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a b s t r a c t

Due to the current trend towards smaller cells, an increasing number of users of cellular
networks reside at the edge between two cells; these users typically receive poor service
as a result of the relatively weak signal and strong interference. Coordinated Multi-Point
(CoMP) with Joint Transmission (JT) is a cellular networking technique allowing multiple
Base Stations (BSs) to jointly transmit to a single user. This improves the users’ reception
quality and facilitates better service to cell-edge users. We consider a CoMP-enabled net-
work, comprised of multiple BSs interconnected via a backhaul network. We formulate the
OFDMA Joint Scheduling (OJS) problem of determining a subframe schedule and deciding
if and how to use JT in order tomaximize some utility function.We show that the OJS prob-
lem is NP-hard.We develop optimal and approximation algorithms for specific and general
topologies, respectively. We consider a time dimension and study a queueing model with
packet arrivals in which the service rates for each subframe are obtained by solving the
OJS problem. We prove that when the problem is formulated with a specific utility func-
tion and solved optimally in each subframe, the resulting scheduling policy is throughput-
optimal. Via extensive simulations we show that the bulk of the gains from CoMP with JT
can be achieved with low capacity backhaul. Moreover, our algorithms distribute the net-
work resources evenly, increasing the inter-cell users’ throughput at only a slight cost to
the intra-cell users. This is the first step towards a rigorous, network-level understanding
of the impact of cross-layer scheduling algorithms on CoMP networks.

© 2015 Published by Elsevier B.V.

1. Introduction

Cellular networks face an ever-increasing bandwidth demand, driven by the advent of sophisticated mobile devices and
new applications. Satisfying this demand calls for improvements in the spectral utilization and reductions in inter-cell in-
terference. The latter is becoming more relevant as the number of inter-cell users increases with ever-decreasing cell sizes.
Such users are often unable to receive any transmission due to the high interference. Interference reduction can be effi-
ciently accomplished through multi-cell coordination, known as Coordinated Multi-Point (CoMP) or Network-MIMO. One
particularly promising category is CoMPwith Joint Transmission (JT), wheremultiple Base Stations (BSs) jointly transmit to a
single user, using the same time–frequency slots. This technique is incorporated in the LTE-Advanced standard [1]. Recently,
CoMP with JT was shown to obtain substantial throughput gains in both indoor and outdoor testbeds [2].1
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1 There are two flavors of CoMP with JT: coherent [2] and non-coherent. We consider coherent JT but remark that all results can be directly extended to
non-coherent JT.
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As a result of the implementation of CoMP with JT in the LTE-Advanced standard, algorithm design and performance
evaluation for these systems have recently received increased attention in the research literature (see, e.g., [3–5]). However,
most existing work is concerned with developing heuristics designed for saturation conditions. In contrast, we consider a
cellular network where new packets are generated over time, and construct a rigorous framework to develop scheduling
algorithms for CoMP with JT that maximize throughput. This is achieved via a cross-layer approach, consisting of PHY (con-
sidering SINR-based transmission probabilities), MAC (deciding on a transmission schedule), and network layer (forwarding
traffic over the backhaul).

We consider a cellular network comprised ofmultiple BSs interconnected via backhaul links. Users are assigned a serving
and a secondary BS, and packets destined for a user can be transmitted either by the serving BS only, or jointly by the serving
and secondary BSs. The latter provides better signal-to-interference-plus-noise ratio (SINR), but requires a subframe in both
BSs, as well as forwarding the packet from the serving to the secondary BS prior to the transmission. A scheduling algorithm
for CoMP with JT therefore needs to balance the performance benefits of transmitting packets using JT with the additional
resources required for doing so.

We first focus on a single subframe, and study the OFDMA Joint Scheduling (OJS) problem of determining a schedule
to maximize some utility function, given a set of packets for each user. Such a schedule determines which packets should
be forwarded over the backhaul and which packets should be transmitted wirelessly, either using JT or by the serving BS
only. We show that the OJS problem is NP-hard and describe a framework for solving it efficiently by decomposing it into
problems related to knapsack and coloring. This allows us to develop an efficient algorithm for solving the OJS problem in
bipartite backhaul network graphs. While backhaul network graphs are not necessarily bipartite, this result enables us to
develop approximation algorithms for general backhaul graphs.

We then consider the network evolution over multiple subframes. We define a queueing model where the users are
fixed, and packets for the various users are generated over time. Departures are determined by the schedule obtained from
solving the OJS problem in each subframe. We characterize the capacity region (i.e., the packet arrival rates that can be
sustained). Moreover, we demonstrate that when the OJS problem is formulated with a specific queue-length based util-
ity function and solved optimally in each subframe, we obtain a MaxWeight-like scheduling policy (e.g., [6]), which we
show to be throughput optimal. This is surprising, given the difference between OJS and the typical matching-type prob-
lems where MaxWeight scheduling performs well. Based on the queueing model, we present extensive simulation results
to evaluate the performance of the proposed scheduling algorithms, as well as the benefits of JT. In particular, we consider
different network topologies with an SINR-based channel model. We show that the bulk of the gains from CoMP with JT
can be achieved with low capacity backhaul links. This result is highly relevant as the deployments of advanced cellular
wireless technologies have a strong impact onmobile backhaul operational expenditure (OPEX), which amount to 20%–40%
of total mobile operator’s OPEX due to their reliance on T1/E1 backhaul copper lines [7]. A promising alternative is wireless
backhaul (e.g., satellite, microwave), which is becoming a viable technology for geographically challenging regions and 5G
networks. However, since such technology has limited capacity (due to, e.g., limited wireless spectrum and poor wireless
channel conditions), our result are relevant to both present and future networks. We show that our algorithms distribute
the network resources more evenly as the backhaul capacity increases. In fact, they increase the inter-cell users’ throughput
at only a slight cost to intra-cell users.

The main contributions of this paper are two-fold: (i) we define a rigorous model for CoMP with JT and develop novel
scheduling algorithmswith throughput guarantees for networkswith queueing dynamics; (ii) via extensive simulations, we
observe the benefits of JT and the tradeoffs related to its implementation.

The rest of the paper is organized as follows. In Section 2 we discuss related work. In Section 3 we present the model.
In Section 4, we introduce the OJS problem and show that it is NP-hard. We develop approximation algorithms for OJS in
Section 5. In Section 6, we develop and present results for a queueing model, which we study through extensive simulation
experiments in Section 7. Section 8 provides conclusions and directions for future research. All proofs can be found in the
Appendix.

2. Related work

Previouswork on scheduling for CoMPwith JT has focused exclusively on analyzing the performance of heuristics, and has
been limited mostly to networks that are saturated (i.e., have infinite backlog). The proposed heuristics are then evaluated
via simulations or in testbeds (see, e.g., [2] and references therein). For example, [8–11,3] present heuristics for throughput
maximization, assuming a perfect backhaul (infinite capacity and no delay), while [5] does the same for the finite backhaul
case. In [4], the authors devise a heuristic for networkswith perfect backhaul, and aim tominimize the backhaul traffic under
certain SINR constraints. To our knowledge, [9,12] are the only studies that consider unsaturated networks, where traffic is
generated over time rather than assuming an infinite supply of available packets. Both of these propose heuristics, assuming
a perfect backhaul. The main contrast between our work and [12,10,11,3–5,9] is that we derive the first scheduling policies
with performance guarantees. This is done for unsaturated networks, assuming finite backhaul capacity and positive delay
over the backhaul.

Models similar to the one considered in this paper have been investigated in the context of single-cell cellular transmis-
sions. Packet-level scheduling algorithms for cellular networks are developed in [13,14]. In [15], approximation algorithms
that provide queue stability are analyzed for a single BS.
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(a) Wireless network. (b) Backhaul network and joint transmission graph.

Fig. 1. A cellular network comprised of basestations (black circles) and users (gray circles).

(a) Example network. (b) Primary (solid line) and secondary
(dashed line) BSs.

(c) The storage locations of the various
queues.

Fig. 2. BS allocation and queues.

Closely-related technologies to CoMP with JT are network-MIMO, multi-cell MIMO, and multi-user MIMO (MU-
MIMO) [16–19]. While theoretical studies (e.g., [18,20,21]) show that under certain conditions such technologies can
completely cancel inter-cell interference, achieving these gains in practical scenarios is still challenging [19,17,16] (e.g., due to
the high signal processing complexity). The Study of scheduling schemes for these technologies is subject to further research.

