

IN THE CITY OF NEW YORK

Max-min Fair Rate Allocation and Routing in Energy Harvesting Networks: Algorithmic Analysis

Jelena Marašević¹, Cliff Stein², Gil Zussman¹

¹Department of Electrical Engineering, ²Department of Industrial Engineering and Operations Research, Columbia University

Presented at ACM MobiHoc'14

Internet of Things

- Internet of Things (IoT)/Internet of Everything (IoE):
 - Networking devices and objects that traditionally have not been networked.

Energy Harvesting Networks

- One of the main enablers for IoT
- Small self-powered devices with rechargeable batteries
- Environmental energy harvesting (solar, wind, kinetic, RF)
- Energy is spent on: sensing, transmitting, and receiving data
- Applications: sensing, monitoring, tracking, etc.

Paradigm shift in sensor networks:

Energy harvesting networks: Enable perpetual operation

The Model

The Model

- 1 sink
- *n* sensor nodes
- *m* edges
- T time slots

- Battery level: $b_{i,t}$
- Harvested energy: $e_{i,t}$
- Sensing rate: $\lambda_{i,t}$ Sensing + Tx cost: c_{st} Rx + Ty
 - Rx + Tx cost: c_{rt}

$$(flow\ in)_{i,t} + \lambda_{i,t} = (flow\ out)_{i,t}$$

$$b_{i,t+1} = \begin{cases} B, & \text{if } b_{i,t} + e_{i,t} - \left(c_{st}\lambda_{i,t} + c_{rt}(flow\ in)_{i,t}\right) > B \\ b_{i,t} + e_{i,t} - \left(c_{st}\lambda_{i,t} + c_{rt}(flow\ in)_{i,t}\right), & \text{otherwise} \end{cases}$$
spent energy

T-1

Overview of the Results

- Rate assignment and routing algorithm design:
 - Centralized;
 - Finite time horizon & predictable energy profile;
 - Fairness—required over both the nodes and the time;

Water-filling framework implementation

	Maximizing	Fixing	Total	Rates	Routing
Single-path	$ ilde{\mathcal{O}}(nT)$	O(mT)	$\tilde{O}(nmT^2)$	✓	
Fixed fractional	$\tilde{O}(\max(T, MF(n, m)))$	0(m)	$\tilde{O}(n(T+MF(n,m)))$	√	√
Time-variable fractional	$\tilde{O}(T^2/\varepsilon^2 \cdot (nT + MCF(n, m)))$	LP(nT,mT)	$\tilde{O}(nT(T^2/\varepsilon^2) + MCF(n,m)) + LP(nT,mT)$	√	✓

Overview of the results

- Computing single-path routes is "hard" even for T = 1:
 - Tree: NP-hard to approximate within log(n)
 - Single path: NP-hard to compute
- However, for fixed single-path routing:
 - Designed an algorithm that determines the routes that maximize the minimum rate

Network Operation and Fairness

Perpetual operation: fairness over time

*enhants.ee.columbia.edu

Balanced data acquisition: fairness over nodes

The Problems

Definition. An assignment $\{\lambda_{i,t}\}$, $i \in [n]$, $t \in [T]$, is said to be max-min fair if no $\lambda_{i,t}$ from the set can be increased without either losing feasibility, or lowering another $\lambda_{i,\tau} \leq \lambda_{i,t}$.

Assuming: known initial battery levels $b_{i,1}$ and harvested energies $e_{i,t}$

Requiring max-min fairness of the rates $\{\lambda_{i,t}\}$, determine:

- the routing of the required type, and
- the rate assignment $\{\lambda_{i,t}\}$

Note:

- Fairness is required over both the nodes and the time
- The goal is to understand algorithmic properties of the problem

Routing Types

Related Work

Energy harvesting networks:

- Node or a link; e.g., [Gorlatova et al. 2013],
 [Srivastava & Koksal 2013], [Ozel et al. 2011]
- Network—control-theoretic approach:
 optimize time-averages—time unfair! E.g.,
 [Gatzianas et al. 2010], [Huang & Neely 2013],
 [Mao et al. 2012]
- Most relevant to our work:
 - [Gurakan et al. 2013] (two hops)
 - [Liu et al. 2011] (constant rates)

Sensor networks:

 Maximum lifetime routing: [Chang & Tassiulas 2004], [Madan & Lall 2006], ...

Equivalent to maximizing lowest rate for T = 1.

Determining a max lifetime tree: [Buragohain et al. 2005]

Implies the NP-hardness of finding a tree. We show hardness of approximation.

