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Failures in Power Grids

 One of the most essential infrastructures in modern life

 Rely on physical components  Vulnerable to physical 
attacks/failures

 Failures may cascade  Blackouts (US’03, India’12, Turkey’15)

 An attack/failure will have a significant effect on many 
interdependent systems (communications, gas, water, etc.) 



Failures/Attacks/Disasters

 Mismanagements

 EMP (Electromagnetic Pulse) attack

 Solar Flares - Federal Energy Regulatory 
Commission (FERC) has recently issued a 
rule for transmission grid operators to 
develop a plan to deal with the 
Geomagnetic disturbances

 Other natural disasters

 Physical attacks

Source: Report of the Commission to Assess the 
threat to the United States from Electromagnetic 
Pulse (EMP) Attack, 2008 

FERC, DOE, and DHS, Detailed Technical Report on 
EMP and Severe Solar Flare Threats to the U.S. 
Power Grid, 2010



Power Grid Attack in San Jose

 “A sniper attack in April 2014 that knocked out an electrical 
substation near San Jose, Calif., has raised fears that the country's 
power grid is vulnerable to terrorism. ” –The Wall Street Journal



Motivation

 Need to study vulnerabilities in the real grid topologies

 Real data may not be available to all researchers or hard to 
obtain due to security reasons

 Not wise to publish vulnerabilities of the real grid 

 Current situation

 Small-world, scale-free networks, etc. do not consider the geographical 
locations (The reactance value and type of a line is directly correlated to 
its length)

 Spatial networks (e.g., random geometrics graphs) are not designed to 
generate networks with properties similar to power grid networks

 Limited reference test cases (Polish Grid, IEEE benchmark systems, etc.) 
that do not contain the coordinates of the lines

 We present a procedure to generate synthetic networks with 
similar structural properties to power grids



Related Work

 The structural properties of the power grids around the World 
(North America, Europe, etc.) has been widely studied

 Watts and Strogatz (1998) small-world property (average path length 
and clustering coefficient)

 Barabasi and Albert (1999) the power-law degree distribution

 Studies of the power grids in European countries shows similar 
properties (2007)

 Wang, Scaglione, et. al. (2010)Algebraic connectivity

 Recent work by Hines et. al. (2012)  show existent topological models 
do not satisfy all the structural properties of power grids

 Few synthetic models are available

 Random Networks (Small-world, scale-free, etc.)

 Wang, Scaglione, et. al. (2010)

 Recent work by Schultz et. al. (2014)

 None has considered the spatial distribution of the nodes and the 
length distribution of the lines



Structural Properties

 What is important?

 Number of Nodes

 Number of Edges

 Average path length: The average shortest path lengths (number of 
edges) between all pairs of nodes 

 Clustering coefficient: The fraction of connected pairs between all 
the neighbors of a node 𝑖, averaged over all nodes 𝑖

 Degree distribution of the nodes

 Length Distribution of the lines: Is directly correlated with physical 
properties of the lines (e.g., resistance, reactance)



North America Power Grid

 Two major: The Western (WI) and  Eastern Interconnections (EI)

 Three minor: The Texas, Québec, and Alaska Interconnections

The data is obtained from the Platts Geographic Information System (GIS)



Regional Entities

 North American Electric Reliability Corporation (NERC) regional 
entities and the National Electricity Transmission Grid of Mexico 
(NETGM).



Structural Properties

 We consider 

 Western Interconnection (WI)

 SERC Reliability Corporation (SERC)

 Florida Reliability Coordinating Council (FRCC)

Network WI SERC FRCC

# of Nodes 14302 12946 1312

# of Edges 18769 16658 1780

Average Path
Length

17.33 19.71 11.68

Clustering 
Coefficient

0.049 0.049 0.075

Power-law
exponent 

𝜻
-3.48 -3.93 -2.76

𝜁 = −3.48

𝜁 = −3.93

𝜁 = −2.76



 First time that has been studied

 Non-parametric fit 

The Length Distribution of the Lines

WI SERC FRCC



Outline of our Method

1. Generate nodes with the 
similar spatial distribution to 
a given network with 𝑛 nodes 
and 𝑚 edges

2. Connect nodes based on 
the distances and degrees



Western Interconnection

 Western interconnection with 𝑛 =14302 substations (nodes) and 
𝑚 =18769 lines (edges)



Spatial Distribution of the Nodes 

 Cluster points based on their geographical proximity

 Gaussian Mixture Models (GMM) are commonly used for clustering 
and density estimation 

 Mixtures describe two-stage sampling procedure

 Sample j~𝜋 = 𝜋1, … , 𝜋𝑐
 Sample 𝑋𝑖~𝒩(𝜇𝑗 , Σ𝑗)

 Given a network, 𝜋 and (𝜇𝑗 , Σ𝑗)s

can be estimated using 
algorithms like EM algorithm

 Example of clustering nodes 
in WI into 10 clusters

 Each color represents nodes
assigned to a cluster

Categorical distribution 

Gaussian distribution



 Use the Bayesian Information Criterion (BIC) to select number of 
clusters  55 clusters

 Use the obtained parameters from GMM to generate 𝑛 nodes with 
similar spatial distributions as the nodes in WI

Position of the Nodes

GMM



Outline of our Method

1. Generate nodes with the 
similar spatial distribution to 
a given network with 𝑛 nodes 
and 𝑚 edges

2. Connect nodes based on 
the distances and degrees



Connection Between the Nodes

 Inspired by the way the power grids have evolved through time

 Find a spanning tree of nodes (Connectivity)

 Add more edges to the graph (Robustness)