3. Network model

We consider an OFDMA cellular network comprised of a set of BSs B = {1, . . . , B} and a fixed set of stationary users
N = {1, . . . ,N}, see Fig. 1(a). The BSs are connected by a backhaul network represented by a graph GJ = (B, C), where
C is a set of backhaul links with |C| = C . We refer to GJ as the Joint Transmission Graph, as only neighboring BSs in GJ can
joint-transmit, see Fig. 1(b). We schedule over the downlink and assume that each backhaul link is bidirectional and that
both directions share the link capacity, but remark that all results can be readily extended to directional backhaul links.

Definition 1. User n is associated with up to two BSs:

– The serving BS is denoted BS(n) and is defined as the BS that provides the highest SINR to user n.
– The secondary BS is denoted BS(n) and is defined as the BS with highest SINR that has a backhaul link to BS(n) in C.

Note that some users may not have a secondary BS.

Packets destined for user n arrive at BS(n) and are stored in a queue Qn. Transmission for user n can be either single-
transmitted by BS(n) or joint-transmitted by BS(n) and BS(n). For a packet to be joint-transmitted, it first has to be forwarded
over the backhaul to BS(n), and stored in a queueQn for joint transmissions maintained at both BS(n) and BS(n). So a packet
departs from Qn when it is single-transmitted or forwarded across the backhaul, and a packet departs from Qn when it is
joint-transmitted.

To illustrate this, consider the network in Fig. 2(a) with three users and three BSs. In Fig. 2(b) the primary and secondary
BSs of each user are marked, with a solid and dashed line, respectively. Note that user 2’s secondary BS is BS1 and not BS3,
although the latter is closer, since BS3 does not have a backhaul link to BS2. User 3 does not have a secondary BS because its
primary BS does not have any backhaul connections. Fig. 2(c) displays the various queues in play, and their locations.

Both wireless packet transmissions and forwarding over the backhaul lasts exactly a single subframe. Throughout, we
assume that a central processing unit determines the schedule for all BSs based on perfect knowledge on the network state.

We consider a time-slotted model indexed by t , t = 0, 1, . . . , where each time slot corresponds to a single subframe.
Denote Ln(t) andLn(t) the queue length of Qn and Qn at the beginning of subframe t , respectively. Denote by Wn(t) the
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Fig. 3. Example of a frame (corresponding to 1.4 MHz LTE).

number of new packets generated for user n at the beginning of subframe t . The Wn(t) are assumed to be i.i.d. over time,
independent between users, and have finite second moment. We denote by µ

(1)
n (t), µ

(2)
n (t), and µ

(3)
n (t) the number of

packets transmitted towards user n in subframe t using single and joint transmission, and the number of packets forwarded
across the backhaul, respectively. These are determined by the resource allocation at each subframe, see Section 3.1 formore
details. The evolution of the queue lengths can then be written as

Ln(t + 1) = Ln(t)+Wn(t)− µ(1)
n (t)− µ(3)

n (t), (1)Ln(t + 1) =Ln(t)+ µ(3)
n (t)− µ(2)

n (t). (2)

3.1. Subframe model

We now consider a single subframe consisting of scheduled blocks S = {1, . . . , S} for each BS, see Fig. 3. In Sections 4
and 5 we discuss how to allocate resources within a single subframe, which determines the µ

(j)
n , j = 1, 2, 3. The evolution

of the queue lengths (1) and (2) over time is then discussed in Sections 6 and 7.
A packet i which is single-transmitted requires scheduled blocks in a subframe of BS(n(i)), while a joint-transmitted

packet requires scheduled blocks in the subframes of both BS(n(i)) and BS(n(i)). In the latter case, the set of scheduled blocks
used by BS(n(i)) and BS(n(i))must have identical indices since JT requires both BSs to transmit on the same scheduled blocks.

A packet i is characterized by the pair (n, β), where n is the receiving user, β ∈ {0, 1} indicates whether a packet is in Qn
(β = 0) or in Qn (β = 1). The set of all packets is denoted I, |I| = I . Given a packet i ∈ I, we denote by n(i), β(i) its user
type and queue type, respectively.

When transmitted wirelessly, packet i is received successfully with probability p(i). Additionally, the success probability
p(i) is independent of its allocated scheduled blocks, since we assume that the interference in all scheduled blocks is similar
(due to frequency reuse 1). Note that if some scheduled blocks are unused, the interference is lower and better performance
is obtained. We assume that p(i) is higher if β(i) = 1 compared to β(i) = 0, since when using joint transmission the two
BSs configure their transmission parameters such that the signal combines constructively at the user, resulting in greater
SINR when a packet is joint-transmitted.

To simplify the presentation and due to space constraints, wemake three assumptions: (i) forwarding a packet i over the
backhaul is always successful; (ii) all packets are of same length and a packet transmission on a wireless channel requires
one scheduled block from the subframe of each of its transmitting BSs; and (iii) the capacity of each backhaul link is K
packets/subframe. In the accompanying technical report [22], we show that assumptions (i)–(iii) can be relaxed. Moreover,
in [22] we show the applicability of our algorithms to the case where a packet can be transmitted using one of several
Modulation and Coding Schemes (MCSs). We also remark that all the results in this paper can be readily applied to the
setting with infinite backhaul capacity, by setting K = S. In our simulation study (Section 7) we evaluate our algorithms for
the case where multiple MCSs are supported.

4. The OFDMA joint scheduling (OJS) problem

Wenow formulate the joint scheduling problem. In order to describe the BSs involved in each transmission, we introduce

h(i) =

{BS(n(i))} if β(i) = 0,
{BS(n(i)), BS(n(i))} if β(i) = 1.

If β(i) = 0 then h returns only the serving BS, and if β(i) = 1 it returns both the serving and secondary BS.
The function u : I × {0, 1} → R+ represents the utility of scheduling packet i over the backhaul (u(i, 0)) or wireless

channel (u(i, 1)). Examples include throughput-based utility function uT and fairness-based utility function uF defined by

uT (i, 0) = γ , uT (i, 1) = p(i),
uF (i, 0) = γ , uF (i, 1) = log p(i),

(3)
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where γ > 0 is a small constant that ensures packets are forwarded over the backhaul. Since here we consider a single-slot
formulation, the utility of scheduling packets over the backhaul is not evident when the utility function is based only on
wireless throughput; γ compensates for this. In Sections 6 and 7 we use a queue-length based utility function

uQ (i, 0) = max{Ln(i) − L̂n(i), 0},
uQ (i, 1) = Ln(i)p(i),

(4)

where Ln and L̂n denote the queue length of Qn and Q̂n, respectively. Our model and analysis can in fact handle a wide range
of utility functions such as those used in [23].

Based on the set of packets I and the utility function u, the centralized scheduler determines the set of wireless trans-
missions to take place in the upcoming subframe, and what packets to forward over the backhaul.

The scheduler must also determine which scheduled blocks will be used for each packet transmission, such that for JT
the scheduled blocks of the serving BS and secondary BS are aligned (i.e., have identical index). The scheduling decisions are
represented using indicator variables zi ∈ {0, 1}, yi ∈ {0, 1}, and xis ∈ {0, 1}, where zi indicates if packet i is transmitted
wirelessly, yi indicates if packet i is forwarded over the backhaul and xis indicates if scheduled block s is used by packet i. The
scheduler needs to solve the following integer programming problem (with z = (zi)i∈I, y = (yi)i∈I, and x = (xis)i∈I, s∈S).

OFDMA Joint Scheduling (OJS) Problem:

max
x,y,z

I
i=1

ziu(i, 1)+ yiu(i, 0) =: U(z, y)

s.t. zi + yi ≤ 1, ∀ i ∈ I, (5)
{i:a∈h(i)}

zi ≤ S, ∀a ∈ B;

{i:h(i)=l}

yi ≤ K , ∀l ∈ C, (6)

S
s=1

xis = zi, ∀i ∈ I; yi = 0, ∀i s.t. β(i) = 1, (7)
{i: b∈h(i)}

xis ≤ 1, ∀b ∈ B ∀s ∈ S, (8)

zi ∈ {0, 1}, yi ∈ {0, 1}, ∀i ∈ I, (9)
xis ∈ {0, 1}, ∀i ∈ I ∀s ∈ S. (10)

Constraint (5) ensures a packet is scheduled at most once and resides in a single queue; (6) ensures capacities in each sub-
frame and backhaul link are not exceeded; (7) ensures a scheduled block is allocated for each wireless transmission and
packets in Qn cannot be forwarded over the backhaul; and (8) ensures that each scheduled block is used at most once in the
subframe of each BS.

