

A Fast Distributed Stateless Algorithm for α-Fair Packing Problems

Jelena Marašević, Cliff Stein, and Gil Zussman Columbia University, New York

Fair Resource Allocation: Applications

Network congestion control

Healthcare scheduling

Resource management in Datacenters

Market equilibria problems

Fair Resource Allocation: Motivation

How to allocate nonnegative $x_1, x_2, ..., x_n$? $(x_2 = x_3 = ... = x_n \equiv y)$

• Maximize efficiency:

$$x_1 = 0, y = 1,$$
 $\sum_{j=1}^{n} x_j = n - 1$

Maximize fairness:

$$x_1 = y = \frac{1}{2},$$
 $\sum_{j=1}^n x_j = \frac{n}{2}$

Trade-off efficiency and fairness:

$$x_1 = \frac{1}{n}, \ y = \frac{n-1}{n}, \ \sum_{j=1}^n x_j = \frac{n^2 - 2n + 2}{n}$$

α-Fairness

Definition (weighted α —fairness) [MW'00]. Given a convex and compact feasible region $\mathcal{R} \subseteq \mathbb{R}^n_+$, $\alpha \geq 0$, and a positive vector of weights w, a vector $x^* \in \mathcal{R}$ is weighted α —fair if for any other $x \in \mathcal{R}$:

$$\sum_{j=1}^{n} w_j \frac{x_j - x_j^*}{(x_j^*)^{\alpha}} \le 0.$$

Lemma [MW'00]. A vector $x^* \in \mathcal{R}$ is weighted α —fair if and only if it solves the following optimization problem:

$$\max \sum_{j=1}^n w_j f_{\alpha}(x_j) \text{ , where } f_{\alpha}(x_j) = \begin{cases} \ln(x_j), & \text{if } \alpha = 1 \\ \frac{x_j^{1-\alpha}}{1-\alpha}, & \text{if } \alpha \neq 1 \end{cases}.$$

$$\left(\frac{df_{\alpha}(x_j)}{dx_j} = \frac{1}{x_j^{\alpha}}\right)$$

[MW'00] Mo, Jeonghoon, and Walrand, Jean, "Fair end-to-end window-based congestion control," IEEE/ACM Transactions on Networking (ToN) 8.5 (2000): 556-567.

Measuring α -Fairness

Quantification of tradeoffs between efficiency and fairness:

- Axiomatic theory of fairness [Lan et al. 2010]
- Relative loss [Bertsimas et al. 2012]:
 - In efficiency (sum of allocated values)
 - In fairness (minimum allocated value)

α-Fair Packing

$$\begin{bmatrix} \mathbf{max} & \sum_{j=1}^n w_j f_\alpha(x_j) \\ \mathbf{s.t.} & \mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}, \\ \mathbf{x} \geq \mathbf{0} \end{bmatrix} \text{, where } \begin{bmatrix} f_\alpha = \begin{cases} \ln(x_j), & \text{if } \alpha = 1 \\ \frac{x_j^{1-\alpha}}{1-\alpha}, & \text{if } \alpha \neq 1 \end{cases} \\ \mathbf{A} \geq \mathbf{0}, & \mathbf{b} > \mathbf{0} \end{bmatrix}$$

• The focus is on distributed algorithms with asynchronous updates

Main Result

An ε -approximation algorithm that is:

- Distributed;
- Stateless:
 - Asynchronous;
 - Self-stabilizing;
 - Dynamic supports constant # of variable/constraint insertions/deletions

Convergence time:

• Poly-log in the input size and polynomial in ε^{-1}

Related Work

- (Sequential) convex programming can give $\operatorname{poly}(N, \log(\varepsilon^{-1}))$
- Max-min fairness [Megiddo 1974], [Bertsekas and Gallager 1992], [Kleinberg et al. 1999], [Radunovic and Le-Boudec 2007]
- Packing LPs [Plotkin, Shmoys, Tardos 1991], [Luby and Nisan 1993], [Awerbuch and Khandekar 2008], [Allen-Zhu and Orecchia 2015, 2016], [Wang et al. 2016]
 - Only linear objectives
- Network congestion control [Kelly et al. 1998], [Mo and Walrand 2000], [Low et al. 2002], [Sarkar 2004], [Yi and Chiang 2008]
 - No guaranteed convergence time
- Network utility maximization [Mosk-Aoyama et al. 2007], [Beck et al. 2014]
- Discrete tatonnement for Eisenberg-Gale markets [Cheung et al. 2013]

Outline

- Introduction
- Model, Scaling, and Preliminaries
- Algorithm
- Convergence
- Asymptotic behavior of α -fair allocations

