 4.8 / 6.5 / 8.1 1.3

M2 3 27.7 8.4 / 11.5 / 17.7 2.3

M3 9 62.0 0.6 / 2.02 / 3.6 0.4

M4 7 80.1 0.6 / 5.6 / 10.7 1.1

M5 1 11.0 7.5 1.5
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• People are stationary the vast majority of the time 
 >95% energy collected during 4-7% of the day

Day-long Human Motion: Variability and Properties 

• 𝑃𝑜𝑛𝑜𝑓𝑓 process: 𝑃𝑜𝑛𝑜𝑓𝑓 ←ON if 𝑃(𝑡) > 𝛾, 𝑃𝑜𝑛𝑜𝑓𝑓 ← OFF otherwise  

• % ON: typically low 
 30 min of activity per day: ~ 9% of an 

11-hour trace 

• ON intervals: typically short 
 78-89% shorter than 30 seconds

 Median intervals: 5 – 9.5s 

 Longer intervals are rare (1 – 3%), 
correspond to commuting 

• Overall, 𝑃(𝑡) low the majority of the time; if high, stays high for a short interval 

Need energy harvesting adaptive algorithms 

Part. # 
days

Total dur. 
(h) 

% ON, min/avg/max

M1 5 60.4 5.4 / 9.9 / 12.2 

M2 3 27.7 13.6 / 16.1 / 18.4 

M3 9 62.0 3.6 / 6.0 / 9.95 

M4 7 80.1 2.8 / 12.7 / 18.1

M5 1 11.0 11.5



Harvesting Process vs. i.i.d. and Markov Processes 
• Many energy harvesting adaptive algorithms developed for i.i.d. or Markov 

energy sources Huang’13, Wang’13

• Kinetic motion process: not i.i.d. or Markov
 p(P(t) > γ| P(t-1) > γ) ≠ p(P(t) > γ | P(t-1) > γ, P(t-2) < γ) 

• Performance not similar to i.i.d. or Markovian processes 

Need to evaluate policy performance with real traces 
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• Dramatic performance differences 

• Different performance trends 

 No dependency on 𝐶 for 𝑃𝑖𝑖𝑑 , 𝑃𝑚𝑎𝑟𝑘𝑜𝑣

• Controls: energy spending 

• Decision made on: average incoming 
energy, energy in storage  

Example: Scheme-LB policy, Chen’12 • Examine Scheme-LB for different energy 
storage sizes 𝐶

 𝑃𝑚𝑒𝑎𝑠, 𝑃𝑜𝑛𝑜𝑓𝑓: observed processes 

 𝑃𝑖𝑖𝑑, 𝑃𝑚𝑎𝑟𝑘𝑜𝑣: derived processes 



Energy Allocation (EA) Problem Formulation 
• Model: an ultra low power Internet of 

Things node
 Limited set of energy spending modes → 

Energy spending 𝑠(𝑖) in a finite set 𝑆

 Different options for communicating with a 
particular energy spending level s(i) → 
Arbitrary utility function 𝑈(𝑠 𝑖 )

 Capacitor possible for energy storage → 
Allowing for non-linearity in energy storage 

• EA problem: max ∑𝑈(𝑠(𝑖), s.t. 
 Starting and ending energy levels 𝐵0, 𝐵𝐾
 Energy availability

 Energy storage evolution dynamics 

• Integer optimization problem 

• Even for “easy” cases, e.g., battery energy storage and linear utility function 

K 
i i 

Theorem: EA problem is NP-hard.

s(i)

s(i): energy spending, in finite set S

Q(i)

B(i)

C

Energy Storage 

L(i)

s(i)/η(i)



Energy Allocation Algorithms 

• Greedy online algorithm
 In every time slot, maximizes the utility, while not letting the energy 

storage go below 𝐵𝐾

Theorem: The algorithm is optimal for battery energy storage model, 
if BK = 0, 𝑈(𝑥 + 𝑦) = 𝑈(𝑥) + 𝑈(𝑦), 𝑆 = {𝑗 ∙ 𝑠, 𝑗 = 1,… , |𝑆|}.   

 E.g., node using a fixed power level, changing its transmission rate by 
transmitting a different number of equal-sized packets 

• Dynamic programming-based algorithm, offline 
 Complexity 𝑂(𝐾2 ∙ 𝑈 𝑠𝑚𝑎𝑥 ∙ 𝑆 )

• FPTAS, offline 
 Scaling factor 𝜇 = 𝜀 ∙ 𝑈(𝑠𝑚𝑎𝑥)/K, utility function  𝑈 = 𝑈(𝑠)/𝜇

 Invoke dynamic programming algorithms for  𝑈

Theorem: The algorithm runs in times 𝑝𝑜𝑙𝑦
1

𝜀
, 𝐾 . The solution is a 

1 − 𝜀 approximation. 



Trace-based Algorithm Performance Evaluations 
• Each data point: one run of algorithm with a day-long trace 

For a capacitor, larger energy storage may worsen the overall performance 

• Ratio of FPTAS to optimal solution, as a 
function of the approximation ratio 

 For both battery (ALG-FB) and capacitor 
(ALG-FC)

 Performance is close to the optimal 

 Much closer than the theoretical bound  

• Capacitor: Average data rates for ALG-GC 
(greedy), ALG-OC (optimal), and ALG-FC (FPTAS), 
for different energy storage sizes 𝐶

 FPTAS performs similar to the optimal 

 For the greedy algorithm, performance 
decreases as 𝐶 increases



Kinetic Energy Availability for the Internet of Things  

• Measurement-based study of object and human motion 

• Examine implications for IoT node and algorithm design

 Demonstrate energy budgets

 Demonstrate dependency of energy on different parameters

 Examine properties of energy generation process

• Consider an IoT node model, and design and evaluate energy 

allocation algorithms 

• Traces available via

• Big thanks to contributors! 

 Sonal Shetkar, Craig Gutterman, Chang Sun, Kanghwan Kim 

• Questions? 

 Please e-mail me at: maria.gorlatova@caa.columbia.edu

 Project website: enhants.ee.columbia.edu

 Data available on CRAWDAD: M. Cong, K. Kim, M. Gorlatova, J. Sarik, J. Kymissis, G. Zussman, 
Dataset: Kinetic Energy Measurements CRAWDAD dataset, May 2014. 
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