To illustrate this problem, consider the network displayed in Fig. 4(a). This network comprises 3 BSs, 3 users and7packets,
numbered 1, . . . , 7. BS1 and BS2 are connected with a backhaul, so they can joint-transmit packets for user 1. Let S = 2,
and assume that we want to allocate the scheduled block to achieve the following transmissions: (i) packet 3 should be
joint-transmitted; (ii) packets 2, 4, 5 and 6 single-transmitted; and (iii) packet 1 forwarded over the backhaul from Q1 toQ1.
This schedule can be obtained with the assignment displayed in Fig. 4(b), and the following solution to the OJS problem:

z = (0, 1, 1, 1, 1, 1, 0), y = (1, 0, 0, 0, 0, 0, 0), x =

0 0 1 1 0 0 0
0 1 0 0 1 1 0


.

We now describe the complexity of the OJS problem.

Proposition 1. OJS is strongly NP-hard even for instances in which all of the following hold:

(a) u(i, 0) = 1, u(i, 1) = 1, ∀i ∈ I;
(b) Ln ≤ 1,Ln ≤ 1, ∀n ∈ N .

The proof of Proposition 1 uses a reduction from the well-known problem of minimum edge coloring [24]. The reduction
demonstrates that even for cases with sufficient bandwidth to accommodate all packet transmissions in the BSs subframes,
obtaining a feasible schedule where joint-transmissions use an identical set of scheduled blocks is equivalent to the
well-known problem of minimum edge coloring [24]. In Section 5, we use algorithms for minimum edge coloring when
developing algorithms for OJS.
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(a) A wireless network with 3 users
and 7 packets (denoted 1. . .7).

(b) A possible allocation
of the scheduled blocks.

(c) The resulting scheduled block
graph.

Fig. 4. An example of a scheduled block allocation and the resulting scheduled block graph.

Fig. 5. The decomposition framework leading to algorithm AOJS = [AJTK, AJTC].

5. OJS problem—algorithms

In this section we develop algorithms to solve the OJS problem. First, we describe a framework for solving the OJS
problem by decomposing it into problems related to knapsack and coloring, see Section 5.1.We then use this decomposition
framework to develop efficient algorithms for OJS. In particular, in Section 5.2 we develop algorithms for instances where
the joint transmission graph GJ (consisting of the BSs and the backhaul) is bipartite, in Section 5.3 we develop algorithms
for instances where the joint transmission graph is planar and series–parallel, and in Section 5.4 we develop algorithms for
general joint transmission graphs. Note that joint transmission graphs encountered in practice need not always be bipartite
or planar and series–parallel. However, if this is the case, by using an algorithm that exploits the structure of the graph, we
can guarantee lower computational complexity andmore accurate results. The algorithms for the general case in Section 5.4
are based on those for bipartite graphs in Section 5.2.

We denote the approximation ratio of a given algorithm by α (0 < α ≤ 1). If the algorithm is optimal, we have α = 1.

5.1. Decomposition framework

From Proposition 1 we see that, unless P = NP , an efficient optimal algorithm for general instances of OJS does not exist.
In order to develop efficient approximations for the general case and optimal solutions for a subset of instances, we present
two additional scheduling problems and explore their relation to OJS. These two problems are obtained by partitioning OJS
into two parts, exploiting the fact that x only appears in (7), (8), and (10).
Joint Transmission Knapsack (JTK) Problem:

max
z,y

U(z, y)

s.t. (5), (6), (9), ∃x : (7), (8), (10) hold.

Joint Transmission Coloring (JTC) Problem:

given z, y, find x s.t. (7), (8), (10) hold.

Note that the JTK problem resembles an assignment problem rather than a knapsack problem.We remark that this is due
to’ the assumptions that all packets have the same length and use a single MCS. We show in [22] that when relaxing these
assumptions, JTK indeed generalizes to a knapsack-like problem.

We use AJTK and AJTC to denote an algorithm for JTK and JTC, respectively. A specific algorithm for problem P is denoted
P–Dwhere D identifies the algorithm. For instance, we write AJTK = JTK-GREEDY if we solve the JTK problem using a greedy
algorithm. An instance of problem P consists of specific values for all variables in its constraints, except for x, y, and z (JTK)
and x (JTC).

The JTK problem differs from OJS in that it does not attempt to find x but guarantees that such x exists for its solution
z, y. The JTC problem then finds x given z and y, which is later shown to correspond to a coloring problem. It is ensured
that if a solution exists for JTK, the corresponding JTC problem instance can also be solved. Thus we can decompose OJS by
first solving JTK to obtain z, y and then solving JTC to obtain x, see Fig. 5 (some details in the figure are explained later). In
Sections 5.2–5.4, we identify instances where the existence of a feasible x is guaranteed without the need to find x, and use
this to develop efficient algorithms for OJS.
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Table 1
The performance and input required for different algorithms AOJS = [AJTK, AJTC].

AJTK AJTC Ratio Running time Input GJ

JTK-MMK JTC-BIP α O(TMMK(I, B, C, S)) Bipartite
JTK-MAT JTC-BIP 2α

3∆(GJ )
O(CTMMK(I, 2, 1, S)) Any

JTK-STA JTC-BIP α
∆(GJ )

O(TMMK(I, ∆(GJ )+ 1, ∆(GJ ), S)B2) Any
JTK-PSP JTC-PSP α O(2B

+ TMMK(I, B+ 2B, C, S)) Planar ser. paral.

If algorithms AJTK and AJTC are used in this decomposition to solve JTK and JTC, respectively, we denote the corresponding
OJS algorithms as AOJS = [AJTK, AJTC]. As we shall demonstrate in this section, making this decomposition allows us to find
efficient algorithms for solving OJS. Throughout the paper only optimal AJTC algorithms are considered. The following lemma
immediately follows.

Lemma 1. If AJTK is an α-approximation algorithm for the JTK problem and AJTC an optimal algorithm for the JTC problem, the
algorithm AOJS = [AJTK, AJTC] is an α-approximation for the OJS problem.

We introduce the following definitions that will be used to solve JTC. Recall from Section 3 that GJ = (B, C) denotes the
joint transmission graph that describes what BSs are connected by a backhaul link.

Definition 2. The scheduled blocks graph GSB = GSB(GJ , z) = (VSB, ESB) of a JTC instance is defined by

VSB = VJ ∪ {B+ 1, . . . , 2B}

and

ESB =

{BS(n(i)), BS(n(i))+ B} | zi = 1 and β(i) = 0


∪


{BS(n(i)), BS(n(i))} | zi = 1 and β(i) = 1


.

To interpret the definition of GSB, recall that zi denotes whether packet i does a wireless transmission (zi = 1) or not
(zi = 0). So each edge in the scheduled block graph represents a wireless transmission, connecting the BSs that are engaged
in the transmission. To avoid self-loops, we introduce dummy vertices B + 1, . . . , 2B in case these BSs are involved in a
single-transmission. Note that whileGJ is a simple graph,GSB need not be. As an example forGJ andGSB consider the network
depicted in Fig. 4(a). Using the solution described in the example at the end of Section 4, the resulting scheduled block graph
is depicted in Fig. 4(c).

We now show that, using the scheduled block graph, JTC can be rewritten as an instance of thewell-known edge-coloring
(EC) problem [25], and solved accordingly. The input to the EC problem is a graph G = (V , E) and the output is a coloring
on the edges that uses a minimum number of colors.

Lemma 2. JTC is equivalent to finding an edge coloring using at most S colors on GSB = (VSB, ESB).

As a consequence, JTC can be solved optimally by invoking an optimal algorithm AEC for the EC problem on GSB. Note that
the EC problem is NP-hard.

Table 1 summarizes the different options we will describe in Sections 5.2–5.4 for solving OJS using the decomposition
framework.

5.2. Algorithms for bipartite network graphs

We now develop algorithms for OJS instances in which GJ is bipartite. The results in this section can be used to solve
such networks, and will provide the building blocks for the algorithms for general joint transmission graphs in Section 5.4.
We start by describing an algorithm for JTK and an algorithm for JTC, and show how using them in the decomposition
framework will result in an approximation algorithm for OJS. We require the following two lemmas. Denote by ∆(G) the
maximum vertex degree of G.

