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Abstract—The development of algorithms for enhancing the
resilience and efficiency of the power grid requires evaluation
with topologies of real transmission networks. However, due to
security reasons, such topologies and particularly the locations
of the substations and lines are usually not publicly available.
Therefore, we study the structural properties of the North
American grids and present an algorithm for generating synthetic
spatially embedded networks with similar properties to a given
grid. The algorithm has several tunable parameters that allow
generating grids similar to any given grid. We apply it to the
Western Interconnection (WI) and to grids that operate under the
SERC Reliability Corporation (SERC) and the Florida Reliability
Coordinating Council (FRCC), and show that the generated grids
have similar structural and spatial properties to these grids. To
the best of our knowledge, this is the first attempt to consider
the spatial distribution of the nodes and lines and its importance
in generating synthetic grids.

I. INTRODUCTION

The design of algorithms and methods for enhancing the
power grid drew tremendous attention over the past decade [1].
These efforts focused on challenges stemming from renew-
able generation interconnection, Phasor Measurement Units
(PMUs) placement, transmission expansion planning, and vul-
nerability analysis. The development of algorithms for coping
with these challenges requires performance evaluation with
real grid topologies. However, in order to avoid exposing vul-
nerabilities, the topologies of the power transmission networks
and particularly the locations of the substations and the lines
are usually not publicly available or are hard to obtain.

There are only very few and limited test cases and real-
world power grid datasets that are publicly and freely avail-
able. These include the IEEE test cases [2], the National
Grid UK [3], the Polish grid [4], and an approximate model
of the European interconnected system [5]. To the best of
our knowledge, among these, National Grid UK is the only
publicly available dataset with geographical locations. Even
if the data was available, it would be unwise to publish
vulnerability results which are based on real topologies, due
to the enormous cost of grid enhancements. Therefore, in
this paper we design the Geographical Network Learner and
Generator (GNLG) for generating synthetic networks with
similar structural and spatial properties to real power grids.
Such synthetic networks can be used for evaluation of various
methods and techniques.

To demonstrate the algorithm design and to evaluate its
performance, we focus on the transmission networks of the
North American and Mexican power grids using data that

Fig. 1: The Western Interconnection (WI) power grid with 14,302
substations (nodes) and 18,769 lines (edges).

we obtained from the Platts Geographic Information System
(GIS) [6]. We consider one of the two major interconnections
– the Western Interconnection (WI) (see Fig. 1) and two
regional entities that operate under the Eastern Interconnection
(EI) which is the other major interconnection – the SERC
Reliability Corporation (SERC), which is as large as the WI,
and the Florida Reliability Coordinating Council (FRCC),
which is much smaller than the WI. To the best of our
knowledge, this is the first time that the entire dataset of the
North American and Mexican grids as well as those of SERC
and FRCC are processed and analyzed1.

This paper is organized as follows. Section II reviews
related work. Section III describes the dataset and the metrics,
and presents the metrics for the different grids. Section IV
describes the GNLG Algorithm and Section V numerically
evaluates its performance. We conclude and discuss future
research directions in Section VI. Due to space constraints
more details on the structural properties of the networks and
evaluation results appear in a technical report [7].

II. RELATED WORK

The structural properties of various power grids (e.g., in
North America, some European countries, and Iran) were
studied in [8], [9], [10], [11], [12]. Most of these studies
considered one or two properties (e.g., average degree, degree
distribution, average path length, and clustering coefficient)
and computed it in a given power grid. In some cases a
certain class of graphs (e.g. small-word and scale-free graphs)

1Partial analysis of the WI dataset has been conducted before – see Section
II.
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Fig. 2: The degree distribution of the nodes in the NA&M, WI, SERC, and FRCC grids (in log-log scale). Linear regression lines with
slopes ζ = −4.28, ζ = −3.48, ζ = −3.93, and ζ = −2.76, respectively, are fitted to the tail distribution of the degrees.

