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Abstract—TIn this paper, we quantify the effect of k-line failures
on flow changes using the DC power flow model. We demonstrate
that our approach results in efficient tools that can be used to
reduce both the total number of cases needed to be analyzed and
the computational complexity in power grid contingency analysis.
After providing an analytical update of the pseudo-inverse of the
admittance matrix following a k-line failure, we compute the
k-line outage distribution matrix. The k-line outage distribution
matrix is a generalization to the line outage distribution factor
for single line failures. We obtain a matrix equation based on the
submatrices of the matrix of equivalent reactance values, relating
changes in power flows to the initial flows on the failed lines.
We also define and analytically compute the disturbance value of
a failure — the weighted sum of squares of the flow changes
— and show that it can be computed for any set of failures
in O(1) independent of the size of the power grid. Finally, we
numerically compute disturbance values for all possible choices
of 3-line failures in IEEE 118-bus and 300-bus systems and show
that the disturbance values provide a clear separation between
failures with higher impact and lower impact.

I. INTRODUCTION

Recent large scale power grid blackouts in Turkey (2015),
India (2013), and the U.S. (2003) exposed the insufficiency of
current control tools to protect the grid against cascading fail-
ures. A tremendous amount of research in the past decade has
focused on resolving this problem by developing monitoring
and control techniques to make power grids more robust and
secure. The problem of contingency identification is one of
the important research directions focusing on improving the
reliability of power grids [[I[I, [2]1, [3[I, (41, [S, [6]. [7]I, [8].
A specific problem is how to detect all possible failure events
that can hinder the regular operation of the grid.

Many great ideas have been developed for contingency
analysis in power grids since the advent of the modern power
transmission network. Current injection methods were used
to analyze the effect of line failures in [2], [S]], [8], [9]. In
particular, [9] introduced the notion of line outage distribution
factors that inspired many other studies including the work
presented in this paper. In [1]] and [10], multiple matrix updates
were used to study the effect of single line failures and to speed
up the computation of the power flows after line failures. [7]
used matrix updates to study the effect of two line failures
and used the results to introduce an algorithm for the NV — 2
contingency problem. More optimization-based techniques for
contingency analysis of the grids were explored in [3]], [4]. A
mixed-integer model for the N — k contingency problem was

presented and used in [3]], while [4]] focused on identifying the
most probable failure modes in static load distribution using a
linear-program. In a more recent innovative paper, probabilistic
algorithms were developed to identify collections of multiple
contingencies that initiate cascading failure [11]].

In this paper, we build on the result of [10] that focused on
single line failure events and provide a metric for quantifying
the effect of k-line failures on flow changes. Similar to the
most of the previous work on contingency analysis, we use the
linearized DC approximation of the power flows, due to the
complexities associated with the AC power flow model [12].
First, we present an analytical update of the pseudo-inverse of
the admittance matrix after a k-line failure event. While our
approach is similar to [[13[], we use the pseudo-inverse instead
of the truncated inverse of the admittance matrix. Using this
result, we define and analytically compute the k-line outage
distribution matrix which generalizes the definition of the line
outage distribution factors for single line failures [9].

While a k-line outage distribution matrix captures all effects
of a k-line failure on flow changes, it is not efficient to
compute and store this matrix for contingency analysis in large
power grids. To overcome this problem, we use the matrix of
equivalent reactance values originally defined and used in [[10]]
to efficiently compute the sum of changes in the power flows
after k-line failures and to provide a metric that captures the
essence of flow changes after failures. In particular, we provide
a matrix equation based solely on the submatrices of the matrix
of equivalent reactance values, relating the changes in power
flows to the initial flows on the failed lines. Since the matrix of
equivalent reactance values needs to be computed only once,
this matrix equation can be written for any k-line failures
without further computations. We also define and analytically
compute the disturbance value of a failure (the weighted sum
of squares of the flow changes) and show that this computation
can be done for a k-line failure in O(1) as long as & is much
smaller than the total number of lines, the case in contingency
analysis of the power grids. Hence, the effect of k-line failures
can be computed independent of the size of the grid using our
metric and results.