Lemma 3. If GJ is bipartite, then GSB(GJ , z) is bipartite for every z .

Lemma 4. If GSB is bipartite and ∆(GSB) ≤ S, then ∃x such that (7), (8), (10) hold.

We now describe an algorithm for JTK based on the well-known Multidimensional Multiple-choice Knapsack (MMK)
Problem [26]. Observing the formulation of MMK in [26], the input to MMK is a subset of the input to OJS. We define the
algorithm AJTK = JTK-MMK as simply running some algorithm AMMK for solving MMK with a running time of TMMK (for
different AMMK algorithms see Table 2) and show that it solves JTK for bipartite networks.

Lemma 5. If GJ is bipartite and algorithm AMMK is an α-approximation algorithm for MMK, AJTK = AMMK is an α-approximation
algorithm for JTK.
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Table 2
Algorithms for MMK.

AMMK Ratio TMMK(I, B, C, S)

DP [26] Optimal O(S(B+C)I(B+ C))

PTAS [27] 1/(1+ ϵ) O(I((B+C)/ϵ))

Greedy [26] ∞ O(I log(I))

Next, we describe an algorithm for JTC when the network graph is bipartite, by exploiting the connection to graph-
coloring problems from Lemma 2. Let JTC-BIP be the edge coloring algorithm from [25]. Using Lemma 3, GSB is bipartite and
since also ∆(GSB) ≤ S it follows from [25] that JTC-BIP finds an edge coloring using at most S colors. Using Lemma 2 we
conclude that JTC-BIP solves JTC. The running time of JTC-BIP is O(|ESB| log∆(GSB)) = O(BS log S). The following theorem is
the main result of this section.

Theorem 1. For bipartite networks, if AJTK = JTK-MMK is an α-approximation for JTK, then AOJS = [JTK-MMK , JTC-BIP] is an
α-approximation for OJS.

5.3. Algorithm for planar series–parallel graphs

We now develop an algorithm for OJS instances in which GJ is planar and series–parallel. We describe algorithms for JTK
and JTC, and use them in the decomposition framework to devise an approximation algorithm for OJS. In this section we use
similar ideas to those in Section 5.2. We need the following lemma whose proof is similar to that of Lemma 3:

Lemma 6. If GJ is planar and series–parallel, GSB is planar and series–parallel for every z .

We first describe Algorithm JTK-PSP that solves JTK when GJ is planar and series–parallel. The algorithm uses AMMK
to solve an MMK instance defined as follows. The number of dimensions is D′ = D + |Bodd| where Bodd = {B

′
⊆

B : |B ′| is odd and ≥ 3}. The capacity for each new dimension associated with a set B ′ ∈ Bodd is S(|B ′| − 1)/2. The
weight in each new dimension for each (i, r) such that r > 0 and h(i, r) ⊆ B ′ is set to Γ (i, r); for all other cases it is
set to zero. The algorithm concludes by scheduling packets for transmission according to the configurations selected in the
solution returned by AMMK.

We note that |Bodd| = O(2B) and therefore in general Algorithm JTK-PSP may be impractical due to a very large running
time. This algorithm is therefore more appropriate for small B. We now show that in some instances the running time can
be improved. Note that if a set B ′ ∈ Bodd has no more than |B ′| − 1 edges in C that connects two nodes in B ′, it can be
removed from Bodd; if the number of such sets is large this can significantly decrease the running time.

For networks that are planar and series–parallel, JTC can be solved using the edge-coloring algorithm from [28]. We
call this algorithm JTC-PSP, and note that its running time is O(B∆(GSB)) = O(B · S). The following theorem applies the
decomposition framework to planar and series–parallel networks.

Theorem 2. For planar and series–parallel networks, if JTK-MMK is an α-approximation for MMK then [JTK-PSP, JTC-PSP ] is an
α-approximation for OJS.

5.4. Algorithms for general graphs

We now develop algorithms for general OJS instances, without imposing any conditions on GJ . We start with describing
two approximation algorithms for JTK. For each approximation algorithm we show how using it in the decomposition
framework will result in an approximation algorithm for OJS.

First, we describe Algorithm JTK-MATwhich is based on computing amatching. For each {a, b} ∈ C, the algorithm solves
an instance of JTK defined by a network that has only two BSs a, b and the backhaul link with capacity K . Only packets that
can be scheduled in such network are considered, and AMMK with B = 2 and C = 1 is used to solve this limited instance.
Each edge in C is assigned a weight equal to the total utility obtained when solving its limited JTK instance. Then, maximum
weighted matching is found and the union of all solutions for edges in the matching is returned. This solution is feasible for
the general JTK problem.

Theorem 3. If algorithm AMMK is an α-approximation algorithm, then AOJS = [JTK-MAT (AMMK), JTC-BIP] is a (2α)/(3∆(GJ))-
approximation algorithm for OJS.

The maximum weight matching algorithm from [29] that takes O(|E||V | log |V |) time can be used in line 6; in this case
the running time of Algorithm JTK-MAT is dominated by AMMK in line 4. Therefore, the running time of Algorithm JTK-MAT
is O(CTMMK(I, 2, 1, S)), where TMMK is the running time of AMMK (see Table 2).

We now describe Algorithm JTK-STA which iterates over star subgraphs. It is similar to Algorithm JTK-MAT, but iterates
over the vertices b ∈ B instead of the edges e ∈ C. The approximation ratio of JTK-STA is better than that of JTK-MAT, but



G. Grebla et al. / Performance Evaluation ( ) – 9

Algorithm JTK-MAT Based on matching
1: for b ∈ B do
2: If b has no backhaul link, run AMMK to solve a JTK instance with B ′ = {b}, I′ = {i ∈ I : h(i) = B ′}, C ′ = {} and set

zi and yi as determined by AMMK.
3: for e = {a, b} ∈ C do
4: Run AMMK to solve a JTK instance with B ′ = {a, b}, I′ = {i ∈ I : h(i) ⊆ B ′}, C ′ = {e}
5: Assign U(zzz,yyy) found by AMMK as a weight for e
6: Compute maximum weight matching on GJ and store the result in the edge set E
7: Set zi = 1 (yi = 1) only if ∃e ∈ E such that zi = 1 (yi = 1) in the solution returned in line 4 for edge e

its running time is worse. For each vertex b, a JTK instance is constructed using only b and its neighbors in GJ . The solution
of this instance, z, y, is assigned to b. Next, the algorithm finds the vertex bmax associated with maximum total utility. If
zmax, ymax is the solution associated with bmax, the algorithm schedules the packets indicated by zmax, ymax. The vertex bmax
and its neighbors are removed from B. This process is repeated until B is empty.

Note that after the first vertex is removed from B, in order to update the weights it is sufficient to consider 2-hop
neighbors of bmax in line 14, since weights of other vertices remain unchanged. The running time of JTK-STA is
O(TMMK(I, ∆(GJ)+ 1, ∆(GJ), S)B2).

The following theorem proves that OJS can be solved approximately when JTK-STA is used in the decomposition
framework.

Theorem 4. If algorithm AMMK is an α-approximation algorithm, then, AOJS = [JTK-STA(AMMK), JTC-BIP] is an (α/∆(GJ))-
approximation algorithm for OJS.

Algorithm JTK-STA Based on star subgraphs
1: function SOL-STAR(b, B ′, C ′, I′)
2: Run AMMK to solve a JTK instance defined with B ′ = {b} ∪ {a : {a, b} ∈ C ′}, C ′ = {{a, b} : {a, b} ∈ C ′, a ∈ B ′, b ∈B ′}, I′ = {i ∈ I′ : h(i) ⊆ B ′}

return zzz,yyy as determined by AMMK

3: for b ∈ B do
4: ZZZ[b],YYY [b] ← SOL-STAR(b, B, C, I)
5: Assign U(ZZZ[b],YYY [b]) as a weight for b in B

6: Initialize B ′′ ← B; C ′′ ← C; I′′ ← I
7: repeat
8: Find the vertex bmax in B ′′ with maximum weight
9: I← {i ∈ I′′ : ZZZ[bmax]i + YYY [bmax]i = 1}

10: for all i ∈ Ĩ, z ′′i ← ZZZ[bmax]i, y′′i ← yyy[bmax]i
11: J← {a ∈ B ′′ : ∃b ∈ B ′′, {bmax, b} ∈ C ′′, {a, b} ∈ C ′′}

12: I′′ ← I′′ \ Ĩ; B ′′ ← B ′′ \ {a : {a, bmax} ∈ C ′′}
13: Remove from C ′′ edges with an endpoint not in B ′′

14: for b ∈ J do
15: ZZZ[b],YYY [b] ← SOL-STAR(b, B ′′, C ′′, I′′)
16: Update U(ZZZ[b],YYY [b]) as a weight for b in B ′′

17: until B ′′ is empty
18: return zzz ′′

6. Queueing dynamics

The OJS problem discussed in Sections 4 and 5 schedules transmissions within a single subframe. We now expand the
scope to multiple subframes, where packets arrive and depart over time, and study the evolution of the users’ queues. Our
objective is to identify a scheduling policy that is maximum stable (or throughput optimal). Under such a policy, the queue-
length process is positive recurrent for any arrival for which a stabilizing policy exists, see, e.g., [30,6,31,32]. We prove that
by using a specific utility function and an algorithm for solving the OJS problem (we refer to this combination as a scheduling
policy), we obtain a MaxWeight-like scheduling policy (see, e.g., [6]), which is throughput optimal.