Scaled Problem

$$\begin{bmatrix} \mathbf{max} & \sum_{j=1}^n w_j f_\alpha(x_j) \\ \mathbf{s.t.} & \mathbf{A} \cdot \mathbf{x} \leq \mathbf{1}, \\ \mathbf{x} \geq \mathbf{0} \end{bmatrix} \text{, where } \begin{cases} f_\alpha = \begin{cases} \ln(x_j), & \text{if } \alpha = 1 \\ \frac{x_j^{1-\alpha}}{1-\alpha}, & \text{if } \alpha \neq 1 \end{cases} \\ \mathbf{A} \geq \mathbf{0}, \quad A_{ij} \neq 0 \Rightarrow A_{ij} \geq 1 \end{cases}$$

- Any α -fair packing problem can be scaled to this form without affecting the approximation guarantee
- Notation:

$$A_{\max} = \max_{i,j} A_{ij}, \quad w_{\max} = \max_{j} w_{j}, \quad w_{\min} = \min_{j} w_{j}$$

$$N \equiv nm A_{\max} \frac{w_{\max}}{w_{\min}}$$

Model of Distributed Computation

- Each distributed agent j knows:
 - weight w_j
 - $j^{\rm th}$ column of ${\bf A}$
 - global problem parameters:

$$A_{\max}, w_{\max}, n, m$$

- Agent j collects in each round:
 - $(\mathbf{A}\mathbf{x})_i 1$, for all i with $A_{ij} \neq 0$

$$egin{array}{ll} \mathbf{max} & \sum_{j=1}^n w_j f_lpha(x_j) \ & \mathbf{s.t.} & \mathbf{A} \cdot \mathbf{x} \leq \mathbf{1}, \ & \mathbf{x} \geq \mathbf{0} \end{array}$$

KKT conditions

$$\max \quad \sum_{j=1}^{n} w_j f_{\alpha}(x_j)$$

s.t.
$$\sum_{j=1}^{n} A_{ij} x_j \le 1, i \in \{1, ..., m\}$$
 $\longrightarrow y_i$: dual variable (Lagrange multiplier)

$$x_j \ge 0, \forall j$$

1.
$$\mathbf{A} \cdot \mathbf{x} \leq 1, \mathbf{x} \geq 0$$

2. $y \ge 0$

 $3 \cdot y_i = y_i \sum_j A_{ij} x_j, \forall i$ $4 \cdot x_j^{\alpha} \sum_i y_i A_{ij} = w_j, \forall j$

(primal feasibility)

(dual feasibility)

(complementary slackness)

(gradient conditions)

$$f_{\alpha}(x_j) = \begin{cases} \ln(x_j), & \text{if } \alpha = 1\\ \frac{x_j^{1-\alpha}}{1-\alpha}, & \text{if } \alpha \neq 1 \end{cases}$$

Outline

- Introduction
- Model, Scaling, and Preliminaries
- Algorithm
- Convergence
- Asymptotic behavior of α -fair allocations

Intuition

$$x_j^{\alpha} \sum_i y_i A_{ij} = w_j$$

Primal algorithm ($\alpha = 1 \rightarrow f_{\alpha} = \ln(x)$) from [Kelly et al. 1998]

$$\begin{aligned} \frac{dx_j}{dt} &= k(w_j - x_j^{\alpha} \sum_i y_i A_{ij}) \\ y_i &= F\left(\sum_j A_{ij} x_j\right) \\ &= C \cdot \exp(\kappa(\sum_j A_{ij} x_j - 1)) \end{aligned}$$

Packing algorithm ($\alpha = 0 \rightarrow f_{\alpha} = x$) from [Awerbuch and Khandekar 2008]

Initialization: $x_j \leftarrow 0$ In each round:

$$y_{i} \leftarrow \exp(\kappa(\sum_{j} A_{ij}x_{j} - 1))$$
If $x_{j}^{\alpha} \sum_{i} y_{i}A_{ij} \leq (1 - \gamma)w_{j}$

$$x_{j} \leftarrow \max\{\delta, (1 + \beta)x_{j}\}$$
If $x_{j}^{\alpha} \sum_{i} y_{i}A_{ij} \geq (1 + \gamma)w_{j}$

$$x_{j} \leftarrow (1 - \beta)x_{j}$$

$$\Phi_{PF}(x) = \sum_{j=1}^{n} w_j f_1(x_j) - \sum_{i=1}^{m} \int_{z=0}^{\sum_k A_{ik} x_k} F(z) dz$$

$$= \sum_{j=1}^{n} w_j f_1(x_j) - \frac{1}{\kappa} \sum_{i=1}^{m} y_i + \text{const.}$$

$$\Phi_{LP}(x) = \sum_{j=1}^{n} w_j f_0(x_j) - \frac{1}{\kappa} \sum_{i=1}^{m} y_i$$

$$f_{\alpha}(x_j) = \begin{cases} \ln(x_j), & \text{if } \alpha = 1\\ \frac{x_j^{1-\alpha}}{1-\alpha}, & \text{if } \alpha \neq 1 \end{cases}$$

