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Analysis of Failures in Power Grids
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Abstract—This paper focuses on line failures in the transmis-
sion system of power grids. Recent large-scale power outages
demonstrated the limitations of percolation- and epidemic-based
tools in modeling failures and cascades in power grids. Hence,
we study failures and cascades by using computational tools and
a linearized power flow model. We first obtain results regarding
the Moore-Penrose pseudo-inverse of the power grid admittance
matrix. Based on these results, we analytically study the impact
of a single line failure on the flows on other lines and introduce
metrics to evaluate the robustness of grids to failures. We also
illustrate via simulation the impact of the distance and resistance
distance on the flow increase following a failure, and discuss
the difference from the epidemic models. We use the pseudo-
inverse of admittance matrix to develop an efficient algorithm to
identify the cascading failure evolution, which can be a building
block for cascade mitigation. Finally, we show that finding the
lines whose removal results in the minimum yield (the fraction
of demand satisfied after the cascade) is NP-Hard and present
a simple heuristic for finding such a set . Overall, the results
demonstrate that using the resistance distance and the pseudo-
inverse of admittance matrix provides important insights and
can support the development of algorithms for designing robust
power grids and controlling the evolution of a cascade upon
failures.

Index Terms—Power Grid, Pseudo-inverse, Cascading Failures.

I. INTRODUCTION

Recent failures in the power grid (such as the 2003 and
2012 blackouts in the Northeastern U.S. [2] and in India [3])
demonstrated that large-scale failures will have devastating
effects on almost every aspect in modern life. The grid is
vulnerable to natural disasters, such as earthquakes, hurricanes,
and solar flares as well as to terrorist and Electromagnetic
Pulse (EMP) attacks [4]. Moreover, large scale cascades can
be initiated by sporadic events [2], [3], [5].

In order to mitigate the impacts of failures and to control
cascades, there is a need to study the vulnerability of the power
transmission network. Unlike graph-theoretical network flows,
power flows are governed by the laws of physics and there are
no strict capacity bounds on the lines [6]. Yet, there is a rating
threshold associated with each line – if the flow exceeds the
threshold, the line will eventually experience thermal failure.
Such an outage alters the network topology, giving rise to a
different flow pattern which, in turn, could cause other line
outages. The repetition of this process constitutes a cascading
failure [7].

Previous work (e.g., [8], [9] and references therein) assumed
that a line/node failure leads, with some probability, to failures
of nearby nodes/lines. Such epidemic based modeling allows
using percolation-based tools to analyze the cascade’s impact.
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Fig. 1: The first 11 line outages leading to the India blackout on July 30th,
2012 [3]. The numbers indicate the order in which outages occurred; Lines
that were undergoing maintenance at the time of the cascade are marked
separately; Note that the failures do not develop contiguously.

Yet, in real large scale cascades, a failure of a specific line
can affect remote lines and the cascade does not necessarily
develop contiguously. For example, the evolution of the 2012
cascade in India appears in Fig. 1. Similar non-contiguous evo-
lution was observed in a 2011 cascade in South California [5]
and in simulation studies [10].

Motivated by this observation, we study the properties of
the cascade and introduce algorithms to identify the cascad-
ing failure evolution and vulnerable lines. We employ the
(linearized) direct-current (DC) power flow model,1 which is
a practical relaxation of the alternating-current (AC) model,
and the cascading failure model of [14] (see also [10]–
[12], [15]). Specifically, we first review the model and the
Cascading Failure Evolution (CFE) Algorithm that has been
used to identify the evolution of the cascade [7], [11], [12] (its
complexity is O(t|V |3), where |V | is the number of nodes and
t is the number of cascade rounds).

Then, in order to investigate the impact of a single edge
failure on other edges, we use matrix analysis tools to study
the properties of the admittance matrix of the grid2 and Moore-
Penrose Pseudo-inverse [16] of the admittance matrix. In
particular, we provide a rank-1 update of the pseudo-inverse
of the admittance matrix after a single edge failure.

We use these results along with the resistance distance to
study the impact of a single edge failure on the flows on other
edges. We obtain upper bounds on the flow changes after a
single failure. We build on these results and develop metrics
to study the robustness of graphs to failures.

We also illustrate via simulations the relation between the
flow changes after a failure and the distance (in hop count) and
resistance distance from the failure. For the simulations we
consider the U.S. Western Interconnection and the Texas In-
terconnection as well as Erdős-Rényi, Watts and Strogatz [17],
and Barábasi and Albert [18] graphs. These simulations show

1The DC model is commonly used in large-scale contingency analysis of
power grids [11]–[13].

2An admittance matrix represents the admittance of the lines in the grid.
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that there are cases in which an edge flow far away from the
failure significantly increases. These average case observations
are clearly in contrast to the epidemic-based models.

Once lines fail, there is a need for low complexity al-
gorithms to control and mitigate the cascade. Hence, we
develop the low complexity Cascading Failure Evolution –
Pseudo-inverse Based (CFE-PB) Algorithm for identifying the
evolution of a cascade that may be initiated by a failure of
several edges. The algorithm is based on the rank-1 update of
the pseudo-inverse of the admittance matrix. We show that
its complexity is O(|V |3 + |F ∗t ||V |2) (|F ∗t | is the number
of edges that eventually fail). Namely, if t = |F ∗t | (one
edge fails at each round), the complexity of the CFE-PB
Algorithm is O(min{|V |, t}) times lower than that of the CFE
Algorithm. The main advantage of the CFE-PB Algorithm is
that it leverages the special structure of the pseudo-inverse to
identify properties of the underlying graph and to recompute
an instance of the pseudo-inverse from a previous instance.

Finally, we prove that the problem of finding the set of initial
failures of size at most k that causes a cascade resulting with
the minimum possible yield (the fraction of demand satisfied
after the cascade), referred to as the minimum yield problem,
is NP-hard. However, we introduce a very simple heuristic
termed the Most Vulnerable Edges Selection – Resistance
distance Based (MVES-RB) Algorithm for finding such a set.
We compare the performance of the MVES-RB Algorithm
and other heuristic methods on the IEEE 118- and 300-bus
benchmark systems [19] and show that it performs relatively
well considering its low time complexity.

The main contributions of this paper are three fold. We
provide new tools, based on matrix analysis for assessing
the impact of a single edge failure. Using these tools, we
(i) obtain upper bounds on the flow changes after a single
failure and develop a metric to assess the robustness of specific
graphs against such failures, (ii) develop a fast algorithm for
identifying the evolution of the cascade, and (iii) develop a
heuristic algorithm for the minimum yield problem.

This paper is organized as follows. Section II reviews related
work. Section III describes the models and metrics, and the
graphs used in the simulations. In Section IV, we derive the
properties of the admittance matrix of the grid. Section V
presents the effects of a single edge failure. Section VI
introduces the CFE-PB Algorithm. Section VII discusses the
hardness of the problems associated with the cascade and
introduces the MVES-RB Algorithm. Section VIII provides
concluding remarks and directions for future work. Due to
space constraints, some of the proofs are omitted and appear in
a technical report [20].They are provided in the supplementary
material for the reviewers’ convenience.