Let L(t) = (L1(t),L1(t), . . . , Ln(t),Ln(t)) denote the queue length process at time t , so {L(t)}t≥0 is the stochastic process
that tracks the queue-length evolution over time.We solve theOJS problem in each subframe, given a certain utility function.
Let us denote by y(t) = (yi(t))i∈I and z(t) = (zi(t))i∈I the solution of OJS in slot t . Here (y(t), z(t)) can represent both an
exact solution or an approximation.
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Recall thatWn(t) is the number of packets generated for user n at time t . Let λn = E{Wn(0)}, and defineλ = (λ1, . . . , λN)

to be the arrival rates.We denote byµ
(1)
n (t; z(t)),µ(2)

n (t; z(t)), andµ
(3)
n (t; y(t)) the number of packets transmitted towards

user n in subframe t using single and joint transmission, and the number of packets forwarded across the backhaul,
respectively, given solution (y(t), z(t)) of OJS.

Denote In(t) the set of packets in Qn at time t (so |In(t)| = Ln(t)), and In(t) the set of packets inQn. The µ
(j)
n , j = 1, 2, 3

can be written as

µ(1)
n (t; z) =


i∈In(t)

zi(t)Yit , µ(2)
n (t; z) =


i∈In(t)

zi(t)Yit , µ(3)
n (t; y) =


i∈In

yi(t),

where the Yit ∼ Ber(p(i)) are mutually independent Bernoulli distributed random variables that represent whether packet
transmissions are successful. For notational convenience, we write µ

(j)
n (t) to represent the transmission rates at time t .

It is readily seen that the joint queue-length process {L(t)}t≥0 is Markovian.
We now analyze the traffic intensity that can be sustained by the queueing system described by (1) and (2). The stability

region of a particular policy is defined as the set of all arrival rates such that the {L(t)}t≥0 is positive recurrent is called the
stability region of this particular policy. The capacity region of a network is defined as the union of the stability region over
all policies. If the stability region of an algorithm OJS-ALG and utility function u is equal to the capacity region, we say that
policy (OJS-ALG, u) is throughput-optimal.

In order to investigate the network capacity region in more detail, we first introduce some definitions. We denote by f (1)
n

the rate (long-term average traffic flow) of single-transmission packets for user n, by f (2)
n the rate of joint-transmission

traffic for user n, and by f (3)
n the rate of user-n traffic sent across the backhaul. Define the vector f = (f (1)

1 , f (2)
1 ,

f (3)
1 , . . . , f (1)

N , f (2)
N , f (3)

N ). Then, for a given arrival rate vector λ, the set of all λ-admissible traffic flows can be defined as

Fλ =


f ∈ R3N

+

 λn = f (1)
n + f (3)

n , f (3)
n = f (2)

n , n ∈ N

. (11)

That is, a flow is λ-admissible if for all queues Qn, Qn, n = 1 . . . ,N , the traffic arrival rate is equal to the departure rate.
We now introduce the set of all arrival rate vectors such that at least one λ-admissible flow can be realized:

Λ =


λ ∈ R3N

+
| ∃f ∈ Fλ ∃r ∈ conv(R)f (j)

n < r (j)
n if f (j)

n > 0, n ∈ N , j = 1, 2, 3

,

where conv(R) denotes the convex hull of R, the set of all rates across the various links that can be achieved in saturation.
We now show that any λ ∈ Λ can be stabilized, and that any λ outside of the closure of Λ cannot. For stabilizing λ ∈ Λ

we use the policy (OJS-OPT, uQ ), where OJS-OPT represents any algorithm that solves OJS exactly, and uQ is the queue-length
based utility function from (4). The following theorem then implies that Λ is indeed the capacity region, and that (OJS-OPT,
uQ ) is throughput-optimal. The proof relies on a standard drift argument using a quadratic Lyapunov function [6].

Theorem 5. Let λ ∈ Λ, then the queue-length process is stable under policy (OJS-OPT, uQ ). If λ ∉ Λ̄, then there exists no policy
that stabilizes the network.

The reason for choosing the queue-length based utility function (4) becomes clear when substituting it into the objective
function of OJS.

U(z) =
N

n=1


Ln(t)E{µ(1)

n (t)} +Ln(t)E{µ(3)
n (t)} +


Ln(t)−Ln(t)µ(2)

n (t)

. (12)

This yields the objective function of the celebrated MaxWeight scheduling algorithm. This algorithm, first introduced in [6],
has been shown to be throughput-optimal in a wide range of settings, see, e.g., [6,30]. Note that although our objective
function ofmaximizing the queue-weighted throughput is similar to that used in traditionalwork onMaxWeight scheduling,
the constraints of the OJS problem are markedly different. Specifically, the MaxWeight scheduling literature is typically
concerned with maximum (weighted) set problems, which are fundamentally different from the OJS problem.

Since the maximization for utility function (4) is a specific instance of the OJS problem, it follows from Proposition 1
that solving this problem is NP-hard. Thus, using an optimal algorithm OJS-OPT (as in Theorem 5) is typically not feasible
in practice for general graphs. In Section 7 we investigate the performance of a wider set of (suboptimal) algorithms via
simulation. Theoretical results on the capacity loss for general algorithms will be the subject of future work.

7. Numerical results

Weconducted a simulation study to evaluate the performance of the various algorithms introduced in Section 5. Through-
out this sectionwe consider the casewhere a packet can be transmitted using one of severalModulation and Coding Schemes
(MCSs); Details on extending the algorithms to support several MCSs are given in [22]. The simulation results provide in-
sights on the network-level benefits and tradeoffs of JT under various network scenarios.
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(a) 3-cluster. (b) Cycle topology. (c) Star topology.

Fig. 6. Simulated network topologies. (a) SINR for the cluster of 3 BSs. The dark blue area denotes the location of inter-cell users. (b)–(c) Two7BS topologies.
The color of the nodes illustrates the throughput gains of users for a sample run. Red users benefit from JT and the throughput of yellow and black users
remains roughly the same. Black users have throughput of 0 both with and without JT. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

(a) (b)

Fig. 7. SINR for the cycle topology for (a) single-transmissions and (b) joint-transmissions.

7.1. Simulation setup

OJS algorithm.We implemented the four algorithms presented in Table 1. The majority of the algorithms and the queueing
dynamics are implemented in Python, while the AMMK procedure is written in C. We did not implement any JTC algorithms,
since it was proved in Section 5 that JTK guarantees that a feasible solution always exists. Furthermore, as we show in
Section 7.2.1, the greedy algorithm shown in Table 2 performs well in most considered scenarios.
Network setup.We consider three network topologies. In Section 7.2.2, we analyze a network of 3 BSs, with backhaul links
between each pair (Fig. 6(a)). In Section 7.2.3, we look at two different backhaul topologies for a 7 BS network, shown in
Fig. 6(b)–(c). The backhaul capacity (BC) is the same for all links.

We use a fixed packet size of 73 bytes, and the backhaul capacities are normalized to units of packets/subframe. The
distance between neighboring BSs is 700 m. The height of each BS’s antenna is 20 m. The BSs’ transmit power is 39 dBm and
30 dBm for the 3 and 7 BSs network, respectively. Lower transmission power is used for the larger network, since more BSs
transmit interfering signals.