Algorithm

$$x_j^{\alpha} \sum_i y_i A_{ij} = w_j$$

$$y_i = y_i(\mathbf{x}) = C \cdot e^{\kappa(\sum_j A_{ij} x_j - 1)}$$

$$x_{j} \leftarrow x_{j}(1+\beta_{1})$$
 $x_{j} \leftarrow \begin{cases} x_{j}(1-\beta_{2}), & \text{if } x_{j}(1-\beta_{2}) \geq \delta_{j} \\ \delta_{j}, & \text{otherwise} \end{cases}$

$$(1-\varepsilon/4)w_{j} \quad w_{j} \quad (1+\varepsilon/4)w_{j} \quad x_{j}^{\alpha} \sum_{i} y_{i}(\mathbf{x}) A_{ij}$$

Outline

- Introduction
- Model, Scaling, and Preliminaries
- Algorithm
- Convergence
- Asymptotic behavior of α -fair allocations

A High-Level Analysis Overview

KKT Conditions:

1.
$$\mathbf{A} \cdot \mathbf{x} \leq \mathbf{1}, \mathbf{x} \geq \mathbf{0}$$
 (primal feasibility)

2.
$$\mathbf{y} \geq \mathbf{0}$$

3.
$$y_i = y_i \sum_j A_{ij} x_j, \forall i$$
 (complementary slackness)
4. $x_j^{\alpha} \sum_i y_i A_{ij} = w_j, \forall j$ (gradient conditions)

(dual feasibility)

Preliminaries

4.
$$x_i^{\alpha} \sum_{i} y_i A_{ij} = y_i, \forall j$$
 (gradient conditions)

The main part

Choose:

- A bounded, non-decreasing potential function;
- A suitable definition of stationary rounds, so that:
 - In non-stationary rounds, potential increases significantly
 - In stationary rounds, the solution provides an ε approximation

Potential Function

$$\Phi(\mathbf{x}) = \sum_{i} w_{i} f_{\alpha}(x_{j}) - \frac{1}{\kappa} \sum_{i} y_{i}(\mathbf{x})$$

What happens when algorithm performs updates?

$$\frac{\partial \Phi(\mathbf{x})}{\partial x_{j}} = \frac{w_{j}}{x_{j}^{\alpha}} - \sum_{i} y_{i}(\mathbf{x}) A_{ij} = \frac{1}{x_{j}^{\alpha}} \left(w_{j} - x_{j}^{\alpha} \sum_{i} y_{i}(\mathbf{x}) A_{ij} \right)$$

$$x_{j} \uparrow \quad w_{j} > x_{j}^{\alpha} \sum_{i} y_{i}(\mathbf{x}) A_{ij} \quad \Rightarrow \Phi(\mathbf{x}) \uparrow$$

$$x_{j} \downarrow \quad w_{j} < x_{j}^{\alpha} \sum_{i} y_{i}(\mathbf{x}) A_{ij} \quad \Rightarrow \Phi(\mathbf{x}) \uparrow$$

$$x_{j}^{\alpha} \sum_{i} y_{i} A_{ij} = w_{j}$$

$$x_{j} \leftarrow x_{j} (1 + \beta_{1}) \qquad x_{j} \leftarrow \begin{cases} x_{j} (1 - \beta_{2}), & \text{if } x_{j} (1 - \beta_{2}) \geq \delta_{j} \\ \delta_{j}, & \text{otherwise} \end{cases}$$

 $(1 - \varepsilon/4)w_j \quad w_j \quad (1 + \varepsilon/4)w_j \quad x_j^{\alpha} \sum_i y_i(\mathbf{x}) A_{ij}$

The General Idea

The algorithm makes updates as long as:

$$\exists j : x_j^{\alpha} \sum_i A_{ij} y_i(\mathbf{x}) \notin ((1 - \varepsilon/4) w_j, (1 + \varepsilon/4) w_j)$$

- It may take a long time before the algorithm stops making updates...
- The idea is to use the notion of stationary rounds:
 - In a stationary round, bound the duality gap (use Lagrange duality)
 - In non-stationary round, show a large (multiplicative or additive) progress in the potential function