To show that disturbance values provide a clear separation
between failures with higher impact and lower impact, we
compute the disturbance values for all possible choices of 3-
line failures in the IEEE 118-bus and 300-bus systems. We
demonstrate that by ranking cases based on their disturbance



values and considering only cases with high disturbance value,
we are able to decrease the total number of cases needed to
be analyzed for contingency analysis by more than 96%.
The remainder of this paper is organized as follows.
Section |lI| describes the model and provides definitions. In
Section we analyze the effect of k-line failures and
provide results to quantify these effects. Section presents
numerical results, and Section [V| provides concluding remarks
and suggestions for future work. Some proofs and lemmas are
moved to the Appendix to make the text easier to read.

II. MODEL AND DEFINITIONS
A. DC Power Flow Model

We adopt the linearized (or DC) power flow model, which
is widely used as an approximation for the non-linear AC
power flow model [[14]], [15]. We represent the power grid
by a connected directed graph G = (V,E) where V =
{1,2,...,n} and E = {ey,...,ey} are the set of nodes
and edges corresponding to the buses and transmission lines,
respectively (the definition implies |V| = n and |E| = m).
Each edge e is a set of two nodes e = (u,v). p, is the active
power supply (p, > 0) or demand (p, < 0) at node v € V
(for a neutral node p, = 0). We assume pure reactive lines,
implying that each edge e = (u,v) € E is characterized by
its reactance T, = Ty, = Ty > 0.

Given the power supply/demand vector p’ € R™*! and the
reactance values, a power flow is a solution f € R™*1 and
6 € R™*1 of:

Af =7, (1)
YD'4 = f, 2)
where A € RIVI*XIVl is the admittance matrix of G| defined
as:
0 if u# v and {u,v} ¢ E,
—1/Zye if u#v and {u,v} € E,
- ZweN(u) Oy i u =m0,

D e {—1,0,1}"*™ is the incidence matrix of G defined as,

Ayy =

0  if e; is not incident to node 1,
dij = 1
—1 if e; is going into node 1,

and Y := diag([1/ze,,1/%e,, ..., 1/, ]) is a diagonal ma-
trix with diagonal entries equal to the inverse of the reactance
values. It is easy to see that A = DYD".

Since A is not a full-rank matrix, we follow [10] and use the
pseudo-inverse of A, denoted by A™ to solve (1)) as: 6= ATp.
Once 0 is computed, f, can be obtained from .

Notation. Throughout this paper we use bold uppercase
characters to denote matrices (e.g., A), italic uppercase char-
acters to denote sets (e.g., V'), and italic lowercase characters
and overline arrow to denote column vectors (e.g., 5). For a

if e; is coming out of node 1,

"When 7y, = 1 V{u,v} € E, the admittance matrix A is the Laplacian
matrix of the graph.

matrix Q, g;; denotes its (1, j)‘h entry, Qt its transpose, and
tr(Q) its trace. We denote the submatrix of Q limited to the
first k£ columns by Q,, and the submatrix of Q limited to the
first k£ rows and columns by Qy;,. For a column vector ¢, it
denotes its transpose, and %) denotes the subvector of 4 with
its first k entries. We use k to show the indices other that 1
to k (e.g., ]E;; denotes the subvector of f with its £ +1 to m
entries).

B. Failure Model

In this paper, we consider failures in a subset of size k
of lines denoted by L C FE. Without loss of generality, for
convenience we assume L = {ey,ea,...,e;}. We denote the
graph after failures by G’ = (V/, E’), in which E' = F — L
and V' = V. We also assume that removing edges in L from
G does not disconnect the graph. Hence, G’ is connected.
Upon failures, the power flows redistributed in G’ based on
the equation A’ 0 = P, in Wthh A’ 1s the admittance matrix
of G'. Moreover, we define A fk = fk fk to show the flow
changes on the lines in E\ L after the failure in lines in L.

It is easy to see that A’ = A — DkYk|kD§€- In Section
we use this equation to compute A’" and quantify the effect
of k-line failures.

C. Matrix of Equivalent Reactance Values

Define matrix R € R™*™ as R := D'ATD. It is easy to see
that for any V1 < i < m : ry; is equivalent reactance between
end buses of the line e;. Matrix R is a symmetric matrix and
very useful in quantifying the effect of line failures. In fact,
in [10] we used this matrix to quantify the effect of single
line failure when all the reactance values are equal to 1. In
Section we generalize the idea in [10] for k-line failures.

ITII. FAILURE ANALYSIS

In this section, we study the effect of k-line failures on
the flow changes on the other lines. First, in the following
lemma, we generalize the results in [10] for single line failures
and provide an analytical update of the pseudo-inverse of the
admittance matrix following a k-line failure.

