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Fair Resource Allocation: Applications

Network congestion control Resource management in Datacenters

Healthcare scheduling Market equilibria problems



Fair Resource Allocation: Motivation

…

How to allocate nonnegative                           ? 

• Maximize efficiency:  

• Maximize fairness:

• Trade-off efficiency and fairness:

…



α-Fairness

Definition (weighted 𝛼 −fairness) [MW’00]. Given a convex and compact 
feasible region                  ,              , and a positive vector of weights      , a 
vector                 is weighted 𝛼 −fair if for any other              :

[MW’00] Mo, Jeonghoon, and Walrand, Jean, “Fair end-to-end window-based congestion 
control,”  IEEE/ACM Transactions on Networking (ToN) 8.5 (2000): 556-567.

Lemma [MW’00]. A vector                  is weighted 𝛼 −fair if and only if it 
solves the following optimization problem:                                                             
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Measuring α-Fairness

0 1

Utilitarian Proportionally-fair Max-min fair

∞

Efficiency Fairness

Quantification of tradeoffs between efficiency and fairness:
• Axiomatic theory of fairness [Lan et al. 2010]
• Relative loss [Bertsimas et al. 2012]:

– In efficiency (sum of allocated values)
– In fairness (minimum allocated value)
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α-Fair Packing

• The focus is on distributed algorithms with asynchronous updates
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Main Result

An   -approximation algorithm that is:

• Distributed;
• Stateless:

– Asynchronous;
– Self-stabilizing;
– Dynamic – supports constant # of variable/constraint 

insertions/deletions

"

Convergence time:
• Poly-log in the input size and polynomial in "�1



Related Work

• (Sequential) convex programming can give  

• Max-min fairness [Megiddo 1974], [Bertsekas and Gallager 1992], [Kleinberg et 
al. 1999], [Radunovic and Le-Boudec 2007]

• Packing LPs [Plotkin, Shmoys, Tardos 1991], [Luby and Nisan 1993], [Awerbuch
and Khandekar 2008], [Allen-Zhu and Orecchia 2015, 2016], [Wang et al. 2016]

– Only linear objectives

• Network congestion control [Kelly et al. 1998], [Mo and Walrand 2000], [Low 
et al. 2002], [Sarkar 2004],  [Yi and Chiang 2008]

– No guaranteed convergence time

• Network utility maximization [Mosk-Aoyama et al.  2007], [Beck et al. 2014]

• Discrete tatonnement for Eisenberg-Gale markets [Cheung et al. 2013]
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Scaled Problem

• Any 𝛼-fair packing problem can be scaled to this form without affecting 
the approximation guarantee

• Notation:

, where
f

↵

=

(
ln(x

j

), if ↵ = 1
x

1�↵
j

1�↵

, if ↵ 6= 1

max

nX

j=1

wjf↵(xj)

s.t. A · x  1,

x � 0

A � 0, Aij 6= 0 ) Aij � 1

A
max

= max

i,j
Aij , w

max

= max

j
wj , w

min

= min

j
wj

N ⌘ nmA
max

w
max

w
min



Model of Distributed Computation

• Each distributed agent     knows:
– weight
– column of
– global problem parameters:

• Agent     collects in each round:
– ,  for all    with 

…

max

nX

j=1

wjf↵(xj)

s.t. A · x  1,

x � 0

variables

…

constraints
x1

x2

xn

(Ax)1  1

(Ax)2  1

(Ax)m  1

j

wj

jth A

A
max

, w
max

, n,m

j
i Aij 6= 0

…

…xj (Ax)i  1xj

(Ax)2  1

(Ax)i  1

(Ax)m  1

(
A

x)m � 1

(A
x

)2�
1

(Ax)i � 1

(Ax)i � 1



KKT conditions
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Intuition

Primal algorithm (                                        )
from [Kelly et al. 1998]
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Packing algorithm (                                 )
from [Awerbuch and Khandekar 2008]
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Algorithm
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A High-Level Analysis Overview

KKT Conditions:

1. (primal feasibility)

2. (dual feasibility)

3. (complementary slackness)

4. (gradient conditions)

A · x  1,x � 0

y � 0

yi = yi
P

j Aijxj , 8i

xj
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P
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Preliminaries

The main part

Choose:
• A bounded, non-decreasing potential function;
• A suitable definition of stationary rounds, so that:

– In non-stationary rounds, potential increases significantly
– In stationary rounds, the solution provides an    - approximation "



Potential Function
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The General Idea

• The algorithm makes updates as long as: 

– It may take a long time before the algorithm stops making updates…

• The idea is to use the notion of stationary rounds:

– In a stationary round, bound the duality gap (use Lagrange duality)

– In non-stationary round, show a large (multiplicative or additive) progress in 
the potential function
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Convergence Results

Approximation Convergence Time Notes
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Asymptotic Cases and Behavior

Lemma 1. If                                , then 𝛼-fair packing can be 𝜀-approximated 
by any 𝜀-approximate packing LP algorithm.

Lemma 2. 𝜀-approximate solution to 𝛼-fair packing for 𝛼 = 1 is also an 
𝜀-approximate solution to 𝛼-fair packing for                                            . 

Lemma 3. The optimal solution to 𝛼-fair packing for                          is also 
an entry-wise 𝜀-approximation of the max-min fair vector. Furthermore, 
in this case the max-min fair vector is an 𝑂(𝜀𝛼)-approximation to the 𝛼-
fair packing.
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Max-Min Fair Packing

• Finding a max-min fair vector subject to packing constraints is not a 
convex problem, but rather a multi-objective problem

• The best (distributed) convergence time is            , total work: O(n)

Definition (max-min fairness). A vector                is max-min fair  if                    
and any other vector               such that                   satisfies:
if                   for some     then there exists      such that                            . 

x � 0 Ax  1

Az  1z � 0
zj > xj j k zk < xk  xj

O(mn2)



α-Fair vs Max-Min Fair Packing

• It was known from [Mo, Walrand ‘00] that when                ,      -fair vector 
approaches the max-min fair vector

• Lemma 3 tells us how fast this happens

• As a side result, we also get the first convex relaxation of the max-min 
fair packing problem with the 𝜀-multiplicative gap

Lemma 3. The optimal solution to 𝛼-fair packing for                          is also 
an entry-wise 𝜀-approximation of the max-min fair vector. Furthermore, 
in this case the max-min fair vector is an 𝑂(𝜀𝛼)-approximation to the 𝛼-
fair packing.
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Summary & Future Directions

• A fast, distributed, and stateless algorithm for α-fair packing problems

• Characterization of asymptotic cases of α-fair allocations

• The problem arises in many different application areas

• Future directions:

− Improving the convergence time by relaxing the “statelessness” 

− Extension of the techniques to other (non-smooth) convex problems



Thanks!

www.ee.columbia.edu/~jelena

jelena@ee.columbia.edu



Why is Poly-Log Convergence for 𝛼-Fair 
Packing Surprising?

• 𝛼-fair objectives are neither Lipschitz continuous nor smooth

• 𝛼- fair objectives are strongly concave for 
⇒ The dual objective is smooth

But, the smoothness parameter is at least linear in some of the 
input parameters (# of variables, width)

• Nesterov’s “smooth minimization of non-smooth functions”
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