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Abstract We demonstrate a machine learning approach to characterize channel dependence of power 
excursions in multi-span EDFA networks. This technique can determine accurate recommendations for 
channel add/drop with minimal excursions and is applicable to different network designs. 

Introduction 
The advent of dynamic optical networks 
demands constant agility and configurability in 
response to traffic and fault handling1. As 
networks grow in both capabilities and 
complexity, the concept of cognitive networks – 
systems that can autonomously monitor, 
optimize, and adapt – is particularly promising to 
improve the networks’ management and 
resilience2. As a crucial component of modern 
optical transport networks, Erbium Doped Fiber 
Amplifier (EDFA) has the ability to achieve 
economic regeneration of dense wavelength-
division multiplexing (DWDM) channels and 
extend the reach of optical communication 
beyond the confines of cities and continents. 

However, EDFA systems face an unsolved 
challenge of channel-dependent power 
excursions1. Modern EDFA systems employ 
automatic gain control (AGC) to maintain the 
output power levels of the amplifier within a 
tolerant regime3. In cascaded EDFA networks, 
upstream AGC ensures appropriate optical 
power levels for downstream amplifiers and 
receivers. However, AGC maintains the global 
mean gain, while each channel sees a 
wavelength dependent gain. If a channel with 
high gain is added, AGC responds to an 
increase in mean gain by reducing the gain on 
all channels. This leads to the high-gain channel 
effectively stealing power from lower-gain 
channels4. Conversely, adding a low-gain 
channel feeds power to higher-gain channels1. 
In both cases, the power excursion increases 
the disparity among channel powers; this 
discrepancy may be further exacerbated by 
downstream EDFA spans. We thus define 
undesired power excursions as the ones that 
increase the standard deviations (STD) of the 
output power levels. 

Proposed solutions and limitations 
The characteristics of the excursion depend on 
the types of EDFAs, the gain-control 
mechanisms, and the number of EDFA spans 
and light paths (LP); therefore, it is difficult to 
derive an analytical description that applies to all 
systems. Consequently, past proposed solutions 
focused on fully characterizing a specific EDFA 

system and reducing excursions by optimizing 
input power levels4, balancing input channels1, 
or adjusting the pumping level of the amplifier3. 
These techniques, while effective on the specific 
systems analyzed, are not necessarily 
transferrable to different networks. They also 
rely on the deterministic model of the gain 
profile, which is difficult to acquire for live-
network equipment that cannot be disrupted.  

Preventative approaches such as optimized 
wavelength assignment algorithms have been 
shown to reduce the excursions5, but at the 
tradeoff of spectral efficiency. Case-based 
reasoning (CBR) is also applied to make 
heuristic guesses on EDFA tuning6, but it 
requires a large number of past records to be 
effective. We present an efficient, low-overhead 
machine learning (ML) engine to characterize 
the channel dependence of power excursions in 
multi-span EDFA links. Historical snapshots of 
the network are collected and mathematically 
generalized. Once the ML model is trained, it is 
able to predict the best practices of channel 
add/drop to alleviate undesired excursions. The 
approach is non-disruptive and applies to EDFA 
networks of different designs. Fig. 1 illustrates 
the functionalities of the ML engine. 

 
Fig. 1: Functionalities of the ML engine for minimizing 

undesired power excursions. 

Experiment design 
We construct the multi-span AGC-enabled 
EDFA network shown in Fig. 2. The WDM 
sources transmit 24 DWDM channels from ITU-
T grid Ch. 21 to Ch. 44 with 100 GHz spacing, 
which are combined via a wavelength-selective 
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switch (WSS). We adjusted the variable optical 
attenuators (VOA) and the EDFA pumping to 
achieve a realistic gain ripple with a maximum 
disparity of 6dB between the highest and lowest 
gains. To ensure an adequate number of 
channels to measure the excursions via power 
STD, as well as adequate number of available 
channel for add/drop, we maintain 10-20 ON 
channels at any given time, which corresponds 
to a spectral utilization between 42% and 83%.  

 
Fig. 2: Setup of multi-span EDFA network; the components 

in dashed box are included for the 3-span link. 

Single-mode fibers (SMF) and VOAs are 
placed before each span’s EDFA to emulate a 
20dB transmission loss. The output power levels 
are recorded with a C-band optical performance 
monitor (OPM), and stored in a database for 
analysis. The ML engine ingests the power 
levels and channel ON/OFF states, and 
constructs a kernelized Bayesian regression 
(KBR) model for future predictions. 

