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Full-Duplex Wireless

(Same channel) Full-duplex communication = simultaneous
transmission and reception on the same frequency channel
Viability is limited by self-interference

Transmitted signal is over billion times stronger than the received signal!

Legacy wireless systems separate transmission and reception in either:

Time — Time Division Duplex (TDD)
Frequency - Frequency Division Duplex (FDD)



Full-Duplex Wireless

* Benefits of full-duplex:

— Increased system throughput

— More flexible use of the wireless spectrum

Self-Interference Cancellation (SIC):
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Imperfect Self-Interference Cancellation
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This Talk

Power allocation and achievable rate gains for realistic hardware models.

T p=—C




Outline

* Single-channel full-duplex:

* Multi-channel full-duplex:
— Modeling full-duplex hardware
— Power allocation and rate gains




Model and Problem Statement

» Self-interference: constant fraction (g,,, g») of the
transmitted signal

 Goal: maximize the sum of rates on UL and DL

e Variables: transmission power levels P,, and F,

« (Constraints: | P, <P, P, <P

* Remaining notation:
— Noise: N,,, N,

— Wireless channel gain: h,,,;, by,

received signal
noise+interference

Shannon capacity formula: » = log (1 +
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Maximum Sum-Rate and Rate Gains

Lemma 1. One of the following three power allocations maximizes the
sum rate: (0, P,,), (P,0),0r(Py, Py,)-

Half-duplex! Full-duplex!
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Concavity of the Sum Rate
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Lemma 2. If: D
C1 gm hmb D

( ) Ny, — Nb+ngb !

the sum rate is concave in P,,. Similarly, if:

C2 M D

( ) Nb - Nm"'gm ! Q

the sum rateis concavein P .
If either (C1) or (C2) does not hold, then the maximum improvement of
the sum rate as compared to the maximum achievable TDD rateis

strictly less than 1b/s/Hz.

This lemma is essential for designing a power allocation algorithm in
the multi-channel case!



Outline

* Single-channel full-duplex:

* Multi-channel full-duplex:
— Modeling full-duplex hardware
— Power allocation and rate gains




Multi-Channel Full-Duplex

* Orthogonal Frequency Division Multiplexing (OFDM)
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Multi-Channel FD: Cancellation at a BS/AP

* Frequency-flat profile
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e Challenging to generate

larg

* Assuming:

Modeling Cancellation at a (Compact) MS
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e time delay in RFIG;

(@)
Hu(f) = |Hal| e 2™, ;
\Hc,r(f)| = |He,r| = const., Ha(s)

W

Hc,R(S)

LCann o

/Hc r = const.,

SI1Cp = const.

Setting

|H4| = |Hc,R
ZI_IC’,R — ZI—-,A(fc)

The remaining self-interference is:

RF

=

RSTnp

const. - (fr — fo)? - Pk

2 HAl* P (1 — cos(2n7(fic — [.))) SIC'

frequency [GHz|

RX Analog| | E RX
Baseband ADC /7 DSP
I
Digital
'_@ Cancellation Hco(s)
Shared LO

TX Analog H TX

Baseband _<DAC | :| DSP
: -10 —,
----- Group Delay - A
| | —TX/RX Isolation| : -15 %
| i 205
-25 =
7))]
-30
o 35 &
2 , <
= 40 &

2.11 2.13 2.15 2.17



Model vs. Measurements

* Frequency-selective profile

RST,, 1 = const. - (fx — fo)* - P

* Measurements done using a circuit developed by Zhou et al.
(presented at IEEE I1SSCC’14).
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Remaining Self-Interference

* At the base station, channel k: RS}, ,, =|gy | Py | TXpoweron ch. k

)
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Parameter Selection
* The problem of determining ({Pm.k, Po.i.}»€) that maximize the sum of
rates is hard in general:

— The sufficient conditions for concavity in power levels extend for any fixed ¢

..but the dependence on ¢ is not “nice”

However, the problem has “enough” structure

e



High SINR Approximation

* Dependence on c is still “hard” in general.

e But:

0.15

MS power level

0.1 ¢

©
=)
&

+1

Lemma 4. If ({ Py, k., Py }, ) maximizes r,then ¢ = 5= .

5 10 15 20 25 30
channel index

BS power level

0.034

0.033}
0.032}

0.031¢

0.03¢1

5 10 15 20 25 30
channel index



Numerical Results
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Setting

K = 33 channels on a 20MHz bandwidth;

Additional 50dB cancellation from the digital;

110dB difference between the max TX signal and the noise floor;
Flat frequency fading;

Average SNR : SNR observedin the half-duplex mode with max TX power,
when the transmission power levels are equally allocated over channels

Self-interference: measured and modeled profile
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MS power level

Power Allocation: Low SINR

Most channels are half-duplex — only one stations is transmitting at a time.
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Low-Medium SINR

Most channels are half-duplex, but about 1/5 of the channels are full-duplex.
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MS power level

Medium SINR

Most channels are full-duplex.
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MS power level

High SINR

All channels are full-duplex, and the power allocation matches closely the
power allocation in high SINR approximation.
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Rate Improvements

Significant rate improvements are mainly observed when the high SINR
approximation holds.
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Summary and Future Directions

Characterized throughput gains and properties of the sum rate for 3
representative use cases of full-duplex

Used realistic models of the hardware

The results are analytical and provide insights into properties of the
achievable rates

Future directions:

— Wi-Fi (CSMA) MAC with fairness guarantees

— Cellular OFDMA MAC
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