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Power Grid State Estimation
Following a Joint Cyber and Physical Attack

Saleh Soltan, Student Member, IEEE, Mihalis Yannakakis, and Gil Zussman, Senior Member, IEEE

Abstract—This paper focuses on joint cyber and physical attacks
on power grids and presents methods to retrieve the grid state
information following such an attack. We consider a model where
an adversary attacks a zone by physically disconnecting some of
its power lines and blocking the information flow from the zone
to the grids control center. We use tools from linear algebra
and graph theory and leverage the properties of the power
flow DC approximation to develop methods for information
recovery. Using information observed outside the attacked zone,
these methods recover information about the disconnected lines
and the phase angles at the buses. We identify sufficient conditions
on the zone structure and constraints on the attack characteristics
such that these methods can recover the information. We also
show that it is NP-hard to find an approximate solution to
the problem of partitioning the power grid into the minimum
number of attack-resilient zones. However, since power grids
can often be represented by planar graphs, we develop a
constant approximation partitioning algorithm for these graphs and
numerically demonstrate its performance on real power grids.

I. INTRODUCTION

Cyber and physical attacks on power grids may cause large-
scale blackouts due to a domino effect on power lines with
major disruption in everyday life [2]–[6]. For example the
December 2015 cyber attack on Ukraine’s grid left 225,000
people without power for days [2] and the April 2014 physical
attack on a California substation interfered with the power grid
operation [3].

Power grids are comprised of two components: (i) the phys-
ical infrastructure of the power transmission system (power
lines, substations, power stations), and (ii) the Supervisory
Control and Data Acquisition (SCADA) system that monitors
and controls the grid (the control network) (Fig. 1). The
physical infrastructure is the target of physical attacks and
SCADA is the target of cyber attacks.

In the case of a physical attack, the system’s stability can
be maintained if SCADA receives precise information about
the location of the attack and takes proper action accordingly.
If however, the flow of information is obstructed by a cyber
attack, the SCADA is prevented from taking necessary and
appropriate actions. This problem, the joint cyber and physical
attacks on power grids, is the focus of our work. We develop
methods to estimate the state of the power grid following a
joint cyber and physical attack, and study the resilience of
different topologies as well as the resilience to different kinds
of attacks.

S. Soltan and G. Zussman are with the Elec. Eng. Dept. (e-mails:
{saleh,gil}@ee.columbia.edu), and Mihalis Yannakakis is with the Comp.
Sci. Dept. (email: mihalis@cs.columbia.edu) in Columbia University, New
York, NY. A partial and preliminary version appeared in Proc. ACM SIG-
METRICS’15 [1].
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Fig. 1: Components of the power grid and potential attacks:
physical attacks target the physical infrastructure (lines, sub-
stations, etc.); Cyber attacks target the SCADA system – an
adversary can obstruct the flow of information from the PMUs
within the zone to the control center.

We use the linearized direct-current (DC) power flow
model,1 a practical relaxation of the alternating-current (AC)
model. We also use a modified version of the control net-
work model [10] that includes Phasor Measurement Units
(PMU), Phasor Data Concentrators (PDC), and a control center
(Fig. 1). We define a zone as a set of buses (nodes), power
lines (edges), PMUs, and an associated PDC. We analyze an
attack that disconnects lines within a zone (physical attack)
and obstructs the flow of information from the PMUs within
the zone to the control center (cyber attack). For example, an
adversary can perform the cyber attack by disabling the zone’s
associated PDC. Alternatively, the adversary can attack the
communication network between the PMUs and the PDC, or
between the PDC and the control center. Because our control
network model is a generic model of SCADA that monitors
the status of the grid, most of the results and methods provided
in this paper can be interpreted and used for more complicated
control systems and scenarios.

As a result of an attack, some lines get disconnected,
and the phase angles and the status of the lines within the
attacked zone H “ pVH , EHq become unavailable (Fig. 2).
Our objective is to recover the phase angles and detect the
disconnected lines using the information available outside of
the attacked zone.

