
A Statistical Method for Synthetic 
Power Grid Generation based on
the U.S. Western Interconnection

Saleh Soltan, Gil Zussman

Columbia University

New York, NY



Failures in Power Grids

 One of the most essential infrastructures in modern life

 Rely on physical components  Vulnerable to physical 
attacks/failures

 Failures may cascade  Blackouts (US’03, India’12, Turkey’15)

 An attack/failure will have a significant effect on many 
interdependent systems (communications, gas, water, etc.) 



Failures/Attacks/Disasters

 Mismanagements

 EMP (Electromagnetic Pulse) attack

 Solar Flares - Federal Energy Regulatory 
Commission (FERC) has recently issued a 
rule for transmission grid operators to 
develop a plan to deal with the 
Geomagnetic disturbances

 Other natural disasters

 Physical attacks

Source: Report of the Commission to Assess the 
threat to the United States from Electromagnetic 
Pulse (EMP) Attack, 2008 

FERC, DOE, and DHS, Detailed Technical Report on 
EMP and Severe Solar Flare Threats to the U.S. 
Power Grid, 2010



Power Grid Attack in San Jose

 “A sniper attack in April 2014 that knocked out an electrical 
substation near San Jose, Calif., has raised fears that the country's 
power grid is vulnerable to terrorism. ” –The Wall Street Journal



Motivation

 Need to study vulnerabilities in the real grid topologies

 Real data may not be available to all researchers or hard to 
obtain due to security reasons

 Not wise to publish vulnerabilities of the real grid 

 Current situation

 Small-world, scale-free networks, etc. do not consider the geographical 
locations (The reactance value and type of a line is directly correlated to 
its length)

 Spatial networks (e.g., random geometrics graphs) are not designed to 
generate networks with properties similar to power grid networks

 Limited reference test cases (Polish Grid, IEEE benchmark systems, etc.) 
that do not contain the coordinates of the lines

 We present a procedure to generate synthetic networks with 
similar structural properties to power grids



Related Work

 The structural properties of the power grids around the World 
(North America, Europe, etc.) has been widely studied

 Watts and Strogatz (1998) small-world property (average path length 
and clustering coefficient)

 Barabasi and Albert (1999) the power-law degree distribution

 Studies of the power grids in European countries shows similar 
properties (2007)

 Wang, Scaglione, et. al. (2010)Algebraic connectivity

 Recent work by Hines et. al. (2012)  show existent topological models 
do not satisfy all the structural properties of power grids

 Few synthetic models are available

 Random Networks (Small-world, scale-free, etc.)

 Wang, Scaglione, et. al. (2010)

 Recent work by Schultz et. al. (2014)

 None has considered the spatial distribution of the nodes and the 
length distribution of the lines



Structural Properties

 What is important?

 Number of Nodes

 Number of Edges

 Average path length: The average shortest path lengths (number of 
edges) between all pairs of nodes 

 Clustering coefficient: The fraction of connected pairs between all 
the neighbors of a node 𝑖, averaged over all nodes 𝑖

 Degree distribution of the nodes

 Length Distribution of the lines: Is directly correlated with physical 
properties of the lines (e.g., resistance, reactance)



North America Power Grid

 Two major: The Western (WI) and  Eastern Interconnections (EI)

 Three minor: The Texas, Québec, and Alaska Interconnections

The data is obtained from the Platts Geographic Information System (GIS)



Regional Entities

 North American Electric Reliability Corporation (NERC) regional 
entities and the National Electricity Transmission Grid of Mexico 
(NETGM).



Structural Properties

 We consider 

 Western Interconnection (WI)

 SERC Reliability Corporation (SERC)

 Florida Reliability Coordinating Council (FRCC)

Network WI SERC FRCC

# of Nodes 14302 12946 1312

# of Edges 18769 16658 1780

Average Path
Length

17.33 19.71 11.68

Clustering 
Coefficient

0.049 0.049 0.075

Power-law
exponent 

𝜻
-3.48 -3.93 -2.76

𝜁 = −3.48

𝜁 = −3.93

𝜁 = −2.76



 First time that has been studied

 Non-parametric fit 

The Length Distribution of the Lines

WI SERC FRCC



Outline of our Method

1. Generate nodes with the 
similar spatial distribution to 
a given network with 𝑛 nodes 
and 𝑚 edges

2. Connect nodes based on 
the distances and degrees



Western Interconnection

 Western interconnection with 𝑛 =14302 substations (nodes) and 
𝑚 =18769 lines (edges)



Spatial Distribution of the Nodes 

 Cluster points based on their geographical proximity

 Gaussian Mixture Models (GMM) are commonly used for clustering 
and density estimation 

 Mixtures describe two-stage sampling procedure

 Sample j~𝜋 = 𝜋1, … , 𝜋𝑐
 Sample 𝑋𝑖~𝒩(𝜇𝑗 , Σ𝑗)

 Given a network, 𝜋 and (𝜇𝑗 , Σ𝑗)s

can be estimated using 
algorithms like EM algorithm

 Example of clustering nodes 
in WI into 10 clusters

 Each color represents nodes
assigned to a cluster

Categorical distribution 

Gaussian distribution



 Use the Bayesian Information Criterion (BIC) to select number of 
clusters  55 clusters

 Use the obtained parameters from GMM to generate 𝑛 nodes with 
similar spatial distributions as the nodes in WI

Position of the Nodes

GMM



Outline of our Method

1. Generate nodes with the 
similar spatial distribution to 
a given network with 𝑛 nodes 
and 𝑚 edges

2. Connect nodes based on 
the distances and degrees



Connection Between the Nodes

 Inspired by the way the power grids have evolved through time

 Find a spanning tree of nodes (Connectivity)