TABLE I: Summary of the structural properties of the NA&M, WI,
SERC, and FRCC grids.

Network NA&M WI SERC FRCC
Number of Nodes (n) 55,231 14,302 12,946 1,312
Number of Edges (m) 70,088 18,769 16,658 1,780
Average Path Length (L) 26.66 17.33 19.71 11.68
Clustering Coefficient (C) 0.049 0.049 0.049 0.075
Degree Distribution (ζ) -4.28 -3.48 -3.93 -2.76

was suggested as a good representative of a power grid
network, based on one or two structural properties. However,
by comparing the WI with these models, [13] showed that
none of them can represent the WI properly.

More detailed models that are specifically tailored to the
power grid characteristics were proposed in [14], [15] but they
did not consider the nodes’ spatial distribution and the length
distribution of the lines. The spatial distribution of the nodes
is correlated with the length of the lines, and as mentioned
above, it is important to consider line lengths when designing
a method for synthetic power grid generation. While there are
several models for generating spatial networks [16], most of
them were not designed to generate networks with properties
similar to power grid networks. To the best of our knowledge,
this paper is the first to consider the spatial distribution of the
nodes in power grids and its importance in generating synthetic
networks with similar structural properties.

III. PRELIMINARIES AND STRUCTURAL PROPERTIES

In this section, we study the structural properties of the
entire North American and Mexican grid (denoted by NA&M)
as well as of the WI, SERC, and FRCC grids.

In addition to the number of the nodes and edges, we use
four metrics for classifying the structural properties of these
networks: average path length, clustering coefficient, degree
distribution of the nodes, and length distribution of the lines.
Table I includes these metrics for the NA&M, WI, SERC, and
FRCC grids.
Notation. We denote the WI, SERC, and FRCC power grid
transmission networks by graphs GWI , GSERC , and GFRCC ,
respectively. For each network, n and m denote the number
of the nodes and edges. di denotes the degree of node i and
pi ∈ R2 denotes its position. We define ρ as the average
Euclidean distance of a node from its N nearest neighbors.
We use the prime symbol (′) to denote the values for a

generated network (e.g., G′WI denotes the generated network).
All the logarithms in this paper are natural logarithms. All the
geographical distances in this paper are Euclidean distances
(i.e., ‖pi − pj‖2 is the distance between nodes i and j).

A. Average path length

The average path length, denoted by L, is defined as the
number of edges in the shortest path between two nodes, aver-
aged over all pairs of vertices: L = 1

n(n−1)
∑

i 6=j
i,j∈V

dist(i, j),

where dist(i, j) is the number of edges in the shortest path
between nodes i, j.

B. Clustering coefficient

The clustering coefficient, denoted by C and defined as
follows. For each node i, with degree di at most di(di− 1)/2
edges can exist between its neighbors N(i). Let Ci denotes
the fraction of these allowable edges that actually exist:
Ci = |{{r,s}|r,s∈N(i),{r,s}∈E}|

di(di−1)/2 . Then, averaging Ci over all
the nodes: C =

∑
i∈V Ci/n.

C. Degree distribution of the nodes

Fig. 2 shows the degree distribution of the nodes in the
NA&M, WI, SERC, and FRCC grids in log-log scale. These
figures may suggest that the tail of the degree distribution
follows a power-law distribution in all the three networks.
However, since these networks are finite, we do not have
enough statistical evidence to support the power-law hypoth-
esis. Therefore, we only use the slope (ζ) of the fitted linear
regression line to the tail distribution for comparison purposes.

In Section V, we use the Kolmogrov-Smirnov (KS) statistic
to compare the degree distribution of the nodes in a given
network and a generated network. If P (x) and Q(x) are two
Cumulative Distribution Functions (CDFs), the KS statistic
between them is defined as: DKS = maxx |P (x)−Q(x)|.