Lemma 1: If G’ is connected,

lyl/2pt AT,

AT = AT ATDLY, - Y PDLATDLY Y

kK kK klk

Proof: First, from Lemma in the Appendix, since G’

is connected, [I — Yi{fD A+DkY]1¢|/]§]’1 is defined. Now to
show the equality, it is easy to see that AAT = I — %J, in
which I is the identity matrix and J is all 1 matrix (For more

details see [[10, Theorem 1]). Hence, from [[16, Theorem 4.8],

since A’ = A — DY,Df, = A — DY, [7(DY, (7). the

pseudo inverse of A’ can be computed as,
+ A+ + 1/2 1/2 + 1/27—1+y/1/2 +
AT =AT+A DkYklk[I Yk‘thA DkYk|k:] Yk‘kD A"
|



From Lemma the changes in phase angles after k-line
failures can be computed as,

0 —0= (A" ANy

— A+DkY,1€‘/,€2 - Y,lcl/,fD;A+DkY,1€‘/,f]—1Y,1{,3D§€A+p*
— A+DkY11€‘/kQ - Y,lcl/,fDZAJerYllc‘/z]*lY;ﬁfﬁ
— A*DkY;‘/j[I - Y;{ij‘kY,ﬁ{j}*lYmﬂﬁ. 3)

Using (3), we can compute the changes in the flows as,

AN VA + 1/2 1/2 1/21—1y—1/2
Afy= YklkD%A DiY L Yk\kRk\leqk] Yo fr

v, b, vl/2 1/2 1/27—1yv—1/2 7
_Yk|kRk\kYk|k[I_Yk‘kRkUcYk‘k] Yk‘k fk- (4)

It is important to see that Y,;‘ER,;“CY%E[I

Y ORy Y, 2171Y, )/ is independent of 7 and solely
depends on the structure properties of the network. Hence,
following a similar definition in [9] for single line failures,
we define this matrix as k-line outage distribution matrix and
denote it by £ := YRy Y, 21— Y, "Ry Y, 21 1Y /%
Hence, Af; = Lfy.

While k-line outage distribution matrix captures all effects
of a k-line failure on the flow changes, it is not efficient to
compute and store it for contingency analysis in large power
grids. In order to overcome this problem, we use the matrix of
equivalent reactance values to efficiently compute the sum of
changes in the power flows after k-line failures and to provide
a metric to capture the essence of the flow changes after
failures. The following lemma is the main step towards this
goal. It demonstrates that Y'/2RY"/? is an idempotent matrix.
We use this property, to provide the results in Corollaries
and

Lemma 2: YY?RY'? = Y~'/?2D*DY"/?, and therefore
(Y1/2RY1/2)2 — Y/2RYL/2.

Proof- We know from before that R = D'A™D and A =
DYD! = (DY'/2)(DY'/?)*. Hence,

Yl/QRYl/Q — Yl/QDtA-‘rDYl/Q — (DYl/Q)tA+(DY1/2)
+
— (DY]./Q)t((DYI/Q)(DY1/2)t) (DY1/2)
— (DYl/Q)t((DYl/Q)t)+(DY1/2)+(DY1/2)
— ((DY1/2)+(DYl/Q))t(DY1/2)+(DYl/Q).
From the properties of the pseudo-inverse,

(DYl/ 2)+(DY1/ %) is a symmetric matrix. Moreover,
(DY'/2)*+(DYY/2)(DY'/2)+ = (DY/2)*. Therefore,

Y1/2RYY/2 — (DY1/2)+(DY1/2)(DY1/2)+(DY1/2)
= (DYY%) T (DYY/?) = Y V2D DYY/2
From this,
(Y1/2RY1/2)2 _ (Y71/2D+DY1/2)2
=Y /?D*DD*DY'/?
_ Y71/2D+DY1/2 — YI/QRYl/z.

Corollary 1: RyzAf; = Ry fr.