 Add more edges to the graph (Robustness)

 Number of edges

 Clustering coefficient

 Degree distribution of the nodes

𝑛 − 1 edges

𝑚 − 𝑛 + 1 edges



Connectivity

 Minimum weight Spanning Tree (MST) high average path length

 Connect node 𝑖 to its geographically closest node with index less than 𝑖

 Depends on the ordering of the nodes

 There is an ordering that obtains the minimum spanning tree using this 
process
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 Finding a spanning tree (tunable parameter 𝜅): 

 Randomly order nodes with probability proportion to | 𝑋𝑖 −  𝑋 |
−𝜅

 Connect node 𝑖 to its geographically closest node with index less than 𝑖

Position 
of node 𝑖

Tunable Spanning Tree

Average point
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Tunable Parameter 𝜅

 𝜅 controls the total weight and the average path length of the 
obtained tree

 Average path length in MST is ≈ 505

Average path length (hops)Geographical weight of the 
spanning tree



Tunable Parameter 𝜅

𝜅 = 0 𝜅 = 2.5 𝜅 = 9

Get closer to the MST



Connection Between the Nodes

 Find a spanning tree of nodes (Connectivity)

 Add more edges to the graph (Robustness)

 Number of edges

 Clustering coefficient

 Degree distribution of the nodes

𝑛 − 1 edges

𝑚 − 𝑛 + 1 edges



Add More Edges to the Graph: Observations

 Power-law degree distribution 
Preferential attachment

 Less degree 1 & 2 nodes

 Longer edges have 
lower probabilities

 Nodes in denser areas have higher degrees
 Define 𝜌𝑖 as the average geographical 

distance of the node 𝑖 from its 𝑘 closest 
nodes

 𝜌𝑖
−1 ≡ density of nodes around node 𝑖

1 2

3



Add more Edges to the Graph

 Repeat 𝑚− 𝑛 + 1 times:

1. Pick a low degree node in a dense area 

2. Connect it to a high degree but close node

 𝛼, 𝛽, 𝛾, 𝜂 are tunable parameters

 If Small Network: Sample node 𝑖 with probability ∝ 𝑑𝑖
−𝜂
𝜌𝑖
−𝛼

 If Large Network: From all nodes with degree less than 3, sample 
node 𝑖 with probability ∝ 𝜌𝑖

−𝛼

 Connect node 𝑖 to node 𝑗 sampled from all other nodes with 

probability ∝ ||𝑋𝑖 − 𝑋𝑗||
−𝛽𝑑𝑗
𝛾

• 𝛽 tune the probability distribution of length of the lines
• 𝛾 tune the exponent of the power-law distribution for degrees

𝑑𝑖: Degree of the node 𝑖

𝜌𝑖
−1 : Density of the nodes 

around the node 𝑖

𝑋𝑖: Position of the node 𝑖



Add more Edges to the Graph



Evaluation



Kullback-Leibler (KL) divergence

 Measure the similarity between the length distribution of the lines 
in two networks

 The KL-divergence is a non-symmetric measure of the difference 
between two probability distributions 𝑃 and 𝑄

𝐷𝐾𝐿(𝑃| 𝑄 = 

𝑖

𝑃 𝑖 ln
𝑃 𝑖

𝑄 𝑖

𝐷𝐾𝐿(𝑃| 𝑄 =  
−∞

∞

𝑝 𝑥 ln
𝑝 𝑥

𝑞 𝑥
𝑑𝑥

 We do not have the actual distribution  use samples to estimate 
the KL-divergence as in the paper by Boltz et. al.

S. Boltz, E. Debreuve, and M. Barlaud, “High-dimensional statistical measure for region-of-
interest tracking,” IEEE Trans. Image Process., vol. 18, no. 6, pp. 1266–1283, 2009.



Evaluation: WI

Actual Gen.

# of Nodes 14302 14302

# of Edges 18769 18769

Average Path
Length

17.33 17.28

Clustering 
Coefficient

0.049 0.050

𝜻 -3.48 -3.84

𝑫𝑲𝑳 0 0.1

𝜁 = −3.84𝜁 = −3.48

Length  Distribution 𝐷𝐾𝐿 = 0.1

Degree  Distribution



Evaluation: SERC

Actual Gen.

# of Nodes 12946 12946

# of Edges 16658 16658

Average Path
Length

19.71 20.46

Clustering 
Coefficient

0.049 0.049

𝜻 -3.93 -4.20

𝑫𝑲𝑳 0 0.064

𝜁 = −4.20𝜁 = −3.93

Length  Distribution 𝐷𝐾𝐿 = 0.064

Degree  Distribution



Evaluation: FRCC

Actual Gen.

# of Nodes 1312 1312

# of Edges 1780 1780

Average Path
Length

11.68 10.65

Clustering 
Coefficient

0.075 0.057

𝜻 -2.76 -2.73

𝑫𝑲𝑳 0 0.08

𝜁 = −2.73𝜁 = −2.76

Length  Distribution 𝐷𝐾𝐿 = 0.08
Degree  Distribution



Conclusion/Future Work

 A method to generate synthetic networks with structural 
properties similar to a given network

 Applied it to different parts of the North America grid

 It can be applied to any spatial network (e.g., transportation, gas 
pipes)

 It can be used to generate networks similar to a given network with 
less number of nodes and edges (turn back the time!)

 Publish our code as a Library in R for generating synthetic 
networks similar to any part of the North America grid as well as 
any given network

 Submit our work to the IEEE Transactions on Network Science and 
Engineering



Thank You!

saleh@ee.columbia.edu

http://wimnet.ee.columbia.edu


