

On the Capacity Regions of Single-Channel and Multi-Channel Full-Duplex Links

Jelena Marašević and Gil Zussman EE department, Columbia University

MobiHoc'16, July 2016

Full-Duplex Wireless

- (Same channel) Full-duplex communication = simultaneous transmission and reception on the same frequency channel
- Viability is limited by self-interference

Transmitted signal is billions of times stronger than the received signal!

Legacy wireless systems separate transmission and reception in either:

- Time Time Division Duplex (TDD)
- Frequency Frequency Division Duplex (FDD)

Full-Duplex Wireless

- Benefits of full-duplex:
 - Increased system throughput
 - More flexible use of the wireless spectrum

Self-Interference Cancellation (SIC):

Imperfect Self-Interference Cancellation

- Jin Zhou, Peter R. Kinget and Harish Krishnaswamy, "A Blocker-Resilient Wideband Receiver with Low-Noise Active Two-Point Cancellation of >odBm TX Leakage and TX Noise in RX Band for FDD/Co-Existence," in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 352 353, Feb. 2014.
- Jin Zhou, Tsung-Hao Chuang, Tolga Dinc and Harish Krishnaswamy, "Reconfigurable receiver with >>20MHz bandwidth self-interference cancellation suitable for FDD, co-existence and full-duplex applications," In Proc. IEEE ISSCC'15, 2015.
- D. Bharadia, E. McMilin, and S. Katti. "Full duplex radios." In Proc. ACM SIGCOMM'13, 2013.

Related Work

System design and Wi-Fi heuristics:

```
[Choi et al. 2010], [Duarte and Sabharwal 2010], [Jain et al. 2011], [Singh et al. 2011], [Aryafar et al. 2012], [Bharadia et al. 2013], [Zhou et al. 2013], [Bharadia and Katti 2014], [Duarte et al. 2014]
```

- Integrated (small form-factor) receiver design
 [Zhou et al. 2014], [Zhou et al. 2015], [van den Broek et al. 2015]
- Cellular scheduling heuristics:
 [Goyal et al. 2013], [Goyal et al. 2014]
- Throughput gains from full-duplex:
 [Sahai et al. 2013], [Xie and Zhang 2014], [Li et al. 2014],
 [Nguyen et al. 2014], [Korpi et al. 2015]

Full Duplex wireless – from Integrated Circuits to Networks

This Talk

How much can we gain from full-duplex and under what conditions?

Outline

- Motivation and Problem Statement
- Single Channel FD
 - Structural Results
 - Determining FD + TDD Capacity Region
- Multi-Channel FD
 - Fixed Power Allocation
 - General Power Allocation

FD and TDFD Capacity Region

- Maximization of the sum of the rates* gives us only one pair of uplink and downlink rates
- But, in many cases we want to prioritize one of the rates
- Using only full-duplex and varying the power allocation will give us one set of achievable rates, which may be non-convex
- Having convex capacity region is important for scheduling (and in our case gives higher rates)

^{*}J. Marašević, J. Zhou, H. Krishnaswamy, Y. Zhong, G. Zussman, "Resource Allocation and Rate Gains in Practical Full-Duplex Systems", to appear in IEEE/ACM Transactions on Networking, 2016

Model and Problem Statement (I)

- k: channel index; K: # of channels
- Self-interference on channel k: constant fraction of the transmission power on channel k
- $\alpha_{i,k} = \frac{\text{TX power of } i \text{ on ch } K}{\text{max total TX power of } i}, i \in \{m, b\}$

Signal-to-noise-ratio (SNR):

$$\gamma_{mb,k} = \alpha_{m,k} \overline{\gamma_{mb,k}} \qquad \gamma_{bm,k} = \alpha_{b,k} \overline{\gamma_{bm,k}}$$

Self-interference-to-noise-ratio (XINR):

$$\gamma_{bb,k} = \alpha_{b,k} \overline{\gamma_{bb,k}} \qquad \gamma_{mm,k} = \alpha_{m,k} \overline{\gamma_{mm,k}}$$

Shannon's capacity formula:
$$r = \log\left(1 + \frac{\text{received signal}}{\text{noise+interference}}\right) = \log\left(1 + \frac{\text{SNR}}{1 + \text{XINR}}\right)$$

Model and Problem Statement (II)