Proof: To make equations cleaner in the proof, define
H := Y'/2RY"2, From Lemma H? =H. Hence, if we use
block multiplication, then Hy, = Hi‘k + Hy,;Hj;. Using
this equation,

Af_l% = Y}}|1;R;;‘lel€|/]3 - Yl/QRk‘kyl/Q]—1Y—1/2f—;€

K|k klk k|k

;‘YifﬁkaAﬁ; = Hy ; Hg), [I - Hk|k]71Y;|}€/2fl’c
1/2 P —1/2 7
:>Yk.|/kRk|1;Afz; = HkaYk‘k/ i

2 g 2 e - o
:Yllvl/kRkll_fAffc = Yllf\/kRk\kfk = Ry i ASi = Ryji fre-

Corollary |1{ shows the use of matrix R in evaluating the effect
of k-line failures without computing the flows directly. This
equation can be used to estimate the effect of k-line failures
and is useful in reducing the total number of cases that are
needed to be analyzed in contingency analysis. Since the
matrix of equivalent reactance values needs to be computed
only once, the matrix equation in Corollary || can be written
for any k-line failures without further computations.

Although Corollary [T] does not depend on the computation
of the flows after the failure, it still needs O(m) operations to
provide the vector of the flow changes. Hence, to quantify the
effect of k-line failures more efficiently, in the following, we
define a metric that captures the effect of k-line failures by a
single value and show that it can be computed in O(1).

We define Af%Ygé
failure. It is easy to see that y;—lA fi captures the changes
in the phase angle differences between the end buses of a

single line. Hence, the disturbance value A fl

Af; as the disturbance value of a

J’ZYM}ZAJC k=
> it Yis 'Af? reflects both the big phase difference
changes (which is important for the stability of the system) and
the big flow changes (which is important for thermal safety
of a line). In the following lemma, we provide the key step in
computing the disturbance value of a failure analytically and

efficiently in Corollary 2]

For convenience in equations, define B =
= YPR Y, and @ = Y%{;RWY}C‘/}?[I -
Yllc{lka“f il/,f}’l From , we know Y;I%/QA]"% =
oY, i

Lemma 3: ®'® = —1+ B.

Proof: To make equations cleaner in the proof, define
H := Y'/?RY"2. From Lemma H? = H. Hence, if we use
block multiplication, then Hy, = Hi‘k + Hy, ;Hys,- Thus,

Hy i, = Hy, + HypHy), = Hypp [T — Hyp] = Hy g Hy



It is easy to see that @ = Hy,[I — Hy]~'. Hence, using
equation above,

®'® = [I - Hy| "Hy ;Hyp [T — Hye] ™

= [[— Hy] ' Hyp,

= [I— Hyppe] " Hygpe — [T— Hype] ™" + 1= Hyppe] 7!
—[1— Hyp] ' [~Hgpp + 1 + [T — Hy, ]!
=TI+ [I—-Hy,] ' =-I+B.

|
Corollary 2: Af,%YgI}—CAf',; = f,ﬁY;ﬁcﬂ[—I + B]Y;ﬁcmf;;.

Corollary 2] provides a very important tool for contingency
analysis in the power grids. It shows that the disturbance value
of a k-line failure can be computed in O(k3) time which is
independent of the size of the network and only depends on
the size of the initial failures. Notice that when £ << m,
O(k3) ~ O(1). Corollary [2| can be used for fast ranking of
the contingencies based on the disturbance values and pruning
most of the cases based on this value. This can significantly
reduce the time complexity of the contingency analysis for
large k. In the next section, we compute the disturbance values
for all possible choices of 3-line failures in IEEE 118-bus and
300-bus systems and show that the disturbance values provide
a very clear separation between the important cases and less
important cases.

IV. NUMERICAL RESULTS

We computed the disturbance values for all possible choices
of 3-line failures in IEEE 118-bus and 300-bus systems. Since,
IEEE 118-bus system has 186 lines, it is easy to see that there
are (126) = 1055240 possible choices for the initial set of
failures. Using the method provided in Corollary [2] we could
compute the disturbance values for all set of failures (and
detect cases that disconnect the grid) in less than a minute.
Out of those, 159591 of them make the graph disconnected.
The cumulative distribution function of the disturbance values
for the rest of 895649 cases are shown in Fig. [I] As can be
seen, most of the cases do not result in a high (more than
10000) disturbance value. Only 4% of the cases (38130 of the
cases) have a significant disturbance value. The figure suggests
that our metric can provide a very clear separation between
the failures with higher impact and lower impact.