II. RELATED WORK

Network vulnerability to attacks was thoroughly studied
(e.g., [21], [22] and references therein). Yet, most computa-
tional work did not consider power grids and cascades. Re-
search on cascades focused on probabilistic failure propagation
models (e.g., [8], [9], and references therein). However, real
cascades [2], [3], [5] and simulation studies [10] indicate that
the propagation is different than that predicted by such models.

Moreover, recently [23] modeled failures in grids as node
failures and the cascade properties were numerically studied in
real grids, spatially embedded networks, and random networks.
In this paper, we follow [10]–[12] and adopt the linearized (or
DC) power flow model to numerically and analytically study
cascading edge failures in power grids.

In Sections IV and VI, we use the admittance matrix of
the grid to compute flows. This is closely related to solving
Laplacian systems which can be solved by several techniques,
including Gaussian elimination and LU factorization [24].
Recently, [25] used preconditioning, to provide highly precise
approximate solutions to Laplacian systems. Yet, this approach
is not suitable for analyzing the effects of edge failures.

The problem of identifying the set of failures with the
largest impact was studied in [11]–[13]. In particular, [11]
studies the N − k problem which focuses on finding a small
set of links whose removal disallows supporting a minimum
demand. A broader interdiction problem where all the network
components are subject to failure was studied in [26]. A similar
problem is studied in [13] using the alternating-current (AC)
model. However, none of the previous works consider the
cascading failures. Moreover, while the optimal power flow
problem has been shown to be NP-hard [27], the complexity
of the cascade-related problems was not studied yet.

In simulations, we use graphs that can represent the power
grid topology. The structure of power grids was widely stud-
ied [9], [17], [18], [28]. Specifically, Watts and Strogatz [17]
suggested the small-world graph as a good representative of
the power grid. Barabási and Albert [9], [18] showed that
scale-free graphs are better representatives. However, [28]
indicated that none of these models can represent the U.S.
Western Interconnection properly. Hence, we consider these
graphs and the Erdős-Rényi graph but we also use the Western
Interconnection, the Texas Interconnection, and the IEEE 118-
and 300-bus benchmark systems [19] in order to consider
realistic systems.

III. MODEL AND PRELIMINARIES

A. DC Power Flow Model

We adopt the linearized (or DC) power flow model, which
is widely used as an approximation for the more accurate
non-linear AC power flow model [6]. In particular we follow
[10]–[12] and represent the power grid by an undirected graph
G = (V,E) where V and E are the set of nodes and edges
corresponding to the buses and transmission lines, respectively.
pv is the active power supply (pv > 0) or demand (pv < 0)
at node v ∈ V (for a neutral node pv = 0). We assume
pure reactive lines, implying that each edge {u, v} ∈ E is
characterized by its reactance xuv = xvu > 0.

Given the power supply/demand vector P ∈ R|V |×1 and the
reactance values, a power flow is a solution (f, θ) of:∑

v∈N(u)

fuv = pu, ∀ u ∈ V (1)

θu − θv − xuvfuv = 0, ∀ {u, v} ∈ E (2)

where N(u) is the set of neighbors of node u, fuv is the
power flow from node u to node v, and θu is the phase angle
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Algorithm 1 - Cascading Failure Evolution (CFE)
Input: A connected graph G = (V,E) and an initial edge failures
event F0 ⊆ E.

1: F ∗0 ← F0 and i← 0.
2: while Fi 6= ∅ do
3: Adjust the total demand (supply) to equal the total supply

(demand) within each connected component of G = (V,E \
F ∗i ).

4: Compute the new flows fe(F
∗
i ) ∀e ∈ E \ F ∗i .

5: Find the set of new edge failures Fi+1 = {e|fe(F ∗i ) >
ce, e ∈ E \ F ∗i }. F ∗i+1 ← F ∗i ∪ Fi+1 and i← i + 1.

6: return t = i− 1, (F0, . . . , Ft), and fe(F
∗
t ) ∀e ∈ E\F ∗t .

of node u. Eq. (1) guarantees (classical) flow conservation
and (2) captures the dependency of the flow on the reactance
values and phase angles. Additionally, (2) implies that fuv =
−fvu. Note that the edge capacities are not taken into account
in determining the flows. When the total supply equals the
total demand in each connected component of G, (1)-(2) has
a unique solution [11, lemma 1.1]. The uniqueness is in the
values of fuv’s rather than θu’s (shifting all θu’s by equal
amounts does not violate (2)). Eq.(1)-(2) are equivalent to the
following matrix equation:

AΘ = P (3)

where Θ ∈ R|V |×1 is the phase angles vector and A ∈
R|V |×|V | is the admittance matrix of G, defined as follows:

auv =


0 if u 6= v and {u, v} /∈ E
−1/xuv if u 6= v and {u, v} ∈ E
−∑w∈N(u) auw if u = v.

If there are k multiple edges between nodes u and v, auv =
−∑k

i=1 1/xuvi . When xuv = 1 ∀{u, v} ∈ E, the admittance
matrix A is the Laplacian matrix of the graph. Once Θ is
computed, the flows, fuv , can be obtained from (2).
Notation: Throughout this paper for matrix Q, qij denotes its
ijth entry, Qi its ith row, Qt its transpose, and tr(Q) its trace.

B. Cascading Failure Model

The Cascading Failure Evolution (CFE) Algorithm de-
scribed here is a slightly simplified version of the cascade
model used in [10], [11], [14]. We define fe = |fuv| = |fvu|
and assume that an edge e = {u, v} ∈ E has a predetermined
power capacity ce = cuv = cvu, which bounds its flow (that is,
fe ≤ ce). The cascade proceeds in rounds. Denote by Fi ⊆ E
the set of edge failures in the ith round and by F ∗i = F ∗i−1∪Fi

the set of edge failures until the end of the ith round (i ≥ 1).
We assume that before the initial failure event F0 ⊆ E, the
power flows satisfy (1)-(2), and fe ≤ ce ∀e ∈ E.

Upon a failure, some edges are removed from the graph,
implying that it may become disconnected. Thus, within
each component, depending on whether demand>supply or
supply>demand, the total demand is adjusted to be equal
to the total supply by decreasing the demand (supply) by
the same factor at all demand (supply) nodes (Line 3). This
corresponds to the load shedding/generation curtailing process.
Since power grids are operated by a central system, we
follow [10]–[12] and assume that the demand (supply) are
adjusted globally. For any set of failures F ⊆ E, we denote

by fe(F ) the flow along edges in G′ = (V,E \ F ) after the
shedding/curtailing.

Following an initial failure event F0, the new flows
fe(F0),∀e ∈ E\F0 are computed (by (1)-(2)) (Line 4).
Then, the set of new edge failures F1 is identified (Line
5). Following [10], [11], [14], we use a deterministic outage
rule and assume, for simplicity, that an edge e fails once
the flow exceeds its capacity: fe(F

∗
0 ) > ce.3 Therefore,

F1 = {e : fe(F
∗
0 ) > ce, e ∈ E\F ∗0 }.