D. Length distribution of the lines

Fig. 3 shows the length distribution of the lines in the
NA&M, WI, SERC, and FRCC grids. The line lengths in
Figs. 3 are the actual lengths of the power lines (these lines
are not necessarily straight lines between two substation). To
enable the comparison between the length distributions of the
lines in the real and generated networks, in Section V we
use the point-to-point Euclidean distances to represent the line
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Fig. 3: The distributions of the actual line lengths (in km) in the NA&M, WI, SERC, and FRCC grids. Nonparametric distribution fits to the
log length distributions are shown in blue.

Algorithm 1: Geographical Network Learner and Gener-
ator (GNLG)

Input: G, {pi}ni=1, and parameters κ, α, β, γ > 0 and N ∈ N.
1: Generate a set of nodes with similar spatial distribution to the nodes in
G using the SDNG Procedure (Subsection IV-A).

2: Connect the generated nodes using the TWST Procedure
(Subsection IV-B).

3: Add more edges to the generated graph using the
Reinforcement Procedure (Subsection IV-B).

4: return the generated graph G′.

lengths in the real and the generated networks. For the detailed
statistics of the length of the lines see [7].

In Section V, we use Kullback-Leibler (KL) divergence to
measure the similarity between the length distribution of the
lines in a given network and a generated network. The KL-
divergence between two probability distribution functions p
and q is: DKL(p‖q) =

∫∞
−∞ p(x) ln p(x)

q(x)dx.

IV. GENERATING A SYNTHETIC NETWORK

In this section, we introduce the Geographical Network
Learner and Generator (GNLG) Algorithm (Algorithm 1) for
generating a synthetic network similar to a given network.
The algorithm first generates a set of nodes with similar
spatial distribution to the nodes in a given network (the SDNG
Procedure described in Subsection IV-A). Then, it connects the
nodes using two procedures (the TWST and Reinforcement
procedures described in Subsection IV-B). In the following
subsections, we describe the building blocks of the GNLG
Algorithm.

A. Node positions

The node positions are correlated with the population and
geographical properties (e.g., Fig. 1). Thus, the nodes can
be clustered into groups based on their geographical prox-
imity using mixture models and in particular Gaussian Mix-
ture Models (GMM). Hence, the Spatially Distributed Nodes
Generator (SDNG) Procedure uses the GMM for clustering
the positions and uses the Bayesian Information Criterion
(BIC) to find the best number of clusters (c). It obtains the
mean and covariance matrix (µj ,Σj) of the points in clusters
j = 1, . . . , c along with the categorical probability of the
clusters π = (π1, . . . , πc). Then, it uses these parameters to
generate n nodes with similar spatial distribution as the nodes
in a given network.

Procedure 1: Spatially Distributed Nodes Generator
(SDNG)

Input: G, {pi}ni=1.
1: Fit a GMM model to {pi}ni=1 to cluster them into c clusters that

maximizes the BIC.
2: For all i = 1, . . . , n sample zi from the categorical probability

distribution π obtained from GMM.
3: For all i sample p′i from the probability distribution N (µzi ,Σzi )

obtained from GMM.
4: return {p′i}ni=1.

Procedure 2: Tunable Weight Spanning Tree (TWST)
Input: n, {p′i}ni=1, and parameter κ.
1: A = {1, . . . , n}, σ is an empty array of size n.
2: for i = 1 . . . , n do
3: Sample a node from A such that the probability of sampling node j

is
‖p′j−p̄′‖−κ∑
a∈A ‖p′a−p̄′‖−κ .

4: σ(i) ← j, A← A\{j}.
5: for i = 2, . . . , n do
6: Connect node σ(i) to node σ(j∗) such that

j∗ = argminj<i‖p′σ(i)
− p′

σ(j)
‖.

B. Connections between the nodes

We introduce two procedures (steps 2 and 3 in the GNLG
Algorithm) for connecting the generated nodes. Their design
is inspired by the historical evolution of power grids. The two
main design consideration of the grid are (i) connectivity and
(ii) robustness.