Machine learning and statistical analysis 
We define a regression problem with supervised 
ML to statistically model the channel 
dependence of EDFA power excursions. The 
input is represented by a 24-bit array, each 
indicating an ON channel as 1, or an OFF 
channel as 0. This can be scaled up to 40-bit or 
80-bit to accommodate the full DWDM C-band. 
The output is the power STD of the ON 
channels after the EDFA spans. We collected 
historical channel ON/OFF states and power 
STD values, which are split into a training set 
and a testing set. The regression model learns 
from the training set, and is evaluated against 
the testing set. The accuracy of the model is 
evaluated by two metrics: A) the mean square 
error (MSE) between the predicted and the 
measured STD, and B) correctness of the best 
channel provisioning identified based on the 
predictions.  

The input and output values are 
preprocessed before training and testing 
according to Eq. (1) and (2). The DC bias is 
removed from each dimensions of the input and 
the output. The input dimensions are also 
standardized with an STD of unity. The 
prediction process takes in standardized inputs 
and returns offset outputs. 
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where . = 1. . 1 for 1 total data points; 2 = 1. . 3 
labels a dimension of input (3 = 24) or output 
(3 = 1); 6# is the per-dimension STD of the 
input, and !#, ,# are respective per-dimension 
means. 

Two network states with similar ON/OFF 
channels are assumed to have similar extents of 
power excursions6. We leverage this aspect with 
an input kernel, which can efficiently replace the 
need for a database, as is the case of CBR.  
Given a new network state, we can infer its 
predicted power STD from how similar it is to the 
known network states. Specifically, we construct 
a kernel called the Radial Basis Function (RBF) 
shown in Eq. (3). 

7 !, !$ = 	9 exp − =
> ! − !$ ?  ,    (3)  

where 9 and @ are arbitrary factors to adjust the 
strength of the kernel, which we set as 0.0001 
and 3.5 respectively for our analysis using 
cross-validation methods. ! and !$ are two 24D 
inputs; the value of the kernel function 
decreases exponentially with the L2 distance 
between the two inputs. The predictions are 
obtained from the linear combinations of the 
training outputs weighted by the kernel function 
values7. Fig. 3 compares the prediction MSE 
between KBR and linear regression (LR). It 
shows that KBR’s predictions have lower errors 
when converged. 

We study the adaptability of the model on 
two different networks – one with two EDFA 
spans and one with three EDFA spans. Fig. 3 
shows, for both networks, the model’s prediction 
accuracy improves with increasing size of the 
training data set; the improvement levels off 
after 400 training data points. This shows the 
training data does not need to grow much 
beyond this size to leverage the ML engine. 

 
Fig. 3: Prediction MSEs converge after 400 training data 

points; KBR has lower converged MSEs than LR in both 2-
EDFA and 3-EDFA networks. 

Tab. 1: Training set size and KBR prediction MSE for two 
EDFA network designs. 

Networks 2-EDFA Spans 3-EDFA Spans 
Training set size 459 468 
Prediction MSE 0.0076 0.019 
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Fig. 4: Comparisons between predictions and measurements for single channel add/drop in 2-span network (a,b) and 3-span 

network (c,d). We recommend the top four slot candidates based on minimum predicted power STDs for adding a channel (a,c) 
and dropping a channel (b,d); the recommended slots circled in green agree with the best slots based on measured values. 

Channel add/drop recommendations 
We demonstrate the model’s prediction 
accuracy and recommendation correctness in 
Fig. 4 for two network scenarios. The training 
set sizes and the MSE values of both are shown 
in Tab. 1. In each, we examine how the model 
can facilitate channel provisioning to reduce 
undesired power excursions. In all four cases 
shown in Fig. 4, we start with a randomly 
generated initial state of ON/OFF channels. For 
adding a channel, as shown in Fig. 4(a,c), the 
model predicts the power STD after a 
hypothetical channel is added to one of the 
available slots. Then the model recommends the 
best slots to add a channel that will result in the 
lowest power STD and therefore the least 
undesired power excursions. Recommending 
multiple slots provides educated guesses with 
flexibility for network operators. We perform the 
actual channel additions over the span of a 
week to verify the accuracy of the predictions 
and their tolerance to system variations over 
time. This test is repeated for dropping a 
channel, shown in Fig. 4(b,d). In all four tests 
shown, the slots recommended by the ML 
engine correctly align with the best slots from 
the actual measurements. Since the 
recommendations are based on the relative STD 
ranking, they are robust under slight deviations 
of the exact STD values predicted. 

Conclusion 

We introduce a machine learning engine to 
characterize the channel dependence of power 
excursions in a WDM network with multiple 
EDFA spans. A KBR model with RBF is trained 
with past channel states and power STDs. We 
show experimentally that it can give accurate 
recommendations on channel add/drop 
strategies to minimize undesired power 
excursions, and is applicable to different EDFA 
network designs. 
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