Unsplittable (single path) max-min fair routing:

- Bottleneck routing: [Bertsekas & Gallager 1992], [Charny et al. 1995], ...

 Much simpler: unit costs, static capacities.
- Unsplittable routing: [Kleinberg et al. 1999] Implies our hardness results for single path routing.

Fractional max-min fair routing:

- Traditional network flows: [Megiddo 1974] Much simpler: unit energy costs, static capacities.
- LP framework: [Radunović, Le Boudec 2007] Requires a huge number of large LPs.
- Sensor networks: [Chen et al. 2007] Simpler problem—static capacities.
- Energy harvesting networks: [Liu et al. 2011] Simpler problem: constant rates; heuristic.

Water-filling Framework and Rate Assignment

Single-Path Routing: Rate Assignment

 Assuming that the routing is given at the input, determine the max-min fair rate assignment

Maximization:

- 1. For each node *i*, find the maximum supported rate, assuming *i*'s descendants can support the same rate
- 2. Return the minimum rate from 1.

Single-Path Routing: Rate Assignment

Fixing:

- 1. Fix all $\lambda_{i,t}$'s for which $b_{i,t+1} = 0$
- 2. Fix the rates $\lambda_{i,\tau}$ in all the slots with no extra energy preceding $b_{i,t+1}=0$

3. Fix the rates off all the descendants of *i*'s fixed in 1. and 2., in the same time slots

Single-Path Routing: Determining Routes

- A "good" routing:
 - -The routing that provides lexicographically maximum rate assignment

Lexicographic comparison of two vectors:

- . Order the elements of both vectors in non-decreasing order
- 2. Going from left to right, find the first element in which they differ
- 3. The vector with the higher element is lexicographically higher

Hard to approximate within log(n) even for a single time slot.

Time-variable Fractional Routing

Restructuring constraints get a packing problem

$$\sum_{\tau=1}^{t} c_{st} \lambda_{i,\tau} + c_{rt}(f \ in)_{i,\tau} \le b_{i,1} + \sum_{\tau=1}^{t} e_{i,\tau}, \quad \text{for } t \in \{1, 2, ..., T\}$$

$$\sum_{\tau=s}^{t} c_{st} \lambda_{i,\tau} + c_{rt}(f \ in)_{i,\tau} \le B + \sum_{\tau=s}^{t} e_{i,\tau}, \quad \text{for } s \in \{2, ..., T\}, t \in \{s+1, ..., T\}$$

- Feasible rates: at least as hard as feasible 2-commodity flow
 - Unlikely to be solved optimally without linear programming
- PTAS design:
 - Maximization: packing algorithm [Plotkin et al. 1995] + structural properties
 - Fixing: 1 LP over ε -neighborhood of the solution after maximization

Fixed Fractional Routing

- Observation:
 - Each node spends a fixed amount of energy per slot

Pre-processing:

- Determine the max Δb_i that a node can spend per slot
- $\lambda_i = 0$

Maximization:

- For $\lambda \in [0, \min_{i} \Delta b_{i}]/c_{st}$, via binary search:
 - If λ_i not fixed:
 - Set supply flow to $\lambda_i = \lambda_i + \lambda$
 - Set capacity of node i to $(\Delta b_i c_{st}\lambda)/c_{rt}$
 - Solve feasible flow
- $\Delta b_i = \Delta b_i c_{st} \lambda_i$

Fixing:

• Fix λ_i if and only if i has no directed path to the sink in the residual graph

Summary & Future Work

- Algorithmic study of max-min fairness in energy harvesting networks
- Benchmarking or centralized solution for highly-predictable energy profiles
- Generalized flow problems—might be of independent interest
- Insights into the problem structure

- Fairness guarantees with a:
 - Distributed algorithm?
 - Online algorithm?
 - + low communication overhead
- Different types of fairness:
 - Proportional fairness?
 - α -fairness?

Water-filling framework implementation

	Maximizing	Fixing	Total	Rates	Routing
Single-path	$ ilde{O}(nT)$	O(mT)	$\tilde{O}(nmT^2)$	\checkmark	
Fixed fractional	$\tilde{O}(\max(T, MF(n, m)))$	<i>O(m)</i>	$\tilde{O}(n\max(T, MF(n, m)))$	√	√
Time-variable fractional	$\tilde{O}(T^2/\varepsilon^2 \cdot (nT + MCF(n, m)))$	LP(nT,mT)	$\tilde{O}(nT(T^2/\varepsilon^2) + MCF(n,m)) + LP(nT,mT)$	✓	✓

Thanks!

jelena@ee.columbia.edu www.ee.columbia.edu/~jelena