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Fair Resource Allocation: Applications

Network congestion control Resource managementin Datacenters
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Healthcare scheduling




Fair Resource Allocation: Motivation
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a-Fairness

Definition (weighted o —fairness) [MW’00]. Given a convex and compact
feasible region R C R?,a>0, and a positive vector of weights w, a
vector r* € R is weighted a —fair if for any other x € R.:
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Lemma [ MW’00]. Avector z* € R is weighted a —fair if and only if it
solves the following optimization problem:

max ijfa(xj> In(z;), fa=1
j=1 , Where fa(zj) = z, ¢ 1
s.t. r€R I—a> B9 7

[MW’00] Mo, Jeonghoon, and Walrand, Jean, “Fair end-to-end window-based congestion
control,” IEEE/ACM Transactions on Networking (ToN) 8.5 (2000): 556-567.



Measuring a-Fairness

Utilitarian ~ Proportionally-fair Max-min fair
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Quantification of tradeoffs between efficiency and fairness:
« Axiomatic theory of fairness [Lan et al. 2010]
 Relative loss [Bertsimas et al. 2012]:

— In efficiency (sum of allocated values)

— Infairness (minimum allocated value)



a-Fair Packing

max ijfa(ilﬁj) £ lnl(_a;j), it =1
, where I

g=1 i, ifa#l
s.t. A-x<Db,
x>0 A>0, b>0

The focus is on distributed algorithms with asynchronous updates



Main Result

An e-approximation algorithm thatis:

e Distributed;

» Stateless:
— Asynchronous;
— Self-stabilizing;

— Dynamic - supports constant # of variable/constraint
insertions/deletions

Convergence time:
* Poly-log in the input size and polynomial in ¢!




Related Work

«  (Sequential) convex programming can give poly(V,log(e™'))

* Max-min fairness [ Megiddo 1974], [Bertsekas and Gallager 1992], [Kleinberg et
al. 1999], [Radunovic and Le-Boudec 2007]

« Packing LPs [Plotkin, Shmoys, Tardos 1991], [Luby and Nisan 1993], [Awerbuch
and Khandekar 2008], [Allen-Zhu and Orecchia 2015, 2016], [Wang et al. 2016]

— Onlylinear objectives

* Network congestion control [Kelly et al. 1998], [Mo and Walrand 2000], [Low
et al. 2002], [Sarkar 2004], [Yiand Chiang 2008]

— No guaranteed convergence time

* Network utility maximization [Mosk-Aoyamaet al. 2007], [Beck et al. 2014]

* Discrete tatonnement for Eisenberg-Gale markets [Cheung et al. 2013]

Utilitarian ~ Proportionally-fair Max-min fair
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Scaled Problem

max ijfa(xj) f— lrll(ij), ifa=1
j=1 , where ﬁj_a , ifaz#1l

s.t. A-x<1,

* Any a-fair packing problem can be scaled to this form without affecting
the approximation guarantee

* Notation:
Amax = max Ajj, Wpax = MaXwWj, Wpin = Minw;
1, J J
wmax
N = nmAax

Wmin



Model of Distributed Computation

* Each distributed agent j knows: n
— weightw; max ) w;fa(z;)
— 4% columnof A 7=1
— global problem parameters: s.t. A-x<1,

Amaxa Wmaxs T, TN X Z 0
* Agent j collects in each round:
- (Ax); — 1, forallz with A;; # 0

variables constraints
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KKT conditions

max ijfa(xj)
j=1

s.t.

ZA@'J'%' <1,i€{l,..,m} 4— Yy;:dual variable (Lagrange multiplier)

J=1
X j > O,V]

. A-.x<1,x>0
> y=0
3« yi =yi ) Aijxj, Vi

4. x;%) yiAig = wy, Vj

(primal feasibility)
(dual feasibility)
(complementary slackness)

(gradient conditions)

fala;) = {12(?)’ =1

L, ifa#l
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Intuition

a P — .
xj Zz yiAz] — w]

Primal algorithm (a =1 — f, =

from [Kelly et al. 1998]
G = k(wy — 20 Y, viAy)

yi = F (Zj Aij%‘)

— C . exp(/@(zj Aijxj —

1))

Packing algorithm (o =0 = fo, =)
from [Awerbuch and Khandekar2008]

In(z))

Initialization: x; <— 0
In each round:

yi < exp(k()_; Aijzj — 1))
If 2" 2 uidip < (1= 7w,

x; < max{d, (1 + 5)z;}
It 2% >y > (1+7)w;
— Bz,

$j<—(1

Dpr(r) = Y, wifi(x))

=2 i wifi(zy) —

Crp(z) =325 w;folz;) —

z 1 f A F )d

% ZL Y; + const.

