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Failures in Power Grids

 Power grids rely on physical infrastructure  Vulnerable to 
physical attacks/failures

 Failures may cascade  Blackouts (US’03, India’12, Turkey’15)

 An attack/failure will have a significant effect on many 
interdependent systems (communications, transportation, gas, 
water, etc.) 



Physical Attacks/Disasters

 EMP (Electromagnetic Pulse) attack

 Solar Flares - Federal Energy Regulatory 
Commission (FERC) has recently issued a 
rule for transmission grid operators to 
develop a plan to deal with the 
Geomagnetic disturbances

 Other natural disasters

 Physical attacks

Source: Report of the Commission to Assess the 
threat to the United States from Electromagnetic 
Pulse (EMP) Attack, 2008 

FERC, DOE, and DHS, Detailed Technical Report on 
EMP and Severe Solar Flare Threats to the U.S. 
Power Grid, 2010



Power Grid Attack in San Jose

 “A sniper attack in April 2014 that knocked out an electrical 
substation near San Jose, Calif., has raised fears that the country's 
power grid is vulnerable to terrorism. ” –The Wall Street Journal



Cyber Attacks on Control Network

 Federal and industry officials told Congress recently, “The U.S. 
electrical power grid is vulnerable to cyber and physical attacks 
that could cause devastating disruptions throughout the country.” 
The Washington Times 4/16/2014
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Power Flow Equations - DC Approximation

 A power flow is a solution (𝑓, 𝜃) of:

 

𝑣∈𝑁 𝑢

𝑓𝑢𝑣 = 𝑝𝑢 , ∀ 𝑢 ∈ 𝑉

𝜃𝑢 − 𝜃𝑣
𝑥𝑢𝑣

= 𝑓𝑢𝑣 , ∀ 𝑢, 𝑣 ∈ 𝐸

 Matrix form:

𝐴  𝜃 =  𝑝
𝐴 is the admittance matrix of the grid defined as:

𝑎𝑢𝑣 =

0, 𝑢 ≠ 𝑣 𝑎𝑛𝑑 𝑢, 𝑣 ∉ 𝐸

−
1

𝑥𝑢𝑣
, 𝑢 ≠ 𝑣 𝑎𝑛𝑑 𝑢, 𝑣 ∈ 𝐸

−  

𝑤∈𝑁 𝑢

𝑎𝑣𝑤 , 𝑢 = 𝑣

𝑢

𝑣

Load (𝑝𝑢 < 0)

Generator (𝑝𝑢 > 0)

𝜃𝑢, 𝑝𝑢

𝜃𝑢: Phase Angle
𝑥𝑢𝑣: Reactance
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Attack Model

 An adversary attacks a zone by 

 Disconnecting some edges within the attacked zone (physical attack)

 Disallowing the information from the PMUs within the zone to reach 
the control center (cyber attack)

 Use the information available outside of the attacked zone and the 
information before attack

 Recover the phase angles

 Detect the disconnected lines

Objectives:

 Identify conditions on zones
for which this can be done

 External Conditions

 Internal Conditions

 Develop algorithms to 
partition the network into 
attack resilient zones

G

H

Attacked Zone

PDC PDCPDCPDC



Notation

 𝐻 : an induced subgraph of 𝐺 that represents the attacked zone

  𝐻 = 𝐺\𝐻

 𝐴 =
𝐴 𝐻|  𝐻 𝐴 𝐻|𝐻

𝐴𝐻| 𝐻 𝐴𝐻|𝐻

  𝜃 =
 𝜃 𝐻
 𝜃𝐻

 𝐹 : Set of failed edges

 ′ : The value of  after 
an attack

 Our Problem: 𝐴 ,  𝜃,  𝜃′ 𝐻, 𝐴′ 𝐻| 𝐻, 𝐴′ 𝐻|𝐻

 𝜃′𝐻, 𝐴′𝐻|𝐻




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H
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Related Work

 Vulnerability of networks to attacks was thoroughly studied

 Percolation Theory and epidemics (Barabasi, Kleinberg, Havlin, etc.)

 Cascading failures in power grid

 Probabilistic Models (Albert, Buldryev, Stanly, Havlin, etc.)

 DC power flows (Dobson, Hines, Bienstock, Pinar, etc.)

 Malicious data attacks on the power grid control network

 False data injection (Sandberg, L. Tong, etc.)