1) Connectivity: In order for the power grid to operate, the
substations (nodes) should be connected. We present the Tun-
able Weight Spanning Tree (TWST) Procedure (Procedure 2),
which imitates the the gradual grid evolution. The procedure
uses the average node location, denoted by: p̄′ =

∑
i p′i/n.

It first orders the nodes in n rounds (see step 2) to obtain a
permutation of indices σ : {1, 2, . . . , n} → {1, 2, . . . , n}. At
round i, it samples a node j from the nodes that were not
already sampled with probability proportional to ‖p′j− p̄′‖−κ,
where κ is a parameter. It then sets σ(i) ← j. In step 5 it
connects each node σ(i) to its nearest neighbor σ(j∗) such
that j∗ < i.

The procedure results in a tree T = (VT , ET ) whose weight
(
∑
{i,j}∈ET ‖p

′
i − p′j‖) highly depends on the ordering of the

nodes, and thereby on κ. Fig. 4(a) shows the relationship
between the weight of the obtained tree and κ. Fig. 4(b) shows
the relationship between κ and the average path length in
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Fig. 4: (a) The weight of the spanning tree (in 103km) obtained by the
TWST Procedure on the nodes generated by the SDNG Procedure vs.
κ. Each point is the average over 10 generated trees. The blue dash-
dot line shows the weight of the MST and the red dashed line shows
the weight of the obtained spanning tree for κ =∞. (b) The average
path length in the spanning tree obtained by the TWST Procedure
on the nodes generated by the SDNG Procedure vs. κ. Each point
is the average over 10 generated trees. The average path length in a
specific MST (an MST may not be unique) is 520. The red dashed
line shows the average path length in the obtained spanning tree for
κ =∞.

Procedure 3: Reinforcement
Input: n,m, {p′i}ni=1, and parameters α, β, γ, η > 0, N ∈ N.
1: For each node i, compute ρi (the average distance of node i from its N

nearest neighbors).
2: for count = 1 to m− n+ 1 do
3: if large network: From all nodes with degree less than 3,

sample node i with probability ∝ ρ′−αi .
4: if small network: Sample node i with probability ∝ d′−ηi ρ′−αi .
5: Connect node i to node j sampled from all other nodes with

probability ∝ ‖p′i − p′j‖−βd
′γ
j .

the obtained tree. Overall, Figs. 4(a),(b) suggest that selecting
a relatively small κ results in a spanning tree with smaller
average path length than the MST and with a reasonable total
weight.

2) Robustness: We present the Reinforcement Procedure
(Procedure 3) whose objective is to increase the robustness of
the generated network and adjust its properties (e.g., L and
C) to resemble those of a given network. The procedure is
based on three observations: (i) the degree distributions of
power grids are very similar to those of scale-free networks,
but grids have less degree 1 and 2 nodes and do not have
very high degree nodes (e.g., Fig. 2), (ii) it is inefficient and
unsafe for the power grids to include very long lines (e.g.,
Figs. 3), and (iii) nodes in denser areas are more likely to
have higher degrees. The last observation is demonstrated by
Fig. 5 where as the degree increases, the ρ decreases2 (i.e.,
the density around a node increases).

The Reinforcement Procedure aims to create a network
whose properties are similar to those observed above. Hence,
it repeats the following steps m−n+1 times: (1) selects a low
degree node in a dense area (observations (i) and (iii)), and
(2) connects it to a high degree node (as in the preferential
attachment model [17]) which is also nearby (distance was not

2Recall that ρ is the average Euclidean distance of a node from its N
nearest neighbors.
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Fig. 5: The relationship between the degree of a node and its average
ρ with N = 10, for the nodes in the WI (the red line is the linear
regression fit to the data points).