The UL and DL rates:

$$r_m = \sum_{k=1}^{K} \log \left(1 + \frac{\alpha_{m,k} \overline{\gamma_{mb,k}}}{1 + \alpha_{b,k} \overline{\gamma_{bb,k}}} \right)$$

$$r_b = \sum_{k=1}^{K} \log \left(1 + \frac{\alpha_{b,k} \overline{\gamma_{bm,k}}}{1 + \alpha_{m,k} \overline{\gamma_{mm,k}}} \right)$$

The problem:

$$\max r_m$$
s.t. $r_b = r_b^*$

$$\sum_{k=1}^K \alpha_{b,k} \le 1, \sum_{k=1}^K \alpha_{m,k} \le 1$$

$$\alpha_{b,k} \ge 0, \ \alpha_{m,k} \ge 0, \ \forall k$$

Rate Improvement

Outline

- Motivation and Problem Statement
- Single Channel FD
 - Structural Results
 - Determining FD + TDD Capacity Region
- Multi-Channel FD
 - Fixed Power Allocation
 - General Power Allocation

Structural Results (I)

FD Capacity Region:

Proposition. At the boundary of the capacity region either the uplink or downlink power must be equal to its maximum rate.

Structural Results (II)

Lemma. \mathcal{S}_b can take only one of the following three shapes:

Concave

Convex

Concave, then convex

Proposition.

- 1. If both S_b and S_m are concave, FD capacity region is convex.
- 2. If (s_b, s_m) maximizes the sum of the uplink and downlink rates, then (s_b, s_m) is outside the convex hull of the FD capacity region.
- 3. If $s_b + s_m \le r_m$, then S_b is convex.

FD+TDD Capacity Region

Proposition. Any point on the FD+TDD capacity region can be determined either in a closed form, or through a simple bisection.

Symmetric UL/DL SNR

Asymmetric UL/DL SNR

$$\overline{\gamma_{bb}} = 1, \overline{\gamma_{mm}} = 10$$

Outline

- Motivation and Problem Statement
- Single Channel FD
 - Structural Results
 - Determining FD + TDD Capacity Region
- Multi-Channel FD
 - Fixed Power Allocation
 - General Power Allocation

Cancellation Profiles

Base Station/Access Point

- Jin Zhou, Peter R. Kinget and Harish Krishnaswamy, "A Blocker-Resilient Wideband Receiver with Low-Noise Active Two-Point Cancellation of >odBm TX Leakage and TX Noise in RX Band for FDD/Co-Existence," in Proc. IEEE ISSCC, Feb. 2014.
- Jin Zhou, Tsung-Hao Chuang, Tolga Dinc and Harish Krishnaswamy, "Reconfigurable receiver with >> 20MHz bandwidth selfinterference cancellation suitable for FDD, co-existence and full-duplex applications," In Proc. IEEE ISSCC'15, 2015.
- D. Bharadia, E. McMilin, and S. Katti. "Full duplex radios." In Proc. ACM SIGCOMM'13, 2013.

Fixed Power Allocation

 The shape of the power allocation is fixed, but the sum TX power over channels can be varied

Lemma: At the boundary of the capacity region, either uplink or downlink sum of the power levels must be equal to its maximum value

- Equivalent to the result for the single channel
- Every point on the boundary of FD capacity region can be found via bisection

Fixed Power Allocation (cont.)

- Do not have the same structural properties for the shape of the FD capacity region as in the single channel case
- However, the convex hull (TDFD capacity region) can still be determined in reasonable time

General Power Allocation (I)

• Can assign any TX power to any channel, as long as

$$\sum_{k=1}^{K} \alpha_{b,k} \le 1, \quad \sum_{k=1}^{K} \alpha_{m,k} \le 1$$

 $\max r_m$ s.t. $r_b = r_b^*$

- A non-convex problem
- We show how to, under mild restrictions, solve this problem with an alternating minimization (maximization) method
- The algorithm converges to a stationary point that is a global max in practice
- We also design a simple heuristic that has similar performance
- Intuition for the heuristic:
 - Half-duplex power allocation when one of the rates is close to zero
 - High-SINR approximation power allocation around the point that maximizes the sum of the uplink and downlink rates over channels
 - Turning some of the channels off may increase the rate

General Power Allocation (II)

Summary

- Characterized rate improvements and properties of the capacity regions for full-duplex links
- Used realistic models of the hardware
- The results are analytical and insightful
- Bottom line: simple policies and algorithms are enough
- Future work:
 - Wi-Fi and cellular MAC: (fair) resource allocation and scheduling

Questions?

wimnet.ee.columbia.edu flexicon.ee.columbia.edu