We simulate N = 20 users for the 3-cluster, and N = 50 for the 7-cluster topologies. The users are placed uniformly
within a circle that contains the entire simulation area, and with radius 1050 m.
Wireless model. We set S = 50 scheduled blocks, corresponding to a 10 MHz LTE system. Once the location for a user
is determined, the received power level from each BS is computed based on the Hata propagation model [33] which was
shown suitable for LTE in urban areas [34]. The power levels from the different BSs are used to compute the SINR for single
and joint transmission to the user. The SINR values for single and joint transmissions for the cycle topology are plotted in
Fig. 7. Given the SINR values, the success probability for single and joint transmission is computed for each MCS (QPSK-1/2,
QAM64-1/2, and QAM64-3/4) using data taken from [35].
Queueing Dynamics. The queueing dynamics are implemented as in Section 6. Unless otherwise noted, packet arrivals for
users follow a binomial distribution with n = 3 and p = 0.5. In every subframe, an algorithm for solving OJS is executed
with the utility function (4). Throughout the simulation, we track the normalized throughput of a user, defined as the fraction
of arrived packets that have been successfully transmitted. The average normalized throughput is computed over all users.
The simulation duration is 1000 subframes and each data point is obtained by averaging over 1000 runs.

We also distinguish the performance of inter-cell users from that of the intra-cell users in order to evaluate the benefits
of CoMP JT for both types. In this section, we refer to inter-cell users as those whose power levels from two BSs is above
a threshold. This threshold is determined numerically by observing the physical location of these users (illustrated by the
darker regions of Fig. 6(a)).

7.2. Simulation results

7.2.1. Performance of the approximation algorithms
In practice, approximation algorithms may perform significantly better than their guaranteed approximation ratios.

Hence, we carry out a single-subframe evaluation with the goal of isolating the performance of the algorithms from the
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(a) Complete graph. (b) Bipartite graph.

Fig. 8. The ratio between the optimal utility for the OJS problem for a single subframe, and the utility obtained by the different algorithms under the two
topologies.

(a) Inter-cell. (b) Intra-cell.

Fig. 9. The throughput of both intercell and intracell users for a range of backhaul capacity levels.

long-term effects of the queueing dynamics. We consider the OJS formulation with the throughput utility function (3). We
consider all algorithms, for two different topologies with 3 BSs: complete graph and a bipartite graph.

When an optimal AMMK subroutine is used, JTK-MMK and JTK-PSP are optimal under the complete graph and bipartite
topologies, respectively, by Theorems 1 and 2. These two algorithms, are therefore, used as benchmarks. JTK-MAT and JTK-
STA operate on general networks, but only consider a subset of the backhaul links. Therefore, they achieve a fraction of the
optimal utility, denoted utility ratio in Fig. 8. We vary the number of users from 1 to 80, reflecting the range of users that can
be expected in small cell deployments. In each run, a set of items I is sampled randomly. To obtain a single point, 10,000
iterations are averaged.

We first use the optimal DP algorithm forAMMK, forwhichα = 1 (Table 2). Since themaximumvertex degree is∆(GJ) = 2
for both topologies under consideration, JTK-MAT and JTK-STA are 1/3- and 1/2-approximations, respectively (Table 1). For
the complete graph topology, JTK-MAT achieves a utility ratio of 0.6 at its worst, while JTK-STA does better with a ratio of
0.8 (Fig. 8(a)). Similar insights hold for the bipartite topology in Fig. 8(b).

In addition to using the optimal AMMK, we ran the same simulations for the case when a greedy algorithm is used for
AMMK (Table 2), denoted with the prefix ‘‘G-’’ in Fig. 8. In this case the approximation ratios no longer hold, as there are no
performance guarantees for the greedy algorithm. However, we found that when AMMK is solved greedily, the algorithms are
very close to optimal for more than 10 users. Moreover, the running time of the greedy algorithm is significantly lower than
the duration of a subframe. Due to their improved running time, we only use the greedy version in the following sections.
For clarity, we omit the ‘‘G-’’ prefix.

7.2.2. Impact of backhaul capacity
Backhaul links are typically expensive to deploy, and operators frequently have to lease them. Therefore, it is important

for the operator to strike a balance between improving performance and containing backhaul costs. To obtain a better
understanding of the required backhaul capacity, we evaluated its impact on the long-term throughput of the queueing
system.

In Fig. 9, the user-averaged normalized throughput is shown when the backhaul capacity between each pair of BSs is
scaled from 0 to 6 packets/subframe. Inter-cell users in particular gain from JT (Fig. 9(a)) when network-level behavior is
considered. A 28% throughput gain is observed for those users with the addition of backhaul. Half of this gain is achievable
with 1 unit of backhaul capacity, while 2 units realizes 80% of the potential gains. However, intra-cell users gain 5%
throughput. As cell sizes become smaller, the portion of inter-cell users increases and the overall gain from using CoMP
JT will be higher.

The achieved throughput depends on the used algorithms. The largest benefits are possible with the JTK-PSP and JTK-
STA algorithms, which utilize 3 or 2 backhaul links in every subframe, respectively. It is also observed that in clusters of
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this size, JTK-STA performs as well as the optimal JTK-PSP, despite its lower running time. JTK-MAT requires more backhaul
capacity to achieve the same throughput. Overall, in this case JTK-STA is the best choicewhile JTK-MAT can be used to reduce
computational resources at the cost of a larger investment in infrastructure.

7.2.3. Impact of topologies
We now consider the star and cycle topologies with 7 BSs, illustrated in Fig. 6(b) and (c), respectively. Since both of these

topologies are bipartite, we use the optimal algorithm JTK-MMK in this section.
To study the impact of network topology on JT, we study the throughput gains that are obtained when backhaul links

with a 3 unit capacity are introduced in the different topologies. We invoke the algorithm for the same user placement and
average the results. The throughput gains of individual users under the cycle and star topologies are illustrated in Fig. 6(b)
and (c), respectively. Overall, we see that in each topology there are 4 users that observed an increased throughput from JT
while the throughput of the other users remained very similar. While we do not list here the change in throughput for each
individual user, the trend is as follows. The red users have throughput of 0without JT, since the SINR for a single transmission
to these users leads to a packet transmission success probability of zero.With JT, the throughput of the red users is very close
to 1 and the throughput of each yellow users is reduced by at most 0.001.

In both topologies we see improvement in the throughput of 4 users alongside a negligible decrease in throughput of
some of other users. However, we observe that the users that benefit from JT (i.e., red users) are different for the different
topologies. The throughput of users B, C, D, and E increased in the cycle topology but for the star topology the throughput
of users B, C, F, and G increased. Clearly, this is to be expected as the users who gain from JT are those that reside between
two BSs that are connected via a backhaul link. Additionally, we notice that in each topology there are two users that exhibit
a throughput of 0 both with and without using JT. For the cycle topology (Fig. 6(b)) the users are F and G, while for the
star topology (Fig. 6(c)) the users are D and E. To conclude, the two different topologies result with different distribution
of the throughput among the users that are located between the BSs. Since the users are located somewhat evenly in the
simulation area, the number of red users is similar for both topologies. However, for a different user placement a specific
topology may benefit a larger number of users.

The impact of the topology on the stability region of user A from Fig. 6(b)–(c) is illustrated in Fig. 10(a). The aggregate
queue size at the end of the simulation run, under different arrival rates and backhaul capacities, highlights that this user’s
queues can be stabilized for higher arrival rates under the star topology. This behavior is representative of other inter-cell
users.

To further study the performance of our algorithms under the different topologies we plot in Fig. 10(b) and Fig. 10(c) the
throughput as a function of the arrival rate, for the cycle and star topologies, respectively. In both figures JT improves the net-
work throughput by 9%, even for low loads. This can be explained by the observation that certain inter-cell users may never
receive a packet through single-transmission. For the cycle topology (Fig. 10(b)), the performance of JTK-STA and JTK-MAT is
comparable, despite the different approximation ratio. This is because in the cycle topology amatchingmay include 5 out of
the 6 available backhaul links, making JTK-MAT comparable to JTK-STA. It turns out that for higher rate values, JTK-MAT per-
forms slightly better than JTK-STA. Therefore, an operatormay choose to run both JTK-MAT and JTK-STA and select the sched-
ule that yields the highest throughput in each subframe. Studying such algorithm is out of scope and left for future research.
In the star topology (Fig. 10(c)), since JTK-STA is an optimal algorithm, we omit the curve for JTK-MMK from the figure. For
lower arrival rate the performance of JTK-MAT is very close to optimal; As the arrival rate increases JTK-STA is clearly favor-
able. This is expected since for the star topology thematching computed by JTK-MATwill include at most one backhaul link.