Fig. 2| shows the cumulative distribution function of the
disturbance values for all possible 3-line failures in IEEE 300-
bus system that do not disconnect the grid (5473725 cases).
As can be see, again most of the cases do not result in a high
disturbance value and only less than 4% of the total cases have
a significant disturbance value[]

The numerical results support our previous statement that
the disturbance values can significantly reduce the total num-
ber of cases that are needed to be considered in the con-
tingency analysis of the grids. Moreover, since Corollary [2]

2Notice that the threshold level for “high disturbance value” depends on
the level of safety that a system operator likes to maintain. As can be seen in
Figs. and more than 80% of the cases result in a very small disturbance
value. Hence, selecting 1% to 20% of the cases with the highest disturbance
value for deeper analysis is enough depending on the level of safety.
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Fig. 1: The cumulative distribution function of the disturbance values
for all 3-line failures in IEEE 118-bus system that does not disconnect
the grid.
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Fig. 2: The cumulative distribution function of the disturbance values
for all 3-line failures in IEEE 300-bus system that does not disconnect
the grid.

provides a very fast way of computing the disturbance values,
our method can significantly decrease the time complexity of
the contingency analysis in power grids.

V. CONCLUSION

The results in this paper provide efficient tools for quanti-
fying the effect of k-line failures. The most unique aspect of
our approach is the use of the matrix of equivalent reactance
values to efficiently capture the effect of k-line failures. We
defined the disturbance value of a failure and show that this
metric can be computed for any set of failures in O(1). Our
numerical results showed that disturbance values provide a
clear separation between the failures with higher impact and
lower impact. The tools we developed can be used to reduce
the total number of cases needed to be analyzed in contin-
gency analysis and can significantly reduce the computational
complexity associated with this analysis.

While our method detects failures that make the grid dis-
connected, we plan to extend the definition of the disturbance



value to these failures for ranking their severity. Moreover,
although our results are comprehensive and support the DC
power flow, they can be equally significant for the AC power
flow model. Our goal is to extend the work presented here
to flow changes after k-line failures for the AC power flow
model.
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APPENDIX A

The following lemma is the generalization of [10, Lemma
1] and similar to the idea used in [13, Theorem 2] to detect the
connected components after multiple line failures. Our proof is
different from the proof of a similar Theorem in [[13, Theorem
2].

Lemma A.1: Matrix I =Y
and only if G’ is connected.

Proof: First, it is easy to see that I — Y,lc‘/ k2 D2A+DkY,1€|/ ]f
is invertible if, and only if I—Yk‘kDZA’LDk is invertible. Now

1/2
K|k

D} ATD,Y,/ is invertible if,

assume, G’ is disconnected. Without loss of generality, assume
C = {ej,es,...,e.} is a minimal subset of {ey,es,...,ex}
such that G\C is disconnected. Since, C' is a minimal subset,
G\ C has only two connected components GG and G and each
e; € C has one end in GG; and the other end in G2. Again
with out loss of generality, assume that all the edges in C' are
directed from G, to G3. We prove that vector o € {1,0}*
defined as v; = y;; for @ < r and v; = 0 for ¢ > r is an
eigenvector of Y;€|,€D}ZA+D;~c associated with the eigenvalue
1. Notice, that if p’= Dy, then §; =1 fori € Gy and 0; =0
for ¢ € G2 gives a solution to DC power flow problem in G.
It is easy to see that in this setting f;; = ¥. On the other hand,
f;; = Yk|kD};A+ﬁ, and since f;; = v and p = Dy, therefore
Yk|kD};A+DkU = ¥. Hence, YWCD};A'*'D;c has eigenvalue 1
and I — Yk‘kDi.A"’Dk is not invertible.

Now assume, I — Yy, kD2A+Dk is not invertible. Then, I —
Yk|kD§CA+Dk has an eigenvalue 0 and Yk‘kDiAJ“Dk has an
eigenvalue 1. Assume 7 is the eigenvector associated with the
eigenvalue 1 of Yk|kD§€A+Dk. It is again easy to see that
if p = Dy, then ﬁ = 7 is the solution to the power flow
problem in G. From the flow conservation equations, it is also
easy to verify that f,'; = 0. Now, by contradiction assume G’ is
connected. Then, there should be a path in G’ from a node 7 to
node j such that 8; # 6;. Therefore, there should be an edge
e = (w, z) in this path such that 6,, # 6, and thus f. # 0.
However, since e € G’ and f;; = 0 we know that f, = 0
which is a contradiction. Therefore, G’ is not connected.

From the proof it is easy to see that if ¥' is an eigenvector
associated with the eigenvalue 1 of Yy, kchA+Dk, then nodes
with the same phase angle values in the solution of the power
flow problem in G with § = D¢ form a connected component
in G'. ]
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