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Summary

We use the mutual edge flow change ratios (the ratio

between the change of flow on an edge, and the initial flow

on the failed edge) to evaluate the topological robustness

of power grids to line failures. In particular, we show

that mutual edge flow change ratios are independent of

the power supply/demand distribution and solely depend

on the grid structure. Then, we define and analytically

compute the failure cost of an edge and the average edge

failure cost in a graph, and demonstrate that the results

can be used to study the robustness of power grids to a

single line failure.

Model

We adopt the linearized (or DC) power flow model, which

is widely used as an approximation for the AC power flow

model [1,4]. We represent the power grid by an undirected

graph G = (V,E) where V and E correspond to the buses

and transmission lines, respectively. pv is the active power

supply (pv > 0) or demand (pv < 0) at node v ∈ V (for

a neutral node pv = 0). We assume pure reactive lines,

where each edge {u, v} is characterized by its reactance

xuv = xvu. A power flow is a solution (f, θ) of:∑
v∈N(u)

fuv = pu, ∀ u ∈ V (1)

θu − θv − xuvfuv = 0, ∀ {u, v} ∈ E (2)

where N(u) is the set of neighbors of node u, fuv is the

power flow from node u to node v, and θu is the phase

angle of node u. Eq.(1)-(2) are equivalent to the matrix

equation: AΘ = P , where Θ ∈ R|V |×1 is the vector of

phase angles, P ∈ R|V |×1 is the power supply/demand

vector, and A = [aij ] ∈ R|V |×|V | is the admittance matrix
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of the graph G. The power flow equations can be solved by

using the Moore-Penrose Pseudo-inverse of the admittance

matrix, A+ = [a+ij ] [2].

To study the effects of a single edge (e′) failure, we

define the ratio between the change of flow on an edge,

e, and the initial flow on the failed edge, e′, as mutual

edge flow change ratio: Me,e′ = |∆fe/fe′ |. The mutual

edge flow change ratio corresponds to the Line Outage

Distribution Factor (LODF) defined in [4, P. 307].

Failure Impact

The following theorem provides an analytical rank-1 up-

date of the pseudo-inverse of the admittance matrix.

Theorem 1. If {i, j} is not a cut-edge, then,

A′+ = (A+aijXX
t)+ = A+− 1

a−1ij +XtA+X
A+XXtA+

in which X is an n× 1 vector with 1 in ith entry, −1 in

jth entry, and 0 elsewhere.

Corollary 1. The flow on an edge {r, s} after a failure

in the non-cut-edge {i, j} is,

f ′rs = frs −
ars
aij

(a+ri − a+rj)− (a+si − a+sj)
a−1ij − 2(a+)ij + (a+)ii + (a+)jj

fij .

To focus solely on topological robustness, in this abstract

we assume that xuv = 1 ∀{u, v} ∈ E. In this case, the

admittance matrix A is the Laplacian matrix of the graph

and using Corollary 1 the mutual edge flow change ratios

can computed as follows.

Lemma 1. The mutual edge flow change ratio for an

edge e = {r, s} ∈ E after a failure in a non-cut-edge

e′ = {i, j} ∈ E is,

Me,e′ =
∣∣∣ (a+ri − a+rj)− (a+si − a+sj)
−1− 2(a+)ij + (a+)ii + (a+)jj

∣∣∣.
The Lemma implies that the mutual edge flow change

ratios are independent of the power supply/demand dis-

tribution and solely depend on the grid structure.
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Network Robustness

Definition. The failure cost of an edge e in G is

denoted by FCe and defined as follows: FCe :=
1

m−1
∑

e′∈E
e′ 6=e

(Me′,e)
2.

The failure cost of an edge e is a good measure of

the average changes that occur in the flows of the other

edges as a result of the failure in an edge e. Determining

the costs can help constructing a reliable power grid in

two ways: (i) by designing networks with a minimum

maximum failure cost, and (ii) by setting the power supply

and demand values such that edges with high failure costs

carry small flows. The following Lemma analytically shows

the relation between the failure cost of a non-cut-edge

and the resistance distance between its end nodes. The

resistance distance between two nodes i, j ∈ V is r(i, j) :=

a+ii + a+jj − 2a+ij .

Lemma 2. In a connected graph G, for any non-cut-edge

e = {i, j},
FCe =

1

m− 1

r(i, j)

1− r(i, j) . (3)

Eq. (3) is very insightful. Intuitively, it demonstrates

that failures in edges with high resistance distance values

have a strong effect on the other edges. Moreover, (3)

allows to obtain a bound on the average edge failure cost,

which is defined below as a metric for the robustness of a

graph to a single edge failure.

Definition. In a graph G with n nodes and m edges,

the average edge failure cost is defined as, FCG :=
1
m

∑
e∈E FCe.

Using (3), the following Lemma provides a lower bound

on the average edge failure cost in a graph.

Lemma 3. In a 2-edge-connected graph G,

1

m

(m− 1

n− 1
− m− 1

m

)−1
≤ FCG, (4)

and equality holds, if for any two edges e = {i, j} and

e′ = {p, q}, r(i, j) = r(p, q).

Corollary 2. In a symmetric graph G, FCG = (m
2−m
n−1 −

(m − 1))−1. Moreover, for any graph H with the same

number of nodes and edges as G, FCH ≥ FCG.

Corollary 2 demonstrates that symmetric graphs have

the lowest average edge failure cost among all the graphs
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Figure 1: The average edge failure cost of the graph

(FCG) and the maximum mutual edge flow change ratio

(maxe,e′∈E Me,e′) versus the probability of rewiring (p) in

a Watts and Strogatz graph with 30 nodes and 60 edges.

Each point is the average over 100 generated graphs with

the same parameters.

with the same number of nodes and edges. Moreover,

from Lemma 3 and Corollary 2 it can be concluded that

as graphs become more symmetrical, their average edge

failure cost (FCG) decreases. To demonstrate this nu-

merically, Fig. 1 shows the average edge failure cost of

the graph (FCG) and the maximum mutual edge flow

change ratio (maxe,e′∈E Me,e′) versus the probability of

rewiring (p) in Watts and Strogatz graphs [3] with 30

nodes and 60 edges. Initially (p = 0), G is a 4-regular

graph (namely, every node is connected to exactly 4 other

nodes). However, as p increases, G tends toward a random

graph with no symmetry. Thus, an increase in p in the

Watts and Strogatz graph can be considered as decrease

in the symmetry of the graph. As expected, the figure

shows that as p increases, both the average edge failure

cost of the graph (FCG) and the maximum mutual edge

flow change ratio (maxe,e′∈E Me,e′) increase.

Overall, the results suggest that as graphs become more

symmetrical, they become more robust against single edge

failures.

References

[1] D. Bienstock and A. Verma. The N − k problem in power grids:
New models, formulations, and numerical experiments. SIAM
J. Optimiz., 20(5):2352–2380, 2010.

[2] S. Soltan, D. Mazauric, and G. Zussman. Analysis of failures in
power grids. IEEE Trans. Control Netw. Syst. (to appear).

[3] D. J. Watts and S. H. Strogatz. Collective dynamics of small-
world networks. Nature, 393(6684):440–442, 1998.

[4] A. J. Wood and B. F. Wollenberg. Power generation, operation,
and control. John Wiley & Sons, 3rd edition, 2012.

2


	Model
	Failure Impact
	Network Robustness