 Number of edges

 Clustering coefficient

 Degree distribution of the nodes

𝑛 − 1 edges

𝑚 − 𝑛 + 1 edges



Connectivity

 Minimum weight Spanning Tree (MST) high average path length

 Connect node 𝑖 to its geographically closest node with index less than 𝑖

 Depends on the ordering of the nodes

 There is an ordering that obtains the minimum spanning tree using this 
process
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 Finding a spanning tree (tunable parameter 𝜅): 

 Randomly order nodes with probability proportion to | 𝑋𝑖 −  𝑋 |
−𝜅

 Connect node 𝑖 to its geographically closest node with index less than 𝑖

Position 
of node 𝑖

Tunable Spanning Tree

Average point
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Tunable Parameter 𝜅

 𝜅 controls the total weight and the average path length of the 
obtained tree

 Average path length in MST is ≈ 505

Average path length (hops)Geographical weight of the 
spanning tree



Tunable Parameter 𝜅

𝜅 = 0 𝜅 = 2.5 𝜅 = 9

Get closer to the MST



Connection Between the Nodes

 Find a spanning tree of nodes (Connectivity)

 Add more edges to the graph (Robustness)

 Number of edges

 Clustering coefficient

 Degree distribution of the nodes

𝑛 − 1 edges

𝑚 − 𝑛 + 1 edges



Add More Edges to the Graph: Observations

 Power-law degree distribution 
Preferential attachment

 Less degree 1 & 2 nodes

 Longer edges have 
lower probabilities

 Nodes in denser areas have higher degrees
 Define 𝜌𝑖 as the average geographical 

distance of the node 𝑖 from its 𝑘 closest 
nodes

 𝜌𝑖
−1 ≡ density of nodes around node 𝑖

1 2

3



Add more Edges to the Graph

 Repeat 𝑚− 𝑛 + 1 times:

1. Pick a low degree node in a dense area 

2. Connect it to a high degree but close node

 𝛼, 𝛽, 𝛾, 𝜂 are tunable parameters

 If Small Network: Sample node 𝑖 with probability ∝ 𝑑𝑖
−𝜂
𝜌𝑖
−𝛼

 If Large Network: From all nodes with degree less than 3, sample 
node 𝑖 with probability ∝ 𝜌𝑖

−𝛼

 Connect node 𝑖 to node 𝑗 sampled from all other nodes with 

probability ∝ ||𝑋𝑖 − 𝑋𝑗||
−𝛽𝑑𝑗
𝛾

• 𝛽 tune the probability distribution of length of the lines
• 𝛾 tune the exponent of the power-law distribution for degrees

𝑑𝑖: Degree of the node 𝑖

𝜌𝑖
−1 : Density of the nodes 

around the node 𝑖

𝑋𝑖: Position of the node 𝑖



Add more Edges to the Graph



Evaluation



Kullback-Leibler (KL) divergence

 Measure the similarity between the length distribution of the lines 
in two networks

 The KL-divergence is a non-symmetric measure of the difference 
between two probability distributions 𝑃 and 𝑄

𝐷𝐾𝐿(𝑃| 𝑄 = 

𝑖

𝑃 𝑖 ln
𝑃 𝑖

𝑄 𝑖

𝐷𝐾𝐿(𝑃| 𝑄 =  
−∞

∞

𝑝 𝑥 ln
𝑝 𝑥

𝑞 𝑥
𝑑𝑥

 We do not have the actual distribution  use samples to estimate 
the KL-divergence as in the paper by Boltz et. al.

S. Boltz, E. Debreuve, and M. Barlaud, “High-dimensional statistical measure for region-of-
interest tracking,” IEEE Trans. Image Process., vol. 18, no. 6, pp. 1266–1283, 2009.



Evaluation: WI

Actual Gen.

# of Nodes 14302 14302

# of Edges 18769 18769

Average Path
Length

17.33 17.28

Clustering 
Coefficient

0.049 0.050

𝜻 -3.48 -3.84

𝑫𝑲𝑳 0 0.1

𝜁 = −3.84𝜁 = −3.48

Length  Distribution 𝐷𝐾𝐿 = 0.1

Degree  Distribution



Evaluation: SERC

Actual Gen.

# of Nodes 12946 12946

# of Edges 16658 16658

Average Path
Length

19.71 20.46

Clustering 
Coefficient

0.049 0.049

𝜻 -3.93 -4.20

𝑫𝑲𝑳 0 0.064

𝜁 = −4.20𝜁 = −3.93

Length  Distribution 𝐷𝐾𝐿 = 0.064

Degree  Distribution



Evaluation: FRCC

Actual Gen.

# of Nodes 1312 1312

# of Edges 1780 1780

Average Path
Length

11.68 10.65

Clustering 
Coefficient

0.075 0.057

𝜻 -2.76 -2.73

𝑫𝑲𝑳 0 0.08

𝜁 = −2.73𝜁 = −2.76

Length  Distribution 𝐷𝐾𝐿 = 0.08
Degree  Distribution



Conclusion/Future Work

 A method to generate synthetic networks with structural 
properties similar to a given network

 Applied it to different parts of the North America grid

 It can be applied to any spatial network (e.g., transportation, gas 
pipes)

 It can be used to generate networks similar to a given network with 
less number of nodes and edges (turn back the time!)

 Publish our code as a Library in R for generating synthetic 
networks similar to any part of the North America grid as well as 
any given network

 Submit our work to the IEEE Transactions on Network Science and 
Engineering



Thank You!

saleh@ee.columbia.edu

http://wimnet.ee.columbia.edu