If the set F1 of new edge failures is empty, the cascade is ter-
minated. Otherwise, the process is repeated while replacing the
initial event F ∗0 = F0 by the failure event F ∗1 , and generally
replacing F ∗i by F ∗i+1 at the ith round (Line 5). The process
continues until the system stabilizes (i.e., until no edges are
removed). Finally, we obtain the sequence (F0, F1, . . . , Ft)
of the sets of failures associated with the initial event F0,
and the power flows fe(F ∗t ) at stabilization, where t is the
number of rounds until stabilization. Since solving a system
of linear equations with n variables, requires O(n3) time [24],
the output can be obtained in O(t|V |3) time.

An example of a cascade can be seen in Fig. 2. Initially, the
flows are fe = 0.5 for all edges. The initial set of failures (F0)
disconnects a demand node from the graph. Hence, intuitively,
one may not expect a cascade. However, this initial failure not
only causes further failures but also causes failures in all edges
except for two. This example can be generalized to a graph
with 2n nodes where with the same set of initial failures, all
the edges fail except for two.

When the initial failure event contains a single edge, F0 =
{e′}, we denote the flows after the failure by f ′e ≡ fe({e′})
and the flow changes by ∆fe = f ′e − fe ∀e ∈ E\{e′}.

C. Metrics

We define the metrics for evaluating the grid vulnerability
(some of which were defined in [10], [29]). To study the effects
of a single edge (e′) failure after one round, we define the ratio
between the change of flow on an edge, e, and its original value
or the flow value on the failed edge, e′:
Edge flow change ratio: Se,e′ := |∆fe/fe|.
Mutual edge flow change ratio: Me,e′ := |∆fe/fe′ |.
The mutual edge flow change ratio corresponds to the Line
Outage Distribution Factor (LODF) defined in [29, P. 307]
(we use a different term in order to be consistent with the
other metric).

We also define a metric for the evaluation of the cascade
severity for a given instance G. An instance is composed of a
connected graph G, supply/demand vector P , capacities and
reactance values ce, xe ∀e ∈ E. For brevity, an instance is
denoted by G.
Yield: the ratio between the demand supplied at stabilization
and the original demand after an initial failure event.

3Note that [10], [11], [14] maintain moving averages of the fe values to
determine which edges fail.
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Fig. 2: An example of a cascading failure initiated by outages of the edges connecting a demand node to the network. The edge capacities and reactance
values are ce = 0.6, xe = 1. Numbers in nodes indicate power supply/demand (pv), numbers on edges indicate flows (fe), and arrows indicate flow direction.

D. Graphs and Parameters Used in Simulations

For simulations, we used the NetworkX [30] and Mat-
plotlib [31] libraries in Python, as well as igraph [32] library
in R. The simulation results are presented for graphs described
below. The parameters are as indicted below, unless otherwise
mentioned.
Western Interconnection (WI): The U.S. Western Inter-
connection with 13626 nodes and 18089 edges. The data is
from the Platts Geographic Information System (GIS) [33].
In some cases a 1374-node connected subgraph of the WI is
considered.
Texas Interconnection (TI): The Texas Interconnection
with 4544 nodes and 6264 edges (obtained from the Platts
GIS [33]).
IEEE benchmark Systems: The IEEE 118-bus and 300-bus
benchmark systems with 179 and 409 edges, respectively [19].
Erdős-Rényi graph: A random graph where each edge ap-
pears with probability p = 0.01.
Watts and Strogatz graph [17]: A small-world random graph
where each node connects to k = 4 other nodes and the
probability of rewiring is p = 0.1.
Barábasi and Albert graph [18]: A scale-free random graph
where each new node connects to k = 3 other nodes at each
step following the preferential attachment mechanism.

To maintain consistency when evaluating a metric in gener-
ated random networks and in a real-world network (e.g., WI),
we assume that the reactance values are equal for all edges
(xuv = 1 ∀{u, v} ∈ E). However, to provide representative
results about real-world networks, we also perform the same
evaluations with estimated reactance values. The reactance of
a line depends on its physical properties (such as its material)
and there is a linear relation between its length and reactance:
the longer the line, the larger its reactance. Thus, we assume
that all lines have the same physical properties and use the
length to determine the reactance. It is important to note that
flows are scale invariant to the reactance (that is, multiplying
the reactance of all lines by the same factor does not change
the flow values). Hence, we simply use the length of a line as
its estimated reactance.

IV. ADMITTANCE MATRIX PROPERTIES

In this section, we use the Moore-Penrose Pseudo-inverse
of the admittance matrix [16] in order to obtain results that
are used throughout the rest of the paper. Specifically, they

are used in Section V to study the impact of a single edge
failure on the flows on other edges and in Section VI to
introduce an efficient algorithm to identify the evolution of the
cascade. We prove several properties of the Pseudo-inverse of
the admittance matrix A, denoted by A+.4 A+ always exists
regardless of the structure of the graph G.

Observation 1 shows that the power flow equations can be
solved by using A+.

Observation 1: If (3) has a feasible solution, Θ̂ = A+P is
a solution for (3).5

A cut-edge of a graph G is an edge whose removal increases
the number of connected components of G. Jointly verifying
whether an edge is a cut-edge and finding the connected
components of the graph takes O(|E|) (using Depth First
Search). The following two Lemmas show that by using the
precomputed pseudo-inverse of the admittance matrix, these
operations can be done in O(1) and O(|V |), respectively. The
algorithm in Section VI uses these results to check if the
pseudo-inverse should be recomputed. Moreover, Lemma 1
is crucial for the proof of the Theorem 1, below. We note that
a similar lemma when all the admittance values are equal to
1 appeared in [34].

Lemma 1: Given G = (V,E) and A+, all the cut-edges of
the graph G can be found in O(|E|) time. Specifically, an edge
{i, j} is a cut-edge if, and only if, a−1ij −2a+ij +a+ii +a+jj = 0.

Proof: Suppose {i, j} is a cut-edge. Then, the solution
to (1)-(2) for the power vector P̂ , in which p̂i = −p̂j = 1 and
zero elsewhere is fij = −fji = 1 and zero elsewhere. On the
other hand, from Observation 1, Θ̂ = A+P̂ is a solution to the
equivalent matrix equation (3). Since the solution with respect
to the power flows is unique, 1 = fij = −aij(θ̂i − θ̂j) =
−aij(A+

i P̂ − A+
j P̂ ) ⇒ 1 = −aij(a+ii − a+ij − a+ji + a+jj) ⇒

a−1ij = (2a+ij − a+ii − a+jj)⇒ a−1ij − 2a+ij + a+ii + a+jj = 0.
Now suppose a−1ij − 2a+ij + a+ii + a+jj = 0. The solution

to (1)-(2) for the power vector P̂ (as defined above) for the
flow on edge {i, j} is fij = p̂i = −p̂j = 1. Therefore, there
are no other paths from i to j. Otherwise, because of the phase
angle difference between nodes i and j, part of the flow should
be routed through other paths. Thus, edge {i, j} is the only

4A+ = limδ→0 A
t(AAt+δ2I)−1 [16]. For more information regarding

the definition, see [20].
5Recall from Section III that (1)-(2) have a unique solution with respect

to power flows but not in respect to phase angles. Therefore, the solution to
(3) may not be unique.
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Fig. 4: Scatter plot showing the distance versus the resistance distance
between nodes in the WI and TI with estimated reactance values.

path from node i to j, and is a cut-edge. Hence, using the
precomputed A+, identifying whether an edge is a cut-edge
takes O(1) time and finding all the cut-edges of the graph
takes O(|E|) time.

Lemma 2: Given G = (V,E), A+, and the cut-edge {i, j},
the connected components of G\{i, j} can be found in O(|V |).

Proof: Suppose that {i, j} is a cut-edge of the connected
graph G, and G\{i, j} = G1 ∪ G2. Assume that i ∈ G1 and
j ∈ G2. We show below that for any {r, s} ∈ G\{i, j}, a+ir −
a+jr = a+is−a+js. Moreover, for any r ∈ G1 and s ∈ G2, a+ir−
a+jr 6= a+is−a+js. Suppose that {r, s} ∈ G\{i, j} is an arbitrary
edge. Then, the solution to (1)-(2) for the power vector P̂ with
p̂r = −p̂s = 1 and zero elsewhere is frs = −fsr = 1 and
zero elsewhere. Therefore, fij = 0. On the other hand, from
Observation 1, Θ̂ = A+P̂ is a solution to the equivalent matrix
equation (3). Since the solution with respect to power flows
is unique, 0 = fij = −aij(θ̂i− θ̂j) = −aij(A+

i P̂ −A+
j P̂ )⇒

0 = (a+ir−a+is−a+jr +a+js)⇒ a+ir−a+jr = a+is−a+js. From this
and since a+ii−a+ji 6= a+ij−a+jj (Lemma 1), for any r ∈ G1 and
s ∈ G2, a+ir−a+jr 6= a+is−a+js. Thus, by using the precomputed
pseudo-inverse of the admittance matrix, computing A+

i −A+
j ,

and dividing the entries into two groups with equal values,
the connected components of G\{i, j} can be identified. This
process requires O(|V |) time.
In the following, we denote by A′ the admittance matrix
of the graph G′ = (V,E\{i, j}) and by P ′ the power
vector after removing an arbitrary edge e′ = {i, j} from G
and conducting the corresponding load shedding/generation
curtailing. Lemma 3 shows that after the removal of a cut-
edge, A+ can be used to solve (3) and A′+ is not required.

Lemma 3: Given graph G = (V,E), A+, and a cut-edge
{i, j}, then Θ̂ = A+P ′ is a solution of (3) in G′.

Proof: First, from Observation 1, Θ̂ = A+P ′ is a solution

to (3) for the power vector P ′ in the graph G. Since the
solution to (1)-(2) with respect to power flows is unique, if
fij = 0, then Θ̂ = A+P ′ is also a solution to (3) for the
power vector P ′ in the graph G′. Therefore, we only need to
prove that θ̂i = θ̂j from Θ̂ = A+P ′. To prove this, we prove
that θ̂i− θ̂j = (A+

i −A+
j )P ′ = 0. From the proof of Lemma 2,

since {i, j} is a cut-edge, the entries of A+
i −A+

j have equal
values at the entries in the same connected component. On the
other hand, since P ′ is the power vector after load shedding,
then the sum of the supplies and demands at each connected
component is zero. Thus, (A+

i −A+
j )P ′ = 0.

The following theorem gives an analytical rank-1 update of
the pseudo-inverse of the admittance matrix. Using Theorem 1
and Corollary 1, in Section V we provide upper bounds on the
mutual edge flow change ratios (Me,e′ ). We note that the proof
could be simplified, if the form of A′+ was known in advance.
However, the proof provides the derivation of A′+. We also
note that a similar result to Theorem 1 was independently
proved in a very recent technical report [35].

Theorem 1: Given a connected graph G = (V,E), the
admittance matrix A, and A+, if {i, j} is not a cut-edge, then,

A′+ = (A+ aijXX
t)+ = A+− 1

a−1ij +XtA+X
A+XXtA+

in which X is an n× 1 vector with 1 in ith entry, −1 in jth

entry, and 0 elsewhere.
Proof: First, we show that AA+ = I − 1

nJ . A is a real
and symmetric matrix. Therefore, there exists an orthogonal
and unitary matrix U such that A = U tDU , in which D =
diag(λ1, λ2, . . . , λn) is the diagonal matrix of eigenvalues of
A and Ui is the normalized eigenvector related to eigenvalue
λi. It is well-known that when G is connected and unweighted,
the multiplicity of eigenvalue 0 of the Laplacian matrix is
1 [36]. Exactly the same result with the same approach can
be obtained for a weighted graph. Therefore, we can assume
that λ1 = 0 and all other eigenvalues are nonzero. In this case
U1 = [ 1√

n
, 1√

n
, . . . , 1√

n
]. On the other hand, A+ = U tD+U ,

and therefore,

AA+ = U tDUU tD+U = U tDD+U

= U tdiag(λ1λ
+
1 , λ2λ

+
2 , . . . , λnλ

+
n )U

= U t(I − diag(1, 0, . . . , 0))U = I − 1

n
J.

A is a real and symmetric matrix, and therefore, there exist
an n× n matrix B such that BBt = A. Using [16, Theorem
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4],

(A+ aijXX
t)+ = (CCt)+ + [I − (

√
aijXC

+)t]

× [A+ − aijA+X(I − C+C)KXtA+]× [1−√aijXC+], 6

where, C = [I −AA+]X and

K = {I + aij [(I − C+C)XtA+X(I − C+C)]}−1.
Therefore, all we need to compute is matrices C and K.

Using the previous part,

C = [I −AA+]X = [I − I +
1

n
J ]X =

1

n
JX.

It is easy to see that JX = 0, and thus, C = 0. Using this,

K = {I + aij [(I − C+C)XtA+X(I − C+C)]}−1
= {I + aij [IX

tA+XI]}−1 = {1 + aijX
tA+X}−1.

Notice that X is an n × 1 vector, and therefore, XtA+X
is a scaler and I in the second equation is 1 × 1. Hence, it
is written 1 instead of I in the last equation. Since {i, j} is
not a cut edge, from Lemma 1 we have, 1 + aijX

tA+X =
aij [a

−1
ij − 2(a+)ij + (a+)ii + (a+)jj ] 6= 0, and therefore, K

is well-defined. Replacing K and C,

(A+ aijXX
t)+ = A+ − aijA+X{1 + aijX

tA+X}−1XtA+

= A+ − 1

a−1ij +XtA+X
A+XXtA+.

In the following, we use Theorem 1 to derive an equation
similar to the one provided in [29, Section 7.4.1] by using the
superposition principle. Recall from Section III that A+ =
[a+rs].

Corollary 1: The flow on an edge {r, s} after a failure in
the non-cut-edge {i, j} is,

f ′rs = frs −
ars
aij

(a+ri − a+rj)− (a+si − a+sj)
a−1ij − 2(a+)ij + (a+)ii + (a+)jj

fij .

Finally, Lemma 4, gives the complexity of the rank-1 update
provided in Theorem 1. This is used in the computation of the
running time of the algorithm in Section VI.

Lemma 4: Given graph G = (V,E), A+, and a non-cut-
edge {i, j}, A′+ can be computed from A+ in O(|V |2).

We now define the notion resistance distance [37]. In resis-
tive circuits, the resistance distance between two nodes is the
equivalent resistance between them. The resistance distance is
a measure of distance between nodes of the graph [34]. For
any network, this notion can be defined by using the pseudo-
inverse of the Laplacian matrix of the network. Specifically, it
can be defined in power grid networks by using the pseudo-
inverse of the admittance matrix, A+.

Definition 1: Given G = (V,E), A, and A+, the
resistance distance between two nodes i, j ∈ V is
r(i, j) := a+ii + a+jj − 2a+ij . Accordingly, the resistance
distance between two edges e = {i, j}, e′ = {p, q} is
r(e, e′) = min{r(i, p), r(i, q), r(j, p), r(j, q)}.

We use the resistance distance in Section V to obtain upper
bounds on the flow changes after a single failure and assess

6√aij might be an imaginary number.

the robustness of specific graphs against such failures. More-
over, using resistance distance, in Section VII, we provide a
heuristic for the minimum yield problem.

When all edges have the same reactance, xij = 1 ∀{i, j} ∈
E, the resistance distance between two nodes is a measure of
their connectivity. Smaller resistance distance between nodes
i and j indicates that they are better connected. Fig. 3 shows
the relation between the distance and the resistance distance
between nodes in the graphs defined in Subsection III-D
(notice that xij = 1 ∀{i, j} ∈ E).7 As can be seen, there
is no direct relation between these two measures in Erdős-
Rényi and Barábasi-Albert graphs. However, in the WI and
Watts-Strogatz graph the resistance distance increases with the
distance.

Fig. 4 also shows the relation between the distance and
the resistance distance in the WI and TI when the estimated
reactance values (as described in Subsection III-D) are used.
As expected, this relation is different from the case when all
the edges have equal reactance values.

V. EFFECTS OF A SINGLE EDGE FAILURE

In this section, we provide upper bounds on the flow
changes after a single edge failure and introduce a metric to
evaluate the robustness of grids to failures. We evaluate this
metric for Watts and Strogatz graphs and demonstrate that
symmetric graphs are relatively robust.

For simplicity, in this section, we assume that xe = 1 ∀e ∈
E, unless otherwise indicated. As mentioned in Section III, in
this case the admittance matrix of the graph, A, is equivalent
to the Laplacian matrix of the graph. However, all the results
can be easily generalized.

A. Flow Changes

Edge Flow Change Ratio: To provide insight into the effects
of a single edge failure, we first present simulation results.
Fig. 5 shows the edge flow change ratios (Se,e′ ) as the function
of distance (d(e, e′)) from the failure for over 40 different
random choices of an initial edge failure, e′. The power
supply/demand in the Western interconnection is based on
the actual data. In other graphs, the power supply/demand at
nodes are i.i.d. Normal random variables with a slack node
to equalize the supply and demand. Notice that if the initial
flow in an edge is close to zero, the edge flow change ratio
on that edge can be very large. Thus, to focus on the impact
of an edge failure on the edges with reasonable initial flows,
we do not illustrate the edge flow change ratios for the edges
with flow below 1% of the average flow. Yet, we observed that
such edges that experience a flow increase after a single edge
failure, are within any arbitrary distance from the initial edge
failure.

Fig. 5 shows that after a single edge failure, there may be
very large flow increases (edge flow change ratios up to 80,
14, 50, and 24 in Figs. 5-(a), (b), (c), and (d), respectively).
These changes may occur far from the initial edge failure (edge

7While in the WI the reactance values depend on the line characteristics
(see values in [10]), for comparison and consistency, we used xij =
1 ∀{i, j} ∈ E in all the graphs in Fig. 3.
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Fig. 5: The average, standard deviation, and maximum edge flow change ratios (Se,e′ ) as the function of distance (d(e, e′)) from the failure. The right
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Fig. 6: Visualization of the mutual edge flow change ratios (Me,e′ ) for
edges in different graph classes after a single edge failure (represented by the
black wide line).

flow change ratio around 10 for edges 11- and 4-hops away
from the initial failure in Figs. 5-(a) and (c), respectively).
Moreover, for all the four graphs, we observed that there are
edges (far from the initial edge failure) whose flow changed
from zero to a positive value.

These observations motivate us to prove the following result
analytically. We show that by choosing specific parameter
values, the edge flow change ratio can be arbitrarily large.

Observation 2: For any xe1 , xe2 ∈ R, there exists a graph
G = (V,E) and edges e1, e2 ∈ E such that Se2,e1 = xe2/xe1 .
Mutual Edge Flow Change Ratio: We use the notion of
resistance distance to find upper bounds on the mutual edge
flow change ratios (Me,e′ ). The following Lemma, which is
an immediate result of Corollary 1, provides a formula for
computing the flow changes after a single edge failure based
on the resistance distances. It is independent of the power
supply/demand distribution.

Lemma 5: Given G = (V,E), A, and A+, the flow change
and the mutual edge flow change ratio for an edge e = {i, j} ∈
E after a failure in a non-cut-edge e′ = {p, q} ∈ E are,

∆fij =
1

2

−r(i, p) + r(i, q) + r(j, p)− r(j, q)
1− r(p, q) fpq,

Me,e′ =
1

2

−r(i, p) + r(i, q) + r(j, p)− r(j, q)
1− r(p, q) .

Lemma 5 is similar to the calculation of the Line Out-
age Distribution Factors (LODF) presented in [29, Appendix
7B.2]. However, here we use Theorem 1 to derive similar

equations in terms of the resistance distances. This formulation
allows us to provide useful equalities and inequalities (e.g.,
Corollaries 2 and 6).

Fig. 6 shows a visualization of the mutual edge flow change
ratios (Me,e′ ) for edges in different graph classes after a single
edge failure. Recall that Me,e′ describes the distribution of the
flow that passed through e′ on the other edges. These values
are differently distributed for different graph classes.

The following Corollary gives an upper bound on the flow
changes after a failure in a non-cut-edge {p, q} ∈ E by using
the triangle inequality for resistance distance and Lemma 5.

Corollary 2: Given G = (V,E), A, and A+, the flow
changes in any edge e = {i, j} ∈ E after a failure in a non-
cut-edge e′ = {p, q} ∈ E can be bounded by,

|∆fij | ≤
r(p, q)

1− r(p, q) |fpq|, Me,e′ ≤
r(p, q)

1− r(p, q) .

In Observation 2 we showed that edge flow change ratios
(Se,e′ ) can be arbitrarily large. However, the following obser-
vation shows that the mutual edge flow change ratios (Me,e′ )
are always bounded by 1. The proof is intuitive using flow
conservation in the power flows.

Observation 3: For any non-cut-edge e′ = {p, q} and any
edge e 6= e′, Me,e′ ≤ 1.

Corollary 3: After a failure in a non-cut-edge e′ = {p, q},
Me,e′ ≤ min{1, r(p,q)

1−r(p,q)}.
Observation 3 and Corollary 2 provide some initial upper
bounds on the mutual edge flow change ratios. In the next
subsection, we study the mutual edge flow change ratios in
detail and demonstrate how they can be used to evaluate the
robustness of graphs against failures.

We present simulations to show the relations between the
mutual flow change ratios and the two distance measures.
Figs. 7 and 9 show the mutual edge flow change ratio (Me,e′ )
as the function of distance (d(e, e′)) and resistance distance
(r(e, e′)) from the failure, respectively. The figures show that
increasing the number of edges (increasing p in Erdős-Rényi
graph and increasing k in Watts and Strogatz, and Barábasi
and Albert graphs) affects the Me,e′ -r(e, e′) relation more than
the Me,e′ -d(e, e′) relation. This suggests that the resistance
distance better captures the structure of a graph. Both figures
show a monotone relation between the mutual edge flow
change ratios and the distances/resistance distances. However,
this monotonicity is smoother in the case of the distance.
Moreover, Fig. 7, unlike Fig. 5, shows that after a single
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Fig. 8: The average mutual edge flow change ratios (Me,e′ ) versus the
distance from the initial edge failure using estimated reactance values in the
WI and TI. Each point represents the average over all possible initial single
edge failure events.

edge failure, the mutual edge flow change ratios decrease
exponentially as the distance from the initial failure increases.
Thus, it suggests that probabilistic tools may be used to model
the mutual edge flow change ratios (Me,e′ ) better than the edge
flow change ratios (Se,e′ ).

To show these relations when the estimated reactance values
(as described in Subsection III-D) are used, we computed the
average mutual edge flow change ratios (Me,e′ ) in the entire
WI and the TI. As can be seen in Fig. 8, in the TI, the
mutual edge flow change ratios decrease exponentially as the
distance from the initial failure increases. This is similar to the
exponential decrease observed in Fig. 7 when all the reactance
values are equal. Similarly, in the WI this exponential decrease
occurs for the distance up to 7-hops from the initial failure.
However, for the longer distances, the changes remain as small
as ≈ e−5.

As can be seen in Fig. 10, the Me,e′ -r(e, e′) relation is very
similar to Fig. 9. Fig. 10 shows that the Me,e′ -r(e, e′) relation
is not as smooth as the Me,e′ -d(e, e′) relation.

B. Graph Robustness

In this subsection, we define the failure cost of an edge and
the average edge failure cost in a graph. Using Corollary 1,
we analytically compute these costs. We then demonstrate that
the results can be used to study the robustness of graphs to
a single edge failure. For simplicity, we assume |V | = n and
|E| = m.

Definition 2: The failure cost of an edge e in G is denoted

by FCe and defined as follows:

FCe :=
1

m− 1

∑
e′∈E
e′ 6=e

(Me′,e)
2.

The failure cost of an edge e is a good measure of the
average changes that occur in the flows of the other edges
to compensate for the failure in an edge e. It can help
constructing a reliable power grid in two ways: (i) by designing
networks with a minimum maximum failure cost, and (ii)
by setting the power supply and demand values such that
edges with high failure costs carry small flows. The following
Lemma analytically shows the relation between the failure
cost of a non-cut-edge and the resistance distance between
its ending nodes. It can be considered as a generalization of
the upper bound provided in Corollary 2.

Lemma 6: In a connected graph G, for any non-cut-edge
e = {i, j},

FCe =
1

m− 1

r(i, j)

1− r(i, j) . (4)

Proof: Assume E = {e1, e2, . . . , em} and e = ew =
{i, j}. Assign an arbitrary orientation to the edges of G. We
denote the set of oriented edges by E = {ε1, ε2, . . . , εm}.
Define the matrix R ∈ Rm×m as follows, ∀1 ≤ w, z ≤ m :
rwz = a+ip − a+iq − a+jp + a+jq where εw = (i, j), εz = (p, q).

Based on the definition of the resistance distance, it is easy
to see that ∀1 ≤ w ≤ m : rww = r(i, j) where εw = (i, j).
Using Corollary 1, it is also easy to see that Mez,ew = |rwz|

1−rww
.

Assume D ∈ {−1, 0, 1}n×m is the incidence matrix of the
graph G with the edges oriented as E . From the definition,
R = DtA+D. On the other hand, A = DDt. Thus, R =
Dt(DDt)+D. From [16, eq. 3.11.2], (DDt)+ = (Dt)+D+.
Moreover, from [16, eq. 3.8.2], (Dt)+ = (D+)t. Thus,

R = Dt(DDt)+D = Dt(Dt)+D+D

= Dt(D+)tD+D = (D+D)t(D+D).

From the properties of the pseudo-inverse [16, Theorem 3.9],
D+D is symmetric and D+DD+ = D+. Hence,

R = (D+D)t(D+D) = (D+D)(D+D) =

= (D+DD+)D = D+D.

Hence, from the properties of the pseudo-inverse, R2 =
D+DD+D = (D+DD+)D = D+D = R. Now we compute
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Fig. 10: The average mutual edge flow change ratios (Me,e′ ) versus the
resistance distance from the initial edge failure using estimated reactance
values in the WI and TI. Each point represents the average over all possible
initial single edge failure events.

the wwth entry at both sides of the equation R2 = R,

(R2)ww = (R)ww⇒
m∑

z=1

r2wz = rww⇒
m∑

z=1
z 6=w

r2wz = rww − r2ww

⇒
m∑

z=1
z 6=w

r2wz

(1− rww)2
=

rww

1− rww
.

As we mentioned at the beginning of the proof, from the
definition of the matrix R, it is easy to see that rww = r(i, j)

and Mez,ew = |rwz|
1−rww

. Hence,

r(i, j)

1− r(i, j) =

m∑
z=1
z 6=w

(Mez,ew)2 = (m− 1)FCew .

Therefore, FCe = 1
m−1

r(i,j)
1−r(i,j) .

Eq. (4) is very insightful. Intuitively, similar to the inequality
in Corollary 2, it demonstrates that failures in edges with
high resistance distance values have a strong effect on the
other edges. However, it is more accurate, since it provides
an equality instead of an inequality. Moreover, (4) allows to
obtain a bound on the average edge failure cost, which is
defined below as a metric for the robustness of a graph to
a single edge failure.

Definition 3: In a graph G with n nodes and m edges, the
average edge failure cost is defined as,

FCG :=
1

m

∑
e∈E

FCe.

Using (4), the following Lemma provides a lower bound for
the average edge failure cost in a graph.

Lemma 7: In a 2-edge-connected graph G,

1

m

(m− 1

n− 1
− m− 1

m

)−1
≤ FCG, (5)

and equality holds if for any two edges e = {i, j} and e′ =
{p, q}, r(i, j) = r(p, q).

Proof: We use the same notation as in the proof of
Lemma 6. Since G is 2-edge-connected, it does not have a
cut-edge. Thus, from Lemma 6, for any edge e = {i, j},
(m − 1)FCe = r(i, j)/(1 − r(i, j)). Hence,

∑
e∈E FCe =

1
m−1

∑
{i,j}∈E

r(i,j)
1−r(i,j) .

From the proof of Lemma 6, R = D+D. Thus, tr(R) =
tr(D+D) = tr(DD+). On the other hand, from [16, eq.
3.11.7], DD+ = (DDt)(DDt)+. Since DDt = A, therefore
DD+ = AA+ and from the proof of Theorem 1, DD+ =
AA+ = I − 1

nJ . Hence,

tr(R) = tr(D+D) = tr(DD+)

= tr(AA+) = tr(I − 1

n
J) = n− 1.

Therefore,
∑
{i,j}∈E r(i, j) =

∑m
w=1 rww = tr(R) = n− 1.

It is easy to see that f(x) := x
1−x is a convex function in

[0, 1). Thus, the minimum of the summation
∑
{i,j}∈E

r(i,j)
1−r(i,j)

subject to
∑
{i,j}∈E r(i, j) = n − 1 is when all the r(i, j)s

are equal. In this case, ∀{i, j} ∈ E : r(i, j)opt = n−1
m and∑

{i,j}∈E
r(i,j)opt

1−r(i,j)opt
= m n−1

m−n+1 = ( 1
n−1 − 1

m )−1. Hence,∑
e∈E

FCe =
1

m− 1

∑
{i,j}∈E

r(i, j)

1− r(i, j) ≥
(m− 1

n− 1
− m− 1

m

)−1
.

Lemma 7 provides a lower bound on the average edge
failure cost in a graph (FCG). More importantly the proof
demonstrates that between all the graphs with n nodes and
m edges, the one with equal values of resistance distance
between all pairs of connected nodes minimizes this metric.
It is obvious that such a graph does not exist for all n and m
values.

The following Corollary shows that for symmetric graphs
the equality holds in Lemma 7.

Corollary 4: For a symmetric graph G,

FCG =
(m2 −m
n− 1

− (m− 1)
)−1

.
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maximum mutual edge flow change ratio (maxe,e′∈EMe,e′ ) versus the
probability of rewiring (p) in a Watts and Strogatz graph with 30 nodes and
60 edges. Each point is the average over 100 generated graphs with the same
parameters.
Moreover, for any graph H with the same number of nodes
and edges as G, FCH ≥ FCG.

Proof: Since G is symmetric, for any two edges
{i, j}, {p, q} ∈ E, there is an automorphism σ : V → V ,
such that σ(i) = p and σ(i) = q. Suppose P is the permutation
matrix representing σ, then the admittance matrix of σ(G) is
Â = PAP t. Since σ is an automorphism, Â = PAP t = A.
It is also easy to verify that Â+ = PA+P t = A+. Thus,
â+ii + â+jj − 2â+ij = a+ii + a+jj − 2a+ij . On the other hand,
from Â+ = PA+P t, â+ii = a+pp, â+jj = a+qq, and â+ij = a+pq .
Hence, a+pp + a+qq − 2a+pq = a+ii + a+jj − 2a+ij ⇒ r(p, q) =
r(i, j). Therefore, for any two edges {i, j}, {p, q} ∈ E,
r(p, q) = r(i, j). Now by using Lemma 7, it is easy to see
that FCG = (m2−m

n−1 − (m− 1))−1.
Corollary 4 demonstrates that symmetric graphs have the

lowest average edge failure cost among all the graphs with the
same number of nodes and edges. Moreover, from Lemma 7
and Corollary 4 it can be concluded that as graphs become
more symmetrical, their average edge failure cost (FCG)
decreases. To show this numerically, we computed the average
edge failure cost and the maximum mutual edge flow change
ratio (maxe,e′∈E Me,e′ ) versus the rewiring probability (p)
in Watts and Strogatz graphs with 30 nodes and 60 edges.
We chose the Watts and Strogatz graph, since in this type of
graphs, as p increases, the symmetry of the graph decreases.

Fig. 11 shows the average edge failure cost of the graph
(FCG) and the maximum mutual edge flow change ratio
(maxe,e′∈E Me,e′ ) versus the probability of rewiring (p). Ini-
tially (p = 0), G is a 4-regular graph (namely, every node is
connected to exactly 4 other nodes). However, as p increases,
G tends toward a random graph with no symmetry. Thus, an
increase in p in the Watts and Strogatz graph can be considered
as decrease in the symmetry of the graph. As we expected, the
figure shows that as p increases, both the average edge failure
cost of the graph (FCG) and the maximum mutual edge flow
change ratio (maxe,e′∈E Me,e′ ) increase.

Overall, results suggest that as graphs become more sym-
metrical, they become more robust against single edge failures.

VI. EFFICIENT CASCADING FAILURE EVOLUTION
COMPUTATION

Based on the results we obtained in Section IV, we present
the Cascading Failure Evolution – Pseudo-inverse Based

Algorithm 2 - Cascading Failure Evolution – Pseudo-inverse
Based (CFE-PB)
Input: A connected graph G = (V,E) and an initial edge failures
event F0 ⊆ E.

1: Compute A+, F ∗0 ← F0 and i← 0.
2: while Fi 6= ∅ do
3: for each {r, s} ∈ Fi do
4: if {r, s} is a cut-edge (see Lemma 1) then
5: Find the connected components after removing {r, s}.

(see Lemma 2)
6: Adjust the total demand (supply) to equal the total supply

(demand) within each connected component.
7: else update A+ after removing {r, s}. (see Lemma 4)
8: Compute the phase angles Θ̂ = A+P and compute new flows

fe(F
∗
i ) from the phase angles.

9: Find the set of new edge failures Fi+1 = {e|fe > ce, e ∈
E \ F ∗i }. F ∗i+1 ← F ∗i ∪ Fi+1 and i← i + 1.

10: return t = i− 1, (F0, . . . , Ft), and fe(F
∗
t ) ∀e ∈ E\F ∗t .

(CFE-PB) Algorithm which identifies the evolution of the cas-
cade. The CFE-PB Algorithm uses the Moore-Penrose Pseudo-
inverse of the admittance matrix for solving (3). Computing
the pseudo-inverse of the admittance matrix requires O(|V |3)
time. However, the algorithm obtains the pseudo-inverse of
the admittance matrix in round i from the one obtained in
round (i− 1), in O(|Fi||V |2) time. Moreover, in some cases,
the algorithm can reuse the pseudo-inverse from the previous
round. Since once lines fail, there is a need for low complexity
algorithms to control and mitigate the cascade, the CFE-PB
Algorithm may provide insight into the design of efficient
cascade control algorithms.

We now describe the CFE-PB Algorithm. It initially com-
putes the pseudo-inverse of the admittance matrix (in O(|V |3)
time) and this is the only time in which it computes A+ without
using a previous version of A+. Next, starting from F0, at
each round of the cascade, for each e ∈ Fi, it checks whether
e is a cut-edge (Line 4). This is done in O(1) (Lemma 1). If
yes, based on Lemma 3, in Lines 5 and 6, the total demand
is adjusted to equal the total supply within each connected
component (in O(V ) time). Else, in Line 7, A+ after the
removal of e is computed in O(|V |2) time (see Lemma 4).
After repeating this process for each e ∈ Fi, the phase angles
and the flows are computed in O(|V |2) time (Line 8). The rest
of the process is similar to the CFE Algorithm.

The following theorem provides the complexity of the
algorithm (the proof is based on the Lemmas 1–4). We show
that the algorithm runs in O(|V |3 + |F ∗t ||V |2) time (compared
to the CFE Algorithm which runs in O(t|V |3)). Namely, if
t = |F ∗t | (one edge fails at each round), the CFE-PB Algorithm
outperforms the CFE Algorithms by O(min{|V |, t}).

Theorem 2: CFE-PB Algorithm runs in O(|V |3+|F ∗t ||V |2).
Note that a similar approach (the step by step rank-1 update)
can be applied to other linear equations solution methods (e.g.,
LU factorization [24]). Yet, using the pseudo-inverse allows
developing tools for analyzing the effect of a single edge
failure (as showed in Section V)and supports the development
of an algorithm for finding the most vulnerable edges (see
Section VII).

VII. HARDNESS AND HEURISTIC
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Algorithm 3 - Most Vulnerable Edges Selection – Resistance
distance Based (MVES-RB)
Input: A connected graph G = (V,E) and an integer k ≥ 1.

1: Compute A+.
2: Compute the phase angles Θ̂ = A+P and compute flows fe

from the phase angles.
3: Compute the resistance distance r(i, j) = r(e) ∀e = {i, j} ∈ E.
4: Sort edges e1, e2, . . . , e|E| such that p ≤ q iff fepr(ep) ≥

feqr(eq).
5: return e1, e2, . . . , ek.

In this section, we establish that deciding if there exists
a failure event (of size at most a given value) such that the
yield after stabilization is less than a given threshold, is NP-
complete. Using the results from Section V, however, we
introduce a heuristic for the problem of finding an initial
failure that causes a cascade resulting with the minimum
possible yield (minimum yield problem). We numerically show
that in most cases, solutions obtained by the heuristic lead
to a yield comparable to the solutions obtained by more
numerically complex methods.

Lemma 8: Given G, a real number y, 0 ≤ y ≤ 1, and an
integer k ≥ 1, deciding if there exists a set of initial edge
failures of the size at most k resulting in a yield less than y
is NP-complete.

Proof: Due to space constraints the proof is omitted, but
it can be found in [20, Lemma 7].

As indicated in Lemma 8, the minimum yield problem is
NP-hard. We now present a heuristic algorithm for solving
this problem when xe = 1 ∀e ∈ E. We refer to it as the
Most Vulnerable Edge Selection – Resistance distance Based
(MVES-RB) Algorithm. From Corollary 6, edges with large
r(i, j) have larger failure costs. Thus, edges with large r(i, j)×
|fij | have greater impact on the flow changes on the other
edges. Based on this result, the MVES-RB Algorithm selects
the k edges with highest r(i, j)×|fij | values as the initial set
of failures in O(|V |3).

The MVES-RB Algorithm is in the same category as the
algorithms that identify the set of failures with the largest
impact (i.e., algorithms that solve the N − k problem [11],
[13]). However, none of the previous works focusing on the
N − k problem, considers cascading failures. To evaluate the
performance of the MVES-RB Algorithm, we compare its
performance to that of the four other intuitive methods for
selecting the initial set of failures: (i) Random, (ii) Greedy,
(iii) Max-flow, and (iv) Stepwise greedy.

In Random selection, k initial edge failures are randomly
selected in O(k) time. In Greedy selection, for each edge e ∈
E, the yield is computed after an initial failure in that edge.
Then, the k edges that have the lowest resulting yield values
are removed. The Greedy selection takes O(t|V |3|E|) time. In
Max-flow selection, the k edges with the maximum amount
of initial flow are selected in O(|V |3) time. Stepwise-greedy
selection is a step by step selection method. At each step, an
edge e is selected such that if e is removed together with the
previously selected edges, the yield is minimized. For k = 1,
both Stepwise-greedy and Greedy selection select an edge that
upon its failure minimizes the yield. The running time of the
Stepwise selection method is O(t|V |3|E|k).
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Fig. 12: Comparison between the effectiveness of different methods for
selecting the most vulnerable edges when the factor of safety is α = 1.1.
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Fig. 13: Comparison between the effectiveness of different methods for
selecting the most vulnerable edges when the factor of safety is α = 1.2.

To compare the performance of different selection methods,
we computed the yield after selecting k = 1, . . . , 15 edges
as the initial failed edges in the IEEE 118- and 300-bus
benchmark systems. For all the edges the reactance values are
xe = 1. For capacities, we consider two options: (i) for each
edge ce = αfe,8 where fe is the initial flow on the edge, and
(ii) all edges have equal capacities equal to ce = 1.2 maxe′ fe′

(thereby removing the effect of asymmetry in the capacities).
Figs. 12 and 13 illustrate the results when capacities are

chosen based on the initial flows with α = 1.1 and α = 1.2,
respectively. As can be seen, the Stepwise-greedy method that
has the worst running time outperforms the other methods
in most of the cases. However, the Max-flow method and
the MVES-RB Algorithm that have much lower running time
than the Stepwise-greedy method, perform relatively well and
in most cases better than the Greedy method. The Random
selection method that has the lowest running time also seems
to perform well in some cases.

Fig. 14 illustrates the results when all the edges have equal
capacities. As can be seen, in that case, the Random selection
is not comparable to other methods. As it was previously the
case, the Stepwise-greedy method outperforms other methods
here as well. The MVES-RB Algorithm, the Max-flow, and
Greedy methods perform equally good and none of them
outperforms the other. The running time of the MVES-RB
Algorithm and Max-flow method, however, is much less than
the Greedy method.

Overall, the Stepwise-greedy method outperforms others in
most of the cases. However, its high running time makes this

8Following [10], we assume that the capacities are α times the initial
flows. α is often referred to as the Factor of Safety (FoS) of the grid.
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Fig. 14: Comparison between the effectiveness of different methods
for selecting the most vulnerable edges when capacities are all equal to
1.2maxe fe.

method impractical in larger networks. Thus, since both the
MVES-RB Algorithm and the Max-flow method have a much
lower running time and perform relatively good in the most
cases, they seem to be better options.

VIII. CONCLUSIONS

In order to better understand failures and the evolution
of cascades in the power grid, we studied properties of the
admittance matrix of the grid and provided analytical tools
for studying the impact of a single edge failure on the flows
on the other edges. Based on these tools, we derived upper
bounds on the flow changes after a single edge failure and
introduced a metric to assess the robustness of graphs to single
edge failures. We illustrated via simulations the impact of such
failures. Then, we introduced a pseudo-inverse based efficient
algorithm to identify the cascade evolution. Finally, we proved
that the minimum yield problem is NP-hard and introduced a
simple heuristic to detect the most vulnerable edges.

This is one of the first steps in using computational tools
for understanding the grid resilience to cascading failures and
can serve as a basis for the development of cascade control
and mitigation algorithms. In our future work we plan to
study the effect of failures on the interdependent grid and
communication networks. Moreover, while due to its relative
simplicity, most previous work in the area of grid vulnerability
is based on the DC model, this model does not capture effects
such as voltage collapse that may occur during a cascade.
Hence, we plan to develop methods to analyze the cascades
using the more realistic AC model.
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