

Experimental Evaluation of Large Scale WiFi Multicast Rate Control

Varun Gupta*, Craig Gutterman*, Gil Zussman*, Yigal Bejerano°
*Electrical Engineering, Columbia University

°Bell Labs, Nokia

Objective & Motivation

- Provide rich multimedia content to users in crowded areas
- Multicast substantially reduces bandwidth requirements
- Unicast: Large number of Access Points, frequency planning

Multicast in WiFi

Unreliable packet delivery in

- Access Point (AP) has no information of user channel conditions
- Individual packet ACKs → feedback flooding
- AP uses fixed low bit rates to ensure reliable delivery of packets
- **Objective:** Provide high throughput with Service Level Agreement (SLA) guarantees

Approach

- Practical solution for multicast to hundreds of users
- Adaptive multicast with light-weight feedback mechanism
- Loss protection with FEC, e.g., 15% redundancy
- Meet SLA requirements, e.g., 85% packets to 95% of user

Implementation

- Application layer
- Technology agnostic (WiFi, LTE)

Related Work

	Scalable	SLA Guarantees	High Throughput	Standards Compatible	Large Scale Evaluation
Basic WiFi Multicast	✓			√	
Multicast with feedback from all users		1		1	
Unicast		✓		1	
Leader Based Protocols: ACK based (Alay et. al, 2010) NACK based (Lim et. al, 2012)	✓				
Forward Error Correction (FEC) based			1	1	
A/uSe	1	1	1	1	1

Overview

- I. Background & Problem Definition
- 2. Related Work
- 3. System Design
- 4. Multicast Rate Adaptation Algorithm
- 5. AMuSe System Performance
- 6. Summary and Future Work

Architecture

Experimental Environment

- 20x20 grid with 400 WiFi nodes at Rutgers University
- 4 external noise generators at corners

AP	1.																				
1	V		52		41	36				41	36	32	31	36	28	31	29	32		25	1
2	_	54			32				35	34		35	39		34		34	30			i)
3	40	49		46	43	35	37		36	32	39	33			34	29	28		29		1
4		38						33	36			35			31		33		28	25	ì
5		36	50		39			32	31			35		29			37	29	33		1
6		38	22		40		40	30									24	30	34	31	1
7	50				37	29	35	39			22	31	31	26	25		31	21			ì
8			44		33	47	30		28	30	32	33			24	29	27	36	27		
9			38		36	36		33	31	25		34			23	31	28	24		32	
10	30	25		36	38			20				29		29		30	35				
11					33	27		26		31				32		28	30			29	1
12			39	34		33			27	33	25			29		_0			25		1
13				36					26	29	20	29		2	5	34			31		1
14						25				24						29	27	32		27	1
15		30				41							33	25					27		1
16			21				29	30		25	30			33				30		35	1
17			28			30	31		31	34	27				35		29	30		29	1
18		38			28				31	28	26			27	34	33				29	
19	38		25		34	32	33			30	30			22			30				1
20			27				28		31		32		21				25			27	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
LQ	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50	52	54	56	58))

Parameter	Setting				
Transport Protocol	UDP				
Noise	On/OffAWGN				
Transmit Power	0 dBm				

Key Observations

PDR vs. Link Quality at 6Mbps

Even at low bit-rates, nodes with low Packet Delivery Ratio (PDRs) -

Abnormal nodes

Impossible to have high network utilization while satisfying all users

Key Observations

PDR vs. Link Quality at 36Mbps

PDR vs. Link Quality at 48Mbps

- Target Rate maximizes the network utilization while meeting SLA
- Nodes with same Link Quality (LQ) have significantly different PDRs
 - Receivers have different sensitivities, uncalibrated etc

Light Weight Feedback Mechanism

- Y. Bejerano et.al., Scalable WiFi Multicast Services for Very Large Groups, In Proc. IEEE ICNP'13, 2013.
- V. Gupta et.al., Light-weight Feedback Mechanism for WiFi Multicast to Very Large Groups Experimental Evaluation, IEEE/ACM Transactions on Networking (to appear).

Multicast Dynamic Rate Adaptation (MuDRA)

MuDRA

Satisfy SLA requirements while maintaining high throughput

- At time t, number of nodes with PDR < L (denoted by A_t) should be less

than A_{max}

FargetrainteViolated >
Reduce Rate

- Determine target bit-rate
 - Why:At rates > target rate, too many nodes receive low PDRs
 - Challenge: Link Quality is unreliable on commodity WiFi

MuDRA Outline

- Property I: If rate is below target rate then almost all nodes have
 PDR close to 100%
- Property 2: At the target rate, there is a threshold H such that nodes with L < PDR < H turn abnormal after a rate increase
 - Refer to these nodes as mid-PDR nodes
 - Rate increase requires 2-3dB higher SNR at the nodes

Conditions for Rate Change

- Abnormal nodes measured from feedback \hat{A}_t
- Mid-PDR nodes measured from feedback \hat{M}_t

Lemma:

For AMuSe feedback scheme, $\hat{A}_t > \min(A_t, A_{max} + \epsilon)$, and $\hat{A}_t + \hat{M}_t > \min(A_t + M_t, A_{max} + \epsilon)$.

AMuSe feedback can always accurately test the rate change conditions

Ensuring Stability

- Video streaming sensitive to rate changes
- Reducing bitrate maybe sub-optimal for short term
 - Fast-fading, bursty noise etc.
- Window-based mechanism to avoid frequent rate switches

MuDRA Performance

One instance of rate adaptation for a duration of 300s (170 nodes)

Bit-rate Adaptation at AP vs. time

- MuDRA converges fast to the target rate
- Rate is stable in the present of bursty interference

Mid-PDR and Abnormal nodes vs. time

 Spike in number of abnormal nodes corresponds to not meeting target

System Performance

AMuSe vs. Other Schemes

Pseudo-multicast

- Unicast to the user with weakest link quality
- Remaining users listen to the channel in promiscuous mode
- Employ a unicast rate adaptation algorithm at the AP

Performance of pseudo-multicast with the "Minstrel" rate adaptation algorithm

Throughput and Node Performance

- Pseudo-multicast: tuning multicast to the weakest receiver
- Several experimental runs over different days and times

	No Background Traffic	Background Traffic
Fixed Rate = 36 Mbps	20.42	13.38
AMuSe	19.45	11.67
Pseudo Multicast	9.13	2.36

AMuSe satisfies SLA constraints

Video Performance

Video Quality	PSNR Range				
Excellent	>37				
Good	31-37				
Fair	25-31				
Poor	20-25				
Bad	<25				

User perception based on PSNR

Mapping video packets to wireless packets, 85% FEC

Demo Tomorrow

- V. Gupta et. al., "AMuSe: Large-scale WiFi Video Distribution Experimentation on the ORBIT Testbed," in Demo at IEEE INFOCOM'16, 2016.
- V. Gupta et. al., "WiFi Multicast to Very Large Groups Experimentation on the ORBIT Testbed," in Demo at IEEE LCN'15, 2015.

Summary & Future Work

Summary

- Design and implementation of AMuSe: a scalable and efficient system for WiFi multicast
- Experimental evaluation on > 200 nodes
- Demonstration of video delivery through AMuSe to
 200 nodes Tomorrow 10:00am at Grand Ballroom A

- Future Work
 - Scalable video coding techniques
 - Differentiating between interference types for rate adaptation

Thank You!

Email: varun@ee.columbia.edu
For more information:

wimnet.ee.columbia.edu/portfolio/amuse/