Joint Transmission in Cellular Networks: Scheduling and Stability

Peter van de Ven (CWI)

Joint work with: Berk Birand, Guy Grebla, and Gil Zussman (Columbia University)

Cellular networks

Downlink channel:

- users are associated to closest base station (BS)
- BSs transmit to users

Reduce cell size to satisfy increasing demand for capacity

By reducing cell size we increase the number of cell-edge users that have little or no reception

Joint transmission

LTE-Advanced standard introduces joint-transmission:

- packet is forwarded on backhaul to secondary BS
- serving & secondary BS transmit packet simultaneously

Joint-transmission pros & cons:

- pro: better reception cell-edge users
- con: uses two BSs instead of one

Question: how should we use joint-transmission, and how much does this benefit users?

model outline

Three components to the model:

- *B* base stations
- *N*users
- graph of backhaul links

Users are assigned a serving BS and maybe secondary BS

- serving for all normal (single) transmissions
- secondary helps serving BS for all joint transmissions
- only if a backhaul link is available

Queueing model

The dynamics:

- time is slotted, $t = 0, 1, \dots$
- each user n is associated with one or two queues:
- queue Q_n of length $L_n(t)$ (single-transmission)
- queue \hat{Q}_n of length $\hat{L}_n(t)$ (joint-transmission)

- in slot t, $W_n(t)$ new packets arrive at Q_n
- from Q_n , packets can be sent to \hat{Q}_n , or single-transmitted
- from \hat{Q}_n , packet can be joint-transmitted
- successfully transmitted packets (both single and joint) leave the system
- Denote by $\mu_n^{(i)}(t)$ the number of packets

Solve a scheduling problem to determine $\mu_n^{(i)}(t)$

$$\mu_n^{(i)}(t) \sim \mathrm{Bin}(m_n^{(i)}, p_n^{(i)})$$
 # packets scheduled success probability

The $m_n^{(i)}$ are subject to scheduling constraints

- the constraints capture dependence between users
- JT improves success probability: $p_n^{(1)} < p_n^{(2)}$

Scheduling & queueing

OFMDA joint scheduling (OJS) problem

The OJS problem can be written as follows:

$$\max_{\boldsymbol{x},\boldsymbol{y},\boldsymbol{z}} \sum_{i=1}^{I} z_{i}u(i,1) + y_{i}u(i,0) = U(\boldsymbol{z},\boldsymbol{y}) \qquad \text{no simultaneous wireless \& backhaul allocation of scheduled blocks}$$

$$\downarrow \text{objective function}$$

$$\downarrow \text{objective function}$$

$$\downarrow \text{objective function}$$

$$\sum_{\{i:a \in h(i)\}} z_{i} \leq S, \forall a \in \mathcal{B}; \sum_{\{i:h(i)=l\}} y_{i} \leq K, \forall l \in \mathcal{C},$$

$$\sum_{\{i:h \in h(i)\}} x_{is} = z_{i}, \quad \forall i \in \mathcal{I}; \ y_{i} = 0, \quad \forall i \text{ s.t. } A(i) = 1,$$

$$\sum_{s=1} x_{is} \leq 1, \quad \forall b \in \mathcal{B} \ \forall s \in \mathcal{S}, \quad \text{capacity constraints}$$

$$\sum_{\{i:h \in h(i)\}} x_{is} \leq 1, \quad \forall b \in \mathcal{B} \ \forall s \in \mathcal{S}, \quad \text{decision variables}$$

$$z_{i} \in \{0,1\}, \ y_{i} \in \{0,1\}, \quad \forall i \in \mathcal{I}, \forall s \in \mathcal{S}.$$

Proposition

OJS is strongly NP-hard

We show this by reduction from minimum edge coloring

Decomposition framework

To devise efficient algorithms for OJS, decompose as follows

$$\max_{\boldsymbol{x},\boldsymbol{y},\boldsymbol{z}} U(\boldsymbol{z},\boldsymbol{y})$$
s.t. constraints $(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})$ hold

```
\max_{\boldsymbol{y},\boldsymbol{z}} U(\boldsymbol{z},\boldsymbol{y}) \exists \boldsymbol{x} \text{ s.t. constraints}(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z}) \text{ hold}
```

find s.t. constraints (x, y^*, z^*) hold

JTK

$$y^*, z^*$$

JTC

Decomposition framework

We use decomposition for approximation algorithms and efficient algorithms for bipartite graphs

```
\max_{\boldsymbol{y},\boldsymbol{z}} U(\boldsymbol{z},\boldsymbol{y}) \exists \boldsymbol{x} \text{ s.t. constraints}(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z}) \text{ hold}
```

```
find s.t. constraints (x, y^*, z^*) hold
```

JTK

$$y^*, z^*$$

JTC

back to the queueing problem

$$L_n(t+1) = L_n(t) + W_n(t) - \mu_n^{(1)}(t) - \mu_n^{(3)}(t)$$

$$\hat{L}_n(t+1) = \hat{L}_n(t) + \mu_n^{(3)}(t) - \mu_n^{(2)}(t)$$

Obtained from OJS

We represent the policy for determining the schedule by a pair (ALG, u)

Use a queue-length based utility function

$$u_{Q}(i,r) = \begin{cases} L_{n(i)}p(i,r), & r = 1, \\ \max\{L_{n(i)} - \hat{L}_{n(i)}, 0\}, & r = 0, \end{cases}$$

Theorem

Policy (OJS – OPT, u_Q) is throughput–optimal

throughput with approximation algorithms

In order to evaluate performance in the case without optimal algorithms, use simulations

This also allows use detailed physical layer:

- Hata propagation model
- packets of 73b
- 7 base stations 700m apart
- S = 50 scheduled blocks
- N = 50 users

In order to evaluate performance in the case without optimal algorithms, use simulations

This also allows use detailed physical layer:

- Hata propagation model
- packets of 73b
- 7 base stations 700m apart
- S = 50 scheduled blocks
- N = 50 users

Two observations from simulations:

- bulk of gains from CoMP can be obtained with small backhaul
- increase throughput cell-edge users with only minor cost to other users

Conclusions and outlook

Performance analysis and scheduling of cellular networks with joint-transmission

- derive approximation algorithms to determine per-slot schedule
- look at evolution of queueing model given this schedule

This can be used for designing backhaul networks:

between which BSs, what capacity?

Question: how does the approximation algorithm affect the stability region?