Power flows are governed by the laws of physics, where a
line failure results in changes to flows and node phase angles
throughout the power grid [11]. We use this property and

1The DC model is commonly used in large-scale contingency analysis of
power grids [7]–[9].
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Fig. 2: G is the power grid graph and H is an induced subgraph
of G that represents the attacked zone. An adversary attacks
a zone by disconnecting some of its power lines (red dashed
lines) and disallowing the information from the PMUs within
the zone to reach the control center.

show that it is possible to estimate the state in the attacked
zone using the information available outside of the zone.
Specifically, we develop methods for retrieving information
from the attacked zone by applying matrix analysis and graph
theoretical tools to the matrix representation of the DC equa-
tions.

We present necessary and sufficient conditions on the struc-
ture of a zone such that our methods are guaranteed to
recover the state of the grid inside the attacked zone. We
prove that if there is a matching between the nodes inside and
outside the attacked zone that covers the inside nodes (VH ),
then the phase angles of the nodes in the attacked zone are
recoverable by solving a set of linear equations of size |VH |.
We also prove that if H is acyclic, the disconnected lines in
H are detectable by solving a set of linear equations of size
|EH |. Moreover, we show that if H is planar, under some
constraints, the disconnected lines are detectable by solving a
Linear Programming (LP) problem.

We develop another method for simultaneous recovery of
phase angles and detection of disconnected lines by solving a
single LP problem. We show that this method is guaranteed to
recover the information under certain constraints on the attack
(i.e., on the disconnected lines) if there is a partial matching
between the nodes inside and outside of H , and if H is planar.
Based on these results, we present the Post-Attack Recovery
and Detection (PARD) Algorithm. We propose that our meth-
ods can be generalized to the case where multiple zones are
attacked simultaneously. We show that if the attacked zones are
relatively distant from each other, any of the methods provided
in this paper can be applied to recover the information and
detect the failures in the attacked zones.

We briefly study the problem of information recovery in
the presence of measurement noise. By relaxing some of the
constraints introduced in developing the methods used in the
PARD Algorithm, we provide a method for information recov-
ery in the noisy scenarios as well. We numerically evaluate
the performance of the method and show that if the Signal to
Noise Ratio (SNR) is high enough, it can successfully recover
the information.

We study the problem of partitioning power grids into the
minimum number of attack-resilient zones (i.e., zones in which

the information can be recovered by the methods mentioned
above). We show that this problem is not approximable to
within n1´ε for all ε ą 0, unless P=NP. However, since power
grids are often represented by planar graphs, we introduce
our Zone Selection (ZS) Algorithm and demonstrate that the
AZ Algorithm provides a constant approximation ratio for
these graphs. We present numerical results to demonstrate the
operation of the ZS Algorithm on several power grids. This
algorithm can also be used for designing a secure control
network for smart grids.

This paper presents three main contributions. We use matrix
analysis and graph theoretical tools: (i) to develop methods
to recover the phase angles and detect the disconnected lines
after a joint cyber and physical attack, (ii) to find graph
classes for which these methods are guaranteed to recover the
information, and (iii) to develop an algorithm for partitioning
the power grid into attack-resilient zones.

This paper is organized as follows. Section II reviews related
work. Section III describes the models and reviews graph theo-
retical terms. In Section IV, we focus on information recovery
and in Section V, we present the PARD Algorithm. Section VI
provides results for the noisy scenario. In Section VII, we
study the grid partitioning problem. Section VIII provides
numerical results and Section IX provides concluding remarks
and directions for future work. Due to space constraints some
of the proofs are omitted and can be found in [1].

II. RELATED WORK

The vulnerability of general networks to attacks has been
studied extensively (e.g., [12]–[14] and references therein). In
particular, attacks and failures in power grids has been studied
using probabilistic failure propagation models (e.g., [15]–[17],
and references therein) as well as using deterministic DC
power flows [7], [11], [18]–[20]. Malicious data attacks on
the power grid control network have also been studied [21]–
[24]. To the best of our knowledge however, no previous work
has focused on vulnerability of power grids to joint cