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Cascading Failures in Power Grids 

 Power grids rely on physical infrastructure -    Vulnerable to 
physical attacks/failures 

 Failures may cascade 

 

 

 

 

 

 

 

 

 

 

 An attack/failure will have a significant effect on many 
interdependent systems (communications, transportation, gas, 
water, etc.)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 



Interdependent Networks 

 

Hurricane Sandy Update 
 

IEEE is experiencing significant 

power disruptions to our U.S. 

facilities in New Jersey and New 

York. As a result, you may 

experience disruptions in service 

from IEEE. 



Physical Attacks/Disasters 

 EMP (Electromagnetic Pulse) attack 

 Solar Flares - in 1989 the Hydro-Quebec 
system collapsed within 92 seconds leaving 
6 Million customers without power 

 

 

 

 

 

 

 

 

 Other natural disasters 

 

 Physical attacks 

Source: Report of the Commission to Assess the 
threat to the United States from 
Electromagnetic Pulse (EMP) Attack, 2008  

FERC, DOE, and DHS, Detailed Technical Report on 
EMP and Severe Solar Flare Threats to the U.S. 
Power Grid, 2010 



Sniper Attack on a San Jose Substation, Apr. 2014 

Source: Wall  
Street Journal 



Cascading Failures - Related Work 

 Report of the Commission to Assess the threat to the United States 
from Electromagnetic Pulse (EMP) Attack, 2008 

 Federal Energy Regulation Commission, Department  
of Energy, and Department of Homeland Security,  
Detailed Technical Report on EMP and Severe Solar  
Flare Threats to the U.S. Power Grid, Oct. 2010  

 

 Cascading failures in the power grid 
 Dobson et al. (2001-2010), Hines et al. (2007-2010),  

Chassin and Posse (2005), Gao et al. (2011),…  

 The N-k problem where the objective is to find  
the k links whose failures will cause the maximum  
damage: Bienstock et al. (2005, 2009) 

 Interdiction problems: Bier et al. (2007),  
Salmeron et al. (2009), … 

 Cascade control: Pfitzner et al. (2011), … 

 Mostly do not consider computational aspects 
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Power Grid Vulnerability and Cascading Failures 

 Power flow follows the laws of physics 

 Control is  difficult  

 It is difficult to “store packets” or “drop packets” 

 Modeling is difficult  

 Final report of the 2003 blackout – cause #1 was  

“inadequate system understanding”  

(stated at least 20 times) 

 Power grids are subject to cascading failures:  

 Initial failure event 

 Transmission  lines fail due to overloads  

 Resulting in subsequent failures 



Recent Major Blackout Event: San Diego, Sept. 2011 

Blackout description (source: California Public Utility Commission)with the 
model 





Real Cascade – San Diego Blackout 
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 Failures “skip” over a few hops 

 Does not agree with the epidemic/percolation models 



Blackout in India, July 2012  

  

1 

   

2    

3 

  4,5 

  6,7 

  8,9 

  10, 11 

Functional Under Maintenance Tripped 

 The first 11 line outages leading to the India blackout on July 
2012 (numbers show the order of outages) 



Power Flow Equations - DC Approximation 

 Exact solution to the AC model is infeasible 

 𝑓𝑖𝑗 = 𝑈𝑖
2𝑔𝑖𝑗 − 𝑈𝑖𝑈𝑗𝑔𝑖𝑗 cos 𝜃𝑖𝑗 − 𝑈𝑖𝑈𝑗𝑏𝑖𝑗 sin 𝜃𝑖𝑗 

 𝑄𝑖𝑗 = −𝑈𝑖
2𝑏𝑖𝑗 + 𝑈𝑖𝑈𝑗𝑏𝑖𝑗 cos𝜃𝑖𝑗 − 𝑈𝑖𝑈𝑗𝑔𝑖𝑗 sin 𝜃𝑖𝑗  

      and  𝜃𝑖𝑗 = 𝜃𝑖 − 𝜃𝑗 . 

 We use DC approximation which is based on: 
 

 

 

 𝑈𝑖 = 1 𝑝.𝑢. for all 𝑖 

 Pure reactive transmission lines –  each line is  
characterized only by its reactance  𝑥𝑖𝑗 = −1/𝑏𝑖𝑗 

 Phase angle differences are “small”,  implying that 
 sin𝜃𝑖𝑗 ≈ 𝜃𝑖𝑗 

 Known as a reasonably good approximation 

 Frequently used for contingency analysis 
 Do the assumptions hold during a cascade? 

 

 

 

 

 

 

 

 

𝑗 𝑈𝑖 ≡ 1, ∀𝑖 
𝑥𝑖𝑗 

sin 𝜃𝑖𝑗 ≈ 𝜃𝑖𝑗 

𝑖 

𝑗 

Load 

Generator 

𝑈𝑖, 𝜃𝑖, 𝑃𝑖, 𝑄𝑖 



Power Flow Equations - DC Approximation 

 A power flow is a solution (𝑓,𝜃) of: 

 𝑓𝑢𝑣 = 𝑝𝑢

𝑣∈𝑁 𝑢

, ∀ 𝑢 ∈ 𝑉 

𝜃𝑢 − 𝜃𝑣 − 𝑥𝑢𝑣𝑓𝑢𝑣 = 0,∀ 𝑢,𝑣 ∈ 𝐸 

 

 

 Matrix form: 
𝐴Θ = 𝑃 

𝐴 is the admittance matrix of the grid defined as: 

𝑎𝑢𝑣 =

0,                𝑢 ≠ 𝑣 𝑎𝑛𝑑 𝑢, 𝑣 ∉ 𝐸

−
1

𝑥𝑢𝑣
,       𝑢 ≠ 𝑣 𝑎𝑛𝑑 𝑢, 𝑣 ∉ 𝐸

−  𝑎𝑣𝑤

𝑤∈𝑁 𝑢

,                      𝑢 = 𝑣 

 

 If 𝐴+ is its pseudo-inverse 
Θ = 𝐴+𝑃 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑢 

𝑣 

Load (𝑝𝑢 < 0) 

Generator (𝑝𝑢 > 0) 

𝜃𝑢,𝑝𝑢 



Line Outage Rule 

 Different factors can be considered in modeling outage rules 
 The main is thermal capacity 𝑢𝑖𝑗 

 Simplistic approach: fail lines with 𝑓𝑖𝑗 > 𝑢𝑖𝑗 

     Not part of the power flow problem constraints 
 More realistic policy:  

Compute the moving average 
𝑓 𝑖𝑗 ≔ 𝛼 𝑓𝑖𝑗 + 1− 𝛼 𝑓 𝑖𝑗  
(0 ≤ 𝛼 ≤ 1 is a parameter) 
 

 Deterministic outage rule:  
Fail lines with 𝑓 𝑖𝑗 > 𝑢𝑖𝑗  

 Stochastic outage rules 
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Cascading Failure Model (Dobson et al.) 

𝑃1 = 𝑓1 = 2000 MW 

𝑃2 = 𝑓2 = 1000 MW 

𝑃13 = 1400 MW 

𝑃3 = −𝑑3 = −3000 MW 
𝑥13 = 10 Ω 

1 3 

2 

𝑢13 = 1800 MW 

𝑃13 = 3000 MW 

𝑃3 = 0 MW 

𝑃1 = 0 MW 

𝑃2 = 0 MW 

 Until no more lines 
fail do: 

 Adjust the total  
demand to the total  
supply within each  
component of 𝐺 

 Use the power flow model to 
compute the flows in 𝐺 

 Update the state of lines 𝜉𝑖𝑗 
according to the new flows 

 Remove the lines from 𝐺 according 
to a given outage rule 𝑂 

Initial failure causes disconnection  
of load 3 from the generators in  

the rest of the network 
 

As a result, line 2,3   
becomes overloaded 



Numerical Results (Bernstein et al., IEEE INFOCOM’14) 

 Obtained from the GIS (Platts Geographic Information System) 

 Substantial processing of the raw data  

 Used a modified Western Interconnect system, to avoid exposing 
the vulnerability of the real grid 

 

 13,992 nodes (substations),  
18,681 lines,  
and 1,920 power stations. 

 1,117 generators (red),   
5,591  loads (green) 

 Assumed that demand is  
proportional to the population 
size 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Cascade Development – San Diego area  

N-Resilient, Factor of Safety K = 1.2 



Cascade Development – San Diego area  



Cascade Development – San Diego area  



Cascade Development – San Diego area  



Cascade Development – San Diego area  



Cascade Development – San Diego area  

0.33 

N-Resilient, Factor of Safety K = 1.2  Yield = 0.33  

For (N-1)-Resilient  Yield = 0.35               For K = 2  Yield = 0.7 

(Yield - the fraction of the demand which is satisfied at the end of the cascade) 
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Metrics for Evaluating the Impact of a Single Failure 

 

 

 

 

 

 

 

 

 Flow Change after failure in the edge 𝑒  
Δ𝑓𝑒 = 𝑓′𝑒 − 𝑓𝑒 

 Edge Flow Change Ratio  

𝑆𝑒,𝑒′ =
Δ𝑓𝑒

𝑓𝑒
 

 Mutual Edge Flow Change Ratio 

𝑀𝑒,𝑒′ =
Δ𝑓𝑒

𝑓𝑒′

 

 
 
 
 

 

 

𝑒 = 4,5  
𝑒′ = {1,5} 

 

𝑓𝑒 

𝑓𝑒′ 

𝑓′𝑒  



Graph Used in Simulations 

 Western interconnection: 1708-edge connected subgraph of the 
U.S. Western interconnection 

 Erdos-Renyi graph: A random graph where each edge appears 
with probability 𝑝 =  0.01 

 Watts and Strogatz graph: A small-world random graph where 
each node connects to 𝑘 =  4 other nodes and the probability of 
rewiring is 𝑝 =  0.1 

 Barabasi and Albert graph: A scale-free random graph where 
each new node connects to 𝑘 =  3 other nodes at each step 
following the preferential attachment mechanism 



Effects of a Single Edge Failure 

 Edge Flow Change Ratio , 𝑆𝑒,𝑒′ =
Δ𝑓𝑒

𝑓𝑒
 

 

 

 

 

 

 

 

 

 

 Very large changes in the flow 

 Sometimes far from the failure 

 There are edges with positive flow increase from zero, far from 
the initial edge failure 



 Objective: Compute the mutual edge flow change ratios   

 Recall that Θ = 𝐴+𝑃 

 Method: Update the pseudo-inverse of the admittance matrix 
upon failure 

 

 

 

 

 

 

 

 

 

 

 
*A similar theorem independently proved by Ranjan et al., 2014  

 
 
 
 

 

 

Updating the Pseudo-Inverse 

Admittance Matrix: 𝐴 Admittance Matrix: 𝐴′ 
𝐴′ = (𝐴 + 𝑎𝑖𝑗𝑋𝑋𝑡) 

𝑋 = 1,0,0,0,−1 𝑡 

𝑖 𝑗 

Theorem: 𝐴′+ = 𝐴 + 𝑎𝑖𝑗𝑋𝑋𝑡 +
= 𝐴+ −

1

𝑎𝑖𝑗
−1+𝑋𝑡𝐴+𝑋

 𝐴+𝑋𝑋𝑡𝐴+ 



Resistance Distance 

 Resistance Distance between nodes 𝑖 and 𝑗  
𝑟 𝑖, 𝑗 = 𝑎𝑖𝑖

+ + 𝑎𝑗𝑗
+ − 2𝑎𝑖𝑗

+  

 The resistance distance between two nodes is a measure of their 
connectivity 

 

 

 

 

 

 

 

 

 

 All graphs have 1374 nodes  

 All the edges have reactances equal to 1 

𝑟 𝑖, 𝑗  

𝑗 

𝑖 



Effects of a Single Edge Failure 

 Mutual Edge Flow Change Ratio 

𝑀𝑒,𝑒′ =
Δ𝑓𝑒

𝑓𝑒′

 

 Using pseudo-inverse of the admittance matrix, 𝑒 = 𝑖, 𝑗 , 𝑒′ = {𝑝,𝑞}  

𝑀𝑒,𝑒′ =
1

2

−𝑟 𝑖,𝑝 + 𝑟 𝑖, 𝑞 + 𝑟 𝑗, 𝑝 − 𝑟(𝑗, 𝑞)

1 − 𝑟 𝑝, 𝑞
 

 Mutual Edge  flow change ratios (𝑀𝑒,𝑒′) are independent of the 
supply and demand 