The joint impact of backhaul capacity for star and cycle topologies is shown in Fig. 11(a) and (b), respectively. Recall that
JTK-STA is optimal in Fig. 11(b) and note that, compared to the optimal JTK-MMK in Fig. 11(a), backhaul capacity of 3 or
more is beneficial only for the cycle topology. This is due to the fact that users residing between the center BS and another
BS exhibit greater interference than users that reside between two non-center BSs. Therefore, in the star topology, such
users gain significant increase in their throughput by just forwarding their packets. As we observed in Fig. 6(c), there are
two such users and since the arrival rate is 1.5, a backhaul capacity of 3 suffices for the star topology. However, in the cycle
topology, whilemainly two users gain a significant throughput increase, other users which can get their packets using single
transmission can still benefit from JT. Therefore, increasing the backhaul capacity further improves the overall throughput.

Fig. 11(a) and (b) also demonstrate the relationship between the network topology and the performance of our
algorithms. For the cycle topology (Fig. 11(a)), a matching may include 5 out of the 6 backhaul links, for this reason JTK-
MAT is relatively close to optimal and even surpasses JTK-STA for most backhaul capacity values. On the other hand, for star
topology (Fig. 11(b)), while JTK-STA is guaranteed to be optimal, the matching computed in JTK-MAT contains at most one
backhaul link and therefore the algorithm obtains low performance. Note that JTK-MAT with backhaul capacity 6 performs
closely to JTK-STA with backhaul capacity 1 since it utilizes at most one out of the 6 backhaul links in every subframe.

8. Conclusions

In this paper, we considered a cellular network with Coordinated Multi-Point (CoMP) Joint Transmission (JT) capabilities
that allow multiple BSs to transmit simultaneously to each user. We first formulated the OFDMA Joint Scheduling (OJS)
problem of determining a subframe schedule and deciding if to use JT. By exploiting the characteristics of this problem, we
developed efficient scheduling algorithms for bipartite graphs and approximation algorithms for general graphs.
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(a) A user’s queue sizes. (b) Throughput for cycle toplogy.

(c) Throughput for star topology.

Fig. 10. (a) The final sum of queue sizes of user A from Fig. 6(b), as the arrival rate is varied. Larger backhaul capacities (BCs) keep the queues bounded for
higher arrival rates; (b)–(c) Throughput obtained by the proposed scheduling algorithms vs. the arrival rate for the star and cycle topologies.

(a) Throughput for cycle toplogy. (b) Throughput for star topology.

Fig. 11. Throughput obtained by the proposed scheduling algorithms vs. the backhaul capacity for the star and cycle topologies, for an arrival rate of 1.5
packets per user per subframe.

We then considered a queueingmodel that evolves over time. In thismodel, we proved that solving the OJS problemwith
a specific queue-based utility function (in every subframe) achieves maximum throughput in CoMP-enabled networks.

Via extensive simulations we showed that the bulk of the gains from CoMP with JT can be achieved with low capacity
backhaul links. We showed that our algorithms distribute the network resources evenly, increasing the inter-cell users’
throughput at only a slight cost to the intra-cell users.

This paper is the first step towards a rigorous, network-level understanding of the impact of cross-layer scheduling
algorithms on CoMP networkswith JT. In future research, wewill extend themodel by allowingmore than two BSs to jointly
transmit, and by allowing longer backhaul delays. Moreover, we will apply our techniques to CoMP related technologies
such as network-MIMO, multi-cell MIMO, and MU-MIMO. Finally, we will study the design considerations of the backhaul
network and the impact of decentralization on the performance.
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Appendix. Proofs

Proof of Proposition 1. To prove Proposition 1, we use the following definition:

Definition 3. The chromatic index of a graph G [24], χ ′(G), is the number of colors required to color the edges of G such that
no two adjacent edges have the same color.

It is known by Vizing’s theorem that for every simple graph G, χ ′(G) = ∆(G) or χ ′(G) = ∆(G) + 1, where ∆(G) is the
maximum vertex degree of G. The Minimum Edge Coloring Problem (MECP) [24] is to determine whether χ ′(G) = ∆(G) or
χ ′(G) = ∆(G)+1. It iswell-known thatMECP is NP-hard [24], therefore to complete the proofwe present a polynomial-time
reduction from MECP to OJS.

Given a simple graph G = (V , E)withmaximum vertex degree∆(G), we now describe how to construct an OJS instance.
We set B = V . For each edge {v1, v2} ∈ E, we add a user n to N for which BS(n) = v1, BS(n) = v2, and there exists only a
single pending packet in Qn. Thus, for every packet i we have β(i) = 1. The utility is defined as u(i, 1) = 1 and u(i, 0) = 1
for every i. Also, we set S = ∆(G), K = S, and C = {{a, b}, a, b ∈ B ∧ a ≠ b}. Note that for the constructed instance (a)–(b)
stated in the lemma hold.

We now show that the optimal solution to the OJS instance has a utility of |E| if and only if χ ′(G) = ∆(G). Let x∗, y∗, z∗
be an optimal solution to the OJS instance with a total utility of |E|. Due to the utility u used and since the total number of
packets is |E|, z∗i = 1, ∀i. Consider an edge e = {v1, v2} ∈ E and a pending packet i′ such that h(i′) = {v1, v2}. Due to (7),
there is exactly one s′ for which xi′s′ = 1. We assign e the color s′ and continue the process for the remaining edges and
packets. Since 1 ≤ s′ ≤ S = ∆(G), at most ∆(G) colors are used. Since (8) also holds, no two adjacent edges are colored
using the same color s. We showed an edge coloring with at most ∆(G) colors, χ ′(G) = ∆(G). The other direction, namely
showing that if χ ′(G) = ∆(G) then the optimal solution to the OJS instance has a utility of |E|, can be proved similarly. �

Proof of Lemma 1. The proof immediately follows from the definitions of the JTK and JTC problems. �

Proof of Lemma 2. Given a solution x′ to a JTC instance, we now define a coloring on GSB that uses at most S colors. Observe
that by Definition 2 and since constraint (7) holds, there exists a one-to-one mapping from every pair (i, s) such that x′is = 1
into an edge in ESB. This mapping defines an edge coloring using at most S colors (1 ≤ s ≤ S). Since constraint (8) holds,
no two edges of the same color touch a vertex in GSB. The other direction, namely, finding a solution x′ to JTC, given an edge
coloring on GSB, can be proved similarly. �

Proof of Lemma 3. Using Definition 2, it is clear that the subgraphG′ = (V ′, E ′) ofGSB defined by V ′ = B and E ′ = {{a, b} ∈
ESB : a, b ∈ B} is bipartite. Since each b ∈ VSB \ V ′ has at most one neighbor, GSB is bipartite. �

Proof of Lemma 4. Using the result from [25] and since GSB is bipartite and ∆(GSB) ≤ S, GSB has an edge coloring that uses
at most S colors. By Lemma 2, such a coloring defines a solution x′ such that (7), (8) hold. �

Proof of Theorem 1. We already showed that for bipartite networks JTK-MMK solves JTK and JTC-BIP solves JTC. Lemma 1
concludes the proof. �

Proof of Lemma 5. Let z∗, y∗ be an optimal solution for JTK. Without (7) and (8), JTK would be equivalent to MMK with
some restrictions on its parameters (unit-sizeMMK items and twoMMK capacity values). Therefore, let z ′, y ′ be the solution
returned by JTK-MMK, U(z ′, y ′) ≥ αU(z∗, y∗). Finally, the solution is feasible due to Lemmas 3 and 4. �

Proof of Theorem 3. Let B0 be the set of BSs with no backhaul links (BSs whose degree is 0 in GJ ). In line 2 of JTK-MAT
the selected transmissions are determined using AMMK. This set of transmission is an α-approximation with respect to a JTK
instance with B ′′ = B0. Therefore, to complete the proof we can assume that every BS has a backhaul link and show that
the transmissions determined in line 7 are an (2α/3∆(GJ))-approximation.