Fig. 6: A network with 14,302 nodes and 18,769 edges generated
based on the WI grid using the GNLG Algorithm with κ = 2.5,
α = 1, β = 3.2, γ = 2.5, and N = 10.

considered in [17]) (observations (i) and (ii)).
To select a low degree node in a dense area, the Reinforce-

ment Procedure samples a node i with probability ∝ d−ηi ρ−αi .
However, as can be seen in Fig. 2, the distribution of the
degree 1 and 2 nodes is almost equal in the WI and SERC
grids. Hence, for large networks, the procedure only considers
degree 1 and 2 nodes and select a node among them with
probability ∝ ρ−αi . α and η are the tunable parameters.

To connect the node sampled in the previous step to a high
degree but nearby node, in the second step, the Reinforcement
Procedure connects node i to node j sampled from all other
nodes with probability ∝ ‖p′i − p′j‖−βd

′γ
j . This implies that

node i preferentially connects to a high-degree node, unless
the high-degree node is too far in which case it is desirable to
connect to a low-degree but nearby node.

V. EVALUATION

In this section, we use the GNLG Algorithm to generate
networks similar to the WI, SERC, and FRCC grids. We
evaluate the structural properties of the obtained networks and
show that they have similar properties to the real networks.
The details for the evaluation of the GNLG Algorithm on the
SERC and FRCC can be found in [7].

The network obtained by the GNLG Algorithm appears in
Fig. 6 and visually resembles the WI. We empirically selected
the following parameters values: κ = 2.5, α = 1, β = 3.2, γ =
2.5, and N = 10. To study the structural similarity between
the obtained network G′WI and the GWI , we evaluated G′WI
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Fig. 7: The degree distribution of the nodes in GWI and G′WI (in log-
log scale). Linear regression lines with slopes ζ = −3.48 and ζ =
−3.99 are fitted to the distributions of the nodes with degree greater
that 2 in GWI and G′WI , respectively. The KS statistic between the
degree distributions is 0.047.
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Fig. 8: The length (in km) distribution of the point-to-point lines in
GWI and G′WI and nonparametric distribution fit (shown in blue).
The KL-divergence between the length distributions in GWI and
G′WI is 0.14.

based on the metrics described in Section III. The clustering
coefficient and the average path length of G′WI are C ′ = 0.052
and L′ = 17.40, respectively, and are very close to those of
GWI (C = 0.049 and L = 17.33). Fig. 7 and fig. 8 also show
that the degree distribution of the nodes and length distribution
of the lines in GWI and G′WI are very similar.

Table II summarizes the structural properties of the WI,
SERC, and FRCC and corresponding Generated networks.
The results indicate that the Algorithm can generate synthetic
networks with similar structural properties to these grids.

VI. CONCLUSIONS

In this paper, we developed the Geographical Network
Learner and Generator (GNLG) Algorithm for generating syn-
thetic power grid networks with similar structural properties
to a given network. For a given network, step 1 of the GNLG
Algorithm and tuning the parameters need to be done only
once. Then, the algorithm can be used to generate several
networks similar to a given network.

In general, this is only a first step towards generation of
comprehensive synthetic power grid network as described in
a recent call by the U.S. department of energy [18] and there
are clearly several future challenges. Specifically, we plan to
improve the algorithm and to focus on locations of power
generators and demand nodes as well as on generation and
demand values. Moreover, we plan to compare the resiliency
of the generated networks to real ones to line failures using

TABLE II: Comparison between the structural properties of the WI
(GWI ), SERC (GSERC ), and FRCC (GFRCC ) and the Generated
WI (G′WI ), SERC (G′SERC ), and FRCC (G′FRCC ).

Networks L C ζ DKS DKL
GWI 17.33 0.049 -3.48 0 0
G′WI 17.40 0.052 -3.99 0.047 0.14
GSERC 19.71 0.049 -3.93 0 0
G′SERC 20.26 0.048 -4.12 0.047 0.081
GFRCC 11.68 0.075 -2.76 0 0
G′FRCC 10.81 0.045 -2.40 0.032 0.12

DC power flow model. Generation of topologies where the are
taken into account is also an interesting open problem.
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