 Modifying the topology estimate of the grid (L. Tong et. al. 2013)

 Line outage detection from the phase angle measurements

 Single or double line failures (Tate, Overbye 2009)

 Heuristic line failure identification in an internal system using the 
information from an external system (Giannakis et.al. 2012)

 PMU Location Selection for Line Outage Detection 
(A. Goldsmith et. al. 2012)
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 Theorem.  𝜃′𝐻 can be recovered after any attack on 𝐻, if 𝐴 𝐻|𝐻 has 

linearly independent columns.

 Corollary.  𝜃′𝐻 can be recovered almost surely if there is a matching 
between the nodes inside and outside of 𝐻 that covers 𝑉𝐻.

 Idea of the proof. 

 
𝐴  𝜃 =  𝑝

𝐴′  𝜃′ =  𝑝
⇒ 𝑠𝑢𝑝𝑝 𝐴  𝜃 −  𝜃′ ⊆ 𝑉𝐻 ⇒ 𝐴 𝐻|𝐺

 𝜃 −  𝜃′ = 0 ⇒

⇒ 𝐴 𝐻|𝐻
 𝜃𝐻
′ =𝐴 𝐻|𝐺

 𝜃 − 𝐴 𝐻| 𝐻
 𝜃 𝐻
′

Zone H

Recovery of Phase Angles
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Incidence Matrix

 Assign an arbitrary orientation to the edges of 𝐺

 Denote the set of oriented edges by Ε = {𝜖1, … , 𝜖𝑚}

 With this orientation, the (node-edge) incidence matrix of 𝐺 is 
denoted by 𝐷 ∈ ℝ𝑛×𝑚 and defined as follows,

𝑑𝑖𝑗 =  

1, if 𝜖𝑗 is coming out of node i

−1, if 𝜖𝑗 is going into node i

0, if 𝜖𝑗 is not incident to node i

𝐷 =
1 0
−1
0

1
−1

2

1 3



Detecting Failed Edges

 Lemma. There exists a vector  𝑥 ∈ ℝ 𝐸𝐻 such that 

𝐷𝐻  𝑥 = 𝐴𝐻|𝐺  𝜃 −  𝜃′

and 𝑠𝑢𝑝𝑝  𝑥 gives indices of the failed edges.

 Lemma. The solution  𝑥 is unique, if and only if 𝐻 is acyclic.

 The topology can be less restrictive,
if we restrict the attack (sparse)

 Lemma. If 𝐻 is a cycle and less than half of the edges are failed, 
then the solution  𝑥 to (∗) is unique and 𝑠𝑢𝑝𝑝  𝑥 gives indices of the 
failed edges.

min ∥  𝑥 ∥1 𝑠. 𝑡. 𝐷𝐻  𝑥 = 𝐴𝐻|𝐺(  𝜃 −  𝜃′) (∗)

Failed edges can be detected, if 𝐻 is acyclic

Zone H



Detecting Failed Edges

 Theorem. In a planar graph 𝐻, the solution  𝑥 to

min ∥  𝑥 ∥1 𝑠. 𝑡. 𝐷𝐻  𝑥 = 𝐴𝐻|𝐺(  𝜃 −  𝜃′)

is unique and 𝑠𝑢𝑝𝑝  𝑥 gives indices of the failed edges, if the following 
conditions hold:
(i) for any cycle 𝐶 in 𝐻, 𝐶 ∩ 𝐹 < 𝐶 /2,

(ii) 𝐹∗ can be covered by edge-disjoint cycles in 𝐻∗.

Idea of the proof. Faces of the 𝐻 form a basis for the null-space of 𝐷𝐻

𝑂3
∗
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Simultaneous Phase Angles Recovery and Failed 
Edges Detection

 Lemma. There exist vectors  𝑥 ∈ ℝ|𝐸𝐻| and  𝜃′𝐻 ∈ ℝ|𝑉𝐻| such that

𝐷𝐻  𝑥 = 𝐴𝐻|𝐺(  𝜃 −  𝜃′)

𝐴 𝐻|𝐺
 𝜃 −  𝜃′ = 0

and 𝑠𝑢𝑝𝑝(  𝑥) gives the indices of the failed edges and  𝜃𝐻
′ is the vector 

of the phase angles of the nodes in 𝐻.