Convergence Results

	Approximation	Convergence Time	Notes
$\alpha < 1$	(1+arepsilon) -multiplicative	$O\!\left(\frac{\ln^4(N/\varepsilon)}{\alpha^2\varepsilon^5}\right)$	$\varepsilon \le \frac{1-\alpha}{\alpha}$
$\alpha = 1$	*Warepsilon -additive	$O\!\left(\frac{\ln^4(N/\varepsilon)}{\varepsilon^5}\right)$	$\varepsilon \leq 1$
$\alpha > 1$	(1-arepsilonlpha)-multiplicative	$O\left(\frac{\ln^2(N/\varepsilon)}{\varepsilon^4}\right)$	$\varepsilon \le \frac{9}{10} \cdot \frac{1}{\alpha}$

 $[*]W = \sum_{j} w_{j}$

Outline

- Introduction
- Model, Scaling, and Preliminaries
- Algorithm
- Convergence
- Asymptotic behavior of α -fair allocations

Asymptotic Cases and Behavior

Lemma 1. If $\alpha \leq O(\frac{\varepsilon}{\ln(N/\varepsilon)})$, then α-fair packing can be ε-approximated by any ε-approximate packing LP algorithm.

Lemma 2. ε-approximate solution to α-fair packing for $\alpha=1$ is also an ε-approximate solution to α-fair packing for $|\alpha-1| \leq O\left(\frac{\varepsilon^2}{\ln^2(N/\varepsilon)}\right)$.

Lemma 3. The optimal solution to α -fair packing for $\alpha \geq \frac{\ln(N/\varepsilon)}{\varepsilon}$ is also an entry-wise ε -approximation of the max-min fair vector. Furthermore, in this case the max-min fair vector is an $O(\varepsilon\alpha)$ -approximation to the α -fair packing.

Max-Min Fair Packing

Definition (max-min fairness). A vector $\mathbf{x} \geq \mathbf{0}$ is max-min fair if $\mathbf{A}\mathbf{x} \leq \mathbf{1}$ and any other vector $\mathbf{z} \geq \mathbf{0}$ such that $\mathbf{A}\mathbf{z} \leq \mathbf{1}$ satisfies: if $z_j > x_j$ for some j then there exists k such that $z_k < x_k \leq x_j$.

- Finding a max-min fair vector subject to packing constraints is not a convex problem, but rather a multi-objective problem
- The best (distributed) convergence time is O(n), total work: $O(mn^2)$

α-Fair vs Max-Min Fair Packing

Lemma 3. The optimal solution to α -fair packing for $\alpha \geq \frac{\ln(N/\varepsilon)}{\varepsilon}$ is also an entry-wise ε -approximation of the max-min fair vector. Furthermore, in this case the max-min fair vector is an $O(\varepsilon\alpha)$ -approximation to the α -fair packing.

- It was known from [Mo, Walrand 'oo] that when $\alpha \to \infty$, α -fair vector approaches the max-min fair vector
- Lemma 3 tells us how fast this happens
- As a side result, we also get the first convex relaxation of the max-min fair packing problem with the ε -multiplicative gap

Summary & Future Directions

- A fast, distributed, and stateless algorithm for α -fair packing problems
- Characterization of asymptotic cases of α -fair allocations
- The problem arises in many different application areas
- Future directions:
 - Improving the convergence time by relaxing the "statelessness"
 - Extension of the techniques to other (non-smooth) convex problems

Thanks!

jelena@ee.columbia.edu

www.ee.columbia.edu/~jelena

Why is Poly-Log Convergence for α -Fair Packing Surprising?

• α -fair objectives are neither Lipschitz continuous nor smooth

$$||f(x) - f(y)|| \le M||x - y||$$

$$||\nabla f(x) - \nabla f(y)|| \le L||x - y||$$

$$\frac{df_{\alpha}(x_j)}{dx_j} = \frac{1}{x_j^{\alpha}} \stackrel{x \downarrow 0}{\to} \infty$$

$$\frac{d^2 f_{\alpha}(x_j)}{dx_j^2} = -\alpha \frac{1}{x_j^{\alpha+1}} \stackrel{x \downarrow 0}{\to} -\infty$$

- ullet lpha- fair objectives are strongly concave for $\mathbf{x} \leq \mathbf{1}$
 - ⇒ The dual objective is smooth

But, the smoothness parameter is at least linear in some of the input parameters (# of variables, width)

Nesterov's "smooth minimization of non-smooth functions"

$$\min_{\mathbf{x} \in P} \hat{f}(\mathbf{x}) + \max_{\mathbf{y} \in Q} \{ \langle \mathbf{A}\mathbf{x}, \mathbf{y} \rangle - \hat{\phi}(\mathbf{y}) \}$$

$$\min_{\mathbf{x} \geq \mathbf{0}} - \sum_{j} w_{j} f_{\alpha}(x_{j})(\mathbf{x}) + \max_{\mathbf{y} \geq \mathbf{0}} \{ \langle \mathbf{A}\mathbf{x} - \mathbf{1}, \mathbf{y} \rangle \}$$