 Initial Failure  
Represented by a black  
wide line 

 
 



Effects of a Single Edge Failure (𝑀𝑒,𝑒′) 

Logarithmic 

 All graphs have 1374 nodes and each point represents the average 
of 40 different initial single edge failure events 
 
 
 
 
 

Comparison 



Efficient Cascading Failure Evolution Computation 

𝐴 =

2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1

−1 0 0 −1 2

 𝐴+ =

0.4 0 −0.2 −0.2 0
0 0.4 0 −0.2 −0.2

−0.2 0 0.4 0 −0.2
−0.2 −0.2 0 0.4 0

0 −0.2 −0.2 0 0.4

 

𝐴′ =

1 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1

 𝐴′+ =

1.2 0.4 −0.2 −0.6 −0.8
0.4 0.6 0 −0.4 −0.6

−0.2 0 0.4 0 −0.2
−0.6 −0.4 0 0.6 0.4
−0.8 −0.6 −0.2 0.4 .2

 

• Case I: Failure of an edge 

which is not a cut-edge 

 Update 𝐴+ after 

removing the edge 

{1,5}, in 𝑂( 𝑉 2) 



Efficient Cascading Failure Evolution Computation 

𝐴′ =

1 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1

 𝐴′+ =

1.2 0.4 −0.2 −0.6 −0.8
0.4 0.6 0 −0.4 −0.6

−0.2 0 0.4 0 −0.2
−0.6 −0.4 0 0.6 0.4
−0.8 −0.6 −0.2 0.4 .2

 

 Detect the cut-edge and 

connected components in 

𝑂 𝑉   

 Adjust the total demand to 

equal the total supply within 

each connected component 

 No need to update 𝐴+ 

• Case II: Failure of a  

cut-edge 

𝐴′′ =

1 −1 0 0 0
−1 1 0 0 0
0 0 1 −1 0
0 0 −1 2 −1
0 0 0 −1 1

 

𝑎′23
−1 − 2𝑎′23

+ + 𝑎′22
+ + 𝑎′33

+ = 0 

𝐴2
′+ − 𝐴3

′+ = 0.6 0.6 −0.4 −0.4 −0.4  

𝐺1 𝐺2 

𝐺1 

𝐺2 



Efficient Cascading Failure Evolution Computation 

 The Pseudo-inverse Based  Algorithm identifies the evolution of 

the cascade in 𝑂( 𝑉 3 + 𝐹𝑡
∗ 𝑉 2) 

 Compared to the classical algorithm which runs in 𝑂(𝑡 𝑉 3) 

 If 𝑡 = |𝐹𝑡
∗| (one edge fails at each round), our algorithm performs 

𝑂(min {|𝑉|, 𝑡}) faster 

 

 



Vulnerability Analysis - Yield, N-1 Resilient (INFOCOM’14)  

The color of each point represents the yield value of a cascade whose  
epicenter is at that point 

 

 



Heuristic Algorithm for Min Yield Problem 

 Yield: The ratio between the demand supplied at stabilization and 
its original value 

 The minimum Yield problem is NP-hard 

 Based on our results, after failure on an edge {𝑝, 𝑞}, the flow 

changes can be bounded by Δ𝑓𝑖𝑗 ≤
𝑟 𝑝,𝑞

1−𝑟 𝑝,𝑞
 𝑓𝑝𝑞  

 Edges with large 𝑟 𝑝,𝑞 𝑓𝑝𝑞  have large impact on flow changes 

 The algorithm removes edges with large 𝑟 𝑝, 𝑞 𝑓𝑝𝑞  

 

 

 

 

 

 

 The yield at stabilization 



Conclusions 

 Cascade propagation models differ from the classical 

epidemic/percolation-based models 

 Studied properties of the admittance matrix of the grid 

 Derived analytical techniques for studying the impact of a single 
edge failure 

 Illustrated  via simulations and numerical experiments 

 Developed an efficient algorithm to identify the evolution of the 
cascade 

 Developed a simple heuristic to detect the most vulnerable edges 

 

 Using the resistance distance and the pseudo-inverse of 
admittance matrix provides important insights and can support the 
development of efficient algorithm 

 


