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Summary

Recent large-scale power outages demonstrated the limita-

tions of percolation- and epidemic-based tools in modeling

failures in power grids. Hence, we study the impact of

line failures on the flow changes and cascade in the trans-

mission system of the power grid by using a linearized

power flow model. We use the pseudo-inverse of the power

grid admittance matrix to obtain upper bounds on the

flow changes after a failure, develop an efficient algorithm

to identify the cascading failure evolution, and develop

a simple heuristic to find a set of line failures with the

highest impact. Overall, the results demonstrate that the

resistance distance and the pseudo-inverse of admittance

matrix provide important insights and can support the

development of efficient algorithms.

Model

We adopt the linearized (or DC) power flow model, which

is widely used as an approximation for the AC power flow

model [1]. We represent the power grid by an undirected

graph G = (V,E) where V and E are corresponding to the

buses and transmission lines, respectively. pv is the active

power supply (pv > 0) or demand (pv < 0) at node v ∈ V
(for a neutral node pv = 0). We assume pure reactive lines,

where each edge {u, v} is characterized by its reactance

xuv = xvu. A power flow is a solution (f, θ) of:∑
v∈N(u)

fuv = pu, ∀ u ∈ V (1)

θu − θv − xuvfuv = 0, ∀ {u, v} ∈ E (2)

where N(u) is the set of neighbors of node u, fuv is the

power flow from node u to node v, and θu is the phase

angle of node u. Eq.(1)-(2) are equivalent to the matrix

equation: AΘ = P , where Θ ∈ R|V |×1 is the vector of
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phase angles, P ∈ R|V |×1 is the power supply/demand

vector, and A = [aij ] ∈ R|V |×|V | is the admittance matrix

of the graph G. The key to the results below is that power

flow equations can be solved by using the Moore-Penrose

Pseudo-inverse of the admittance matrix, A+ = [a+ij ] [4].

To study the effects of a single edge (e′) failure after

one round, we define the ratio between the change of flow

on an edge, e, and the initial flow on the failed edge, e′,

as mutual edge flow change ratio: Me,e′ = |∆fe/fe′ |.
We also use the cascading failure model of [2].

Failure Impact and Cascade Evolution

The following theorem provides an analytical rank-1 up-

date of the pseudo-inverse of the admittance matrix.

Theorem 1. If {i, j} is not a cut-edge, then,

A′+ = (A+aijXX
t)+ = A+− 1

a−1ij +XtA+X
A+XXtA+

in which X is an n× 1 vector with 1 in ith entry, −1 in

jth entry, and 0 elsewhere.

For simplicity, we assume that xuv = 1 ∀{u, v} ∈ E.

In this case, the admittance matrix A is the Laplacian

matrix of the graph. We use Theorem 1 and the notion

of resistance distance to provide a formula for computing

the flow changes and mutual edge flow change ratios after

a single edge failure.

Definition. The resistance distance between two nodes

i, j ∈ V is r(i, j) := a+ii + a+jj − 2a+ij.

Lemma 1. The flow change and the mutual edge flow

change ratio for an edge e = {i, j} ∈ E after a failure in

a non-cut-edge e′ = {u, v} ∈ E are,

∆fij =
1

2

−r(i, u) + r(i, v) + r(j, u)− r(j, v)

1− r(u, v)
fuv,

Me,e′ =
1

2

−r(i, u) + r(i, v) + r(j, u)− r(j, v)

1− r(u, v)
.
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Figure 2: The average of the mutual flow change ratios (Me,e′ ) versus the distance from the initial edge failure for different graph classes

and a subgraph of the Western interconnection with 1374 nodes. Each point represents the average of 40 different initial single edge failure.
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Figure 3: The average of the mutual flow change ratios (Me,e′ ) versus the resistance distance from the initial edge failure. Each point
represents the average of 40 different initial single edge failure events. For clarity, the markers appear for every 5 data points.
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Figure 1: The mutual edge flow change ratios (Me,e′) after an
edge failure (represented by black wide line) in a 44 node subgraph
of the Western interconnection.

The Lemma implies that mutual edge flow change ratios

are independent of the power supply/demand distribution

and solely depend on the grid structure.
Corollary 1 below provides an upper bound on the flow

changes after a failure in a non-cut-edge.

Corollary 1. The flow changes in any edge e = {i, j} ∈ E
after a failure in a non-cut-edge e′ = {u, v} ∈ E are

bounded by,

|∆fij | ≤
r(u, v)

1− r(u, v)
|fuv|, Me,e′ ≤

r(u, v)

1− r(u, v)
.

Using Lemma 1, Fig. 1 illustrates the mutual edge flow

change ratios after an edge failure. Figs. 2 and 3 show the

mutual edge flow change ratio (Me,e′) as the function of

distance (d(e, e′)) and resistance distance (r(e, e′)) from

the failure.

Once lines fail, there is a need for low complexity algo-

rithms to control and mitigate the cascade [2,3]. Hence,

using Theorem 1 we develop the low complexity Cascad-

ing Failure Evolution – Pseudo-inverse Based (CFE-PB)

Algorithm for identifying the evolution of a cascade that

may be initiated by a failure of several edges [4]. The

running time is O(|V |3 + |F ∗t ||V |2) (|F ∗t | and t are the

number of edges that eventually fail and cascade rounds),

which is O(min{|V |, t}) times lower than that of [2].

Finally, from Corollary 1, it seems that edges with large

r(i, j)× |fij | have greater impact on the flow changes on

the other edges. Based on this, we introduce a very simple

heuristic, termed the Most Vulnerable Edges Selection

– Resistance distance Based (MVES-RB) Algorithm, for

finding a set of edge failures with the largest impact at

the end of the cascade [4].
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