%Z:il Yi




Algorithm

a p— .
Lj Zz y’iAij = w;

Yi = yZ(X) = (. eﬂ(zj Aijxi—1)

zi(1—p2), ifx;(1—L2) >4,

53' otherwise
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xj < (14 f1) xj%{
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A High-Level Analysis Overview

KKT Conditions: -
. A-x<1,x>0 (primal feasibility)
2. y>0 (dual feasibility) -Preliminaries
3 =iy, Ay, Vi (complementary slacknessL
4 2%y Ay = w;, V) (gradient conditions)
U Y v
The main part
Choose:

* A bounded, non-decreasing potential function;
* Asuitable definition of stationary rounds, so that:

- In non-stationary rounds, potential increases significantly
— In stationary rounds, the solution provides an e- approximation



Potential Function

ijfoz z;) Z?Jz

What happens when algorlthm performs updates?
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xj < x;(1+ B1) Tj 7;(1 = Ba), ifzvj(l'—ﬁz)Z(S]
dj, otherwise
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The General Idea

. D (x)
'r A N r A N
= : > I /
0 5j 1 q)min (I)max
x;is bounded ¢ (x) is bounded

* The algorithm makes updates as long as:
3j s @ )2 Aiyi(x) & (1 — /4wy, (1+&/4)w;)
— It may take along time before the algorithm stops making updates...
* Theidea is to use the notion of stationary rounds:

— In astationary round, bound the duality gap (use Lagrange duality)

— In non-stationary round, show a large (multiplicative or additive) progress in
the potential function



Convergence Results

(1 4 ¢) -multiplicative 0,

(1 — ea)multiplicative O

(o)
o =1 *We -additive 0(1n4(N/8)) e<1
(=)
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Asymptotic Cases and Behavior

Lemmat. If a < O(m), then a-fair packing can be e-approximated
by any e-approximate packing LP algorithm.

Lemma 2. e-approximate solution to a-fair packing for a = 1is also an

g-approximate solution to a-fair packing for |a — 1| < O(%)

Lemma 3. The optimal solution to a-fair packing for a > % is also
an entry-wise e-approximation of the max-min fair vector. Furthermore,

in this case the max-min fair vector is an O (¢a)-approximation to the a-
fair packing.



Max-Min Fair Packing

Definition (max-min fairness). A vector x > 0 is max-min fair if Ax <1
and any other vector z > 0 such that Az < 1 satisfies:
if z2; > T; forsome j then there exists k£ suchthat z; < z) < z;.

! | it 4
m

* Finding a max-min fair vector subject to packing constraints is not a
convex problem, but rather a multi-objective problem

* The best (distributed) convergence time is O(n), total work: O(mn?)




a-Fair vs Max-Min Fair Packing

Lemma 3. The optimal solution to a-fair packing for o > % is also

an entry-wise g-approximation of the max-min fair vector. Furthermore,
in this case the max-min fair vector is an O (¢a)-approximation to the a-

fair packing.

It was known from [Mo, Walrand ‘oo] that when o — oo, a-fair vector
approaches the max-min fair vector

Lemma 3 tells us how fast this happens

As a side result, we also get the first convex relaxation of the max-min
fair packing problem with the e-multiplicative gap



Summary & Future Directions

A fast, distributed, and stateless algorithm for a-fair packing problems
Characterization of asymptotic cases of a-fair allocations

The problem arises in many different application areas

Future directions:

- Improving the convergence time by relaxing the “statelessness”

- Extension of the techniques to other (non-smooth)convex problems



Thanks!

jelena(@ee.columbia.edu

www.ee.columbia.edu/~jelena




Why is Poly-Log Convergence for a-Fair
Packing Surprising?

* «-fair objectives are neither Eipschitz continuogs nor smooth

—

<

4/;(
1f(z) = Fy)ll < Ml[z — y]| IVf(z) =Vl < Lijz -y
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* «a-fair objectives are strongly concavefor x <1

= The dual objective is smooth

But, the smoothness parameteris at least linear in some of the
input parameters (# of variables, width)

e Nesterov’s “smooth minimization of non-smooth functions”

min £(x) + max{({Ax, y) - d(y)}

min — 3w fo () (x) Hmax{{Ax — 1)}

y=>0