 Solution to the set of equations above is unique if and only if 𝐻 is 
acyclic and 𝐴 𝐻|𝐻 has linearly independent columns

 Use similar idea to relax the conditions

min ∥  𝑥 ∥1 𝑠. 𝑡.

𝐷𝐻  𝑥 = 𝐴𝐻|𝐺(  𝜃 −  𝜃′)

𝐴 𝐻|𝐺
 𝜃 −  𝜃′ = 0

(∗∗)

Failed edges detection

Phase Angle Recovery



Simultaneous Phase Angles Recovery and Failed 
Edges Detection

 𝐻-inner-connected nodes 𝑉𝐻
in

𝐻-outer-connected nodes 𝑉𝐻
out

 Lemma. If 𝑣 is 𝐻-outer-connected,
then 𝜃𝑣

′ can be computed uniquely.

 Lemma. If 𝐻 is acyclic, 
𝐻-inner-connected nodes form an 
independent set, and 

∀𝑣 ∈ 𝑉𝐻
in, 𝜕 𝑣 ∩ 𝐹 < |𝜕(𝑣)|/2, 

the solution  𝑥,  𝜃′ to (∗∗) is unique. 

𝐻

𝐻-inner-connected

𝐻-outer-connected

𝐻

𝜕(𝑣) : the set of edges connected to node 𝑣

min ∥  𝑥 ∥1 𝑠. 𝑡.

𝐷𝐻  𝑥 = 𝐴𝐻|𝐺(  𝜃 −  𝜃′)

𝐴 𝐻|𝐺
 𝜃 −  𝜃′ = 0

(∗∗)



Simultaneous Phase Angles Recovery and Failed 
Edges Detection

 Theorem. In a planar graph 𝐻, the solution  𝑥,  𝛿𝐻 to (∗∗) is unique 

with 𝑠𝑢𝑝𝑝  𝑥 = {𝑖|𝑒𝑖 ∈ 𝐹} and  𝛿𝐻 =  𝜃𝐻 −  𝜃′𝐻, if the following 
conditions hold:

(i) ∀𝑣 ∈ 𝑉𝐻
in, 𝜕 𝑣 ∩ 𝐹 < 𝜕 𝑣 \F ,

(ii) for any cycle 𝐶 in 𝐻, 𝐶 ∩ 𝐹 < |𝐶\F|,
(iii) 𝐹∗ is 𝐻∗-separable,
(iv) in 𝐴 𝐻|𝐻, columns associated with nodes that are 

not 𝐻-inner/outer-connected are linearly independent,
(v) no cycle in 𝐻 contains an 𝐻-inner connected node,
(vi) 𝐻-inner-connected nodes form an independent set.

𝐻-inner
-connected



Summary of Results

Divide the graph into attack resilient zones



Minimum Matched-forest Partition

 Definition. A matched-forest partition of a graph 𝐺

 The subgraph induced by nodes in any partition is acyclic

 For each partition there is matching between the nodes inside and 
outside of the partition that covers inside nodes

 Lemma. For all 𝜖 > 0, it is NP-hard to approximate the minimum 
matched-forest partition of a graph 𝐺 to within 𝑛1−𝜖.

𝐻1

𝐻2

𝐻3

𝐻4

𝐺



Zone Selection Algorithm

 Zone Selection (ZS) Algorithm is a polynomial time algorithm to 
find a matched-forest partition of a graph

 Find the optimal matching cover of 𝐺 in 𝑂(𝑛3)

 Divide the graphs induced on each matched part into acyclic graphs

 Remark. A planar graph 𝐺 can be partitioned into at most 3 acyclic 
subgraphs

 Lemma. If 𝐺 is planar, the ZS Algorithm provides a 
6-approximation of the minimum matched-forest partition of G.



Colorado State Grid

 Partitioning of the Colorado state grid into 6 attack-resilient zones



Western Interconnection

 Partitioning of the U.S. Western Interconnection into 9 attack-
resilient zones

 Any subgraph of an attack-resilient zone is also attack-resilient

 The partitions obtained by the ZS Algorithm can be further divided 
into smaller zones based on geographical constraints 



Conclusion

 Provided a new model for joint cyber and physical attacks on 
power grids

 Developed methods to recover information

 Developed an approximation algorithm for the partitioning the 
grid into attack-resilient zones

 This is one of the first steps towards understanding the 
vulnerabilities of power grids to joint cyber and physical attacks 
and developing methods to mitigate their effects
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