Let z∗OJS, y
∗

OJS be an optimal solution for OJS. The sum of weights for all edges in C, as computed in line 5 of JTK-MAT, is at
least αU(z∗OJS, y

∗

OJS).
Any graph G has an edge coloring using at most ( 3

2 )∆(G) colors [36]. Such a coloring for GJ partitions C into ( 3
2 )∆(GJ)

matchings. Since in line 6 of JTK-MAT a maximum weight matching E is obtained, the sum of weight for edges in E

is at least
αU(z∗OJS,y

∗
OJS)

(3/2)∆(GJ )
= (2α)/(3∆(GJ))U(z∗OJS, y

∗

OJS). Let z ′, y ′ be the solution returned by JTK-MAT. Then, U(z ′, y ′) ≥
(2α)/(3∆(GJ))U(z∗OJS, y

∗

OJS).
We now show that z ′, y ′ is feasible. Note that (5) and (6) hold since the solution associatedwith each edge {a, b} is feasible

(line 5) and solutions of different edges in E use items whose h(i) is in disjoint (no two edges in E share a vertex). Due to
line 7 of Algorithm JTK-MAT, in the returned solution if z ′i = 1 and h(i) = {a, b} then {a, b} ∈ E . Since E is a matching, GSB
is bipartite and ∆(GSB) ≤ S. Using Lemma 4 we conclude that z ′, y ′ is feasible.

Finally, by Lemma 2 JTC-BIP solves JTC. By applying Lemma 1, we complete the proof. �
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Proof of Theorem 4. Let z∗OJS be the optimal solution for OJS. The sumofweights for all vertices inB, as computed in line 5 of
JTK-STA, is at least αU(z∗OJS). In each iteration of the repeat loop (line 7 of JTK-STA), in line 10 the utility added to the solution
z ′′ equals U(bmax) (note that z ′′i gets updated to 1 at most once due to the update of I ′′ in line 12). In line 12, bmax and its
neighbors are removed from consideration. The utility lost due to this removal is at most ∆(GJ)U(bmax). Therefore, the total
utility of z ′′ returned in line 18 is at least (α/∆(GJ))U(z∗OJS).

To show that z ′′ returned by JTK-STA is feasible, it is sufficient to note that due to the correctness of AMMK function SOL-
STAR returns a feasible instance with respect to I ′′ and that Ĩ (line 9 ) in different iterations contains packets of disjoint sets
of transmitting BSs (therefore having positive weight only in disjoint sets of dimensions).

Finally, by Lemma 2 JTC-BIP solves JTC. By applying Lemma 1, we complete the proof. �

Proof of Lemma 6. It is clear that if GJ is planar, GSB is also planar. Therefore, to complete the proof it is sufficient to show
that GSB is series–parallel.

To show GSB is series–parallel, we use the following definition [37]. A multigraph is series–parallel if it has no subgraph
isomorphic to a subdivision of a clique of size 4. Since GJ has no subgraph isomorphic to a subdivision of a clique of
size 4, by adding parallel edges to GJ such a subgraph cannot be created in GSB. Therefore, by the above definition GSB is
series–parallel. �

Proof of Theorem 2. The following result, mentioned in [28], is needed.

Let EU ⊆ E denote edges in E whose both vertices are in U and let δ(G) = max{ 2|EU |
|U|−1 : U ⊆ V , |U| ≥ 3 and odd}. If G

is planar and series–parallel then χ ′(G) = max{∆(G), ⌈δ(G)⌉} and JTC-PSP from [28] finds an edge coloring that uses
χ ′(G) colors.

Recall that in JTK-PSP an instance for MMK with D + |Bodd| dimensions is constructed. The weight constraints for the
new |Bodd| dimensions are equivalent to requiring that for a feasible solution z ′, δ(GSB) ≤ S. Therefore, for such GSB there
exists an edge coloring that uses at most S colors, and by Lemma 2 such a coloring defines a solution x′ such that (7), (8)
hold. Since JTK-PSP invokes AMMK which returns an α-approximation solution to the constructed MMK problem, JTK-PSP is
an α-approximation for JTK.

Finally, by Lemma 2, JTC-PSP solves JTC. By applying Lemma 1, we complete the proof. �

Proof of Theorem 5. Let λ ∈ Λ. In order to demonstrate positive recurrence of {L(t)}t≥0, we define a Lyapunov function,
and show that it has negative drift outside some closed set of states. Let l = (l1, l̂1, . . . , lN , l̂N) and define the quadratic
Lyapunov function V (l) =

N
n=1 l

2
n + l̂2n.

Consider the one-slot drift

1V (l) = E{V (L(t + 1))− V (L(t)) | L(t) = l}. (13)

By (1) and (2) we compute

Ln(t + 1)2 = Ln(t)2 + 2Ln(t)

Wn(t)− µ(1)

n (t)− µ(3)
n (t)


+


Wn(t)− µ(1)

n (t)− µ(3)
n (t)

2
,

Ln(t + 1)2 =Ln(t)2 + 2Ln(t)µ(3)
n (t)− µ(2)

n (t)

+


µ(3)

n (t)− µ(2)
n (t)

2
.

Substituting this into (13) we obtain

1V (l) =
N

n=1

E


Wn(t)− µ(1)
n (t)− µ(3)

n (t)
2
+


µ(3)

n (t)− µ(2)
n (t)

2
| L(t) = l



+ 2
N

n=1

E

Ln(t)


Wn(t)− µ(1)

n (t)− µ(3)
n (t)


+Ln(t)µ(3)

n (t)− µ(2)
n (t)


| L(t) = l


. (14)

Since theWn(t) have finite second moment, and the µ
(j)
n (t) have finite support, we can bound (for some constant C <∞),

N
n=1

E


Wn(t)− µ(1)
n (t)− µ(3)

n (t)
2
+


µ(3)

n (t)− µ(2)
n (t)

2
| L(t) = l


< C .

The second part of (14) can be written as

2
N

n=1

E

Ln(t)


Wn(t)− µ(1)

n (t)− µ(3)
n (t)


+Ln(t)µ(3)

n (t)− µ(2)
n (t)


| L(t) = l



= 2
N

n=1


lnλn − lnE{µ(1)

n (t)+ µ(3)
n (t) | L(t) = l} − l̂nE{µ(3)

n (t)− µ(2)
n (t) | L(t) = l}


. (15)
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Since λ ∈ Λ, we know by the definition ofΛ that there exists a flow vector f such that the conditions in (11) hold. Moreover,
λ ∈ Λ also implies that there exists a r ∈ Conv(R) such that f (j)

n < r (j)
n if f (j)

n > 0, j = 1, 2, 3, n = 1, . . . ,N . Since f is
dominated by r , and r ∈ Conv(R), there exist σ1, . . . , σR such that

f =
|R|
i=1

σiri,
|R|
i=1

σi < 1, (16)

where ri = (r (1)
i,1 , r (2)

i,1 , r (3)
i,1 , . . . , r (1)

i,N , r (2)
i,N , r (3)

i,N ) represents the ith vector in R.
Using (16) we obtain

lnλn = ln(f (1)
n + f (3)

n ) = ln
|R|
i=1

σi

r (1)
i,n + r (3)

i,n


, (17)

0 = l̂n(f (2)
n − f (3)

n ) = l̂n
|R|
i=1

σi

r (2)
i,n − r (3)

i,n


. (18)

By combining (17) and (18), and exploiting the structure of the µ chosen according to uQ (see (12))

2
N

n=1

lnλn = 2
N

n=1

|R|
i=1

σi


ln(r

(1)
i,n + r (3)

i,n )+ l̂n(r
(2)
i,n − r (3)

i,n )


≤ 2
N

n=1


ln(E{µ(1)

n (t)+ µ(3)
n (t) | L(t) = l})+ l̂n(E{µ(2)

n (t)− µ(3)
n (t) | L(t) = l})

 |R|
i=1

σi. (19)

Substituting (19) into (15) yields

2
N

n=1

E

Ln(t)


Wn(t)− µ(1)

n (t)− µ(3)
n (t)


+Ln(t)µ(3)

n (t)− µ(2)
n (t)


| L(t) = l



≤ −2

1−

|R|
i=1

σi

 N
n=1


lnE{µ(1)

n (t)+ µ(3)
n (t) | L(t) = l} − l̂nE{µ(3)

n (t)− µ(2)
n (t) | L(t) = l}


< 0, (20)

where the last inequality follows from the choice of µ
(j)
n (12). The expression in (20) can be made arbitrarily small by

increasing the state l. Positive recurrence of {L(t)}t≥0 then follows from [38, Theorem 2.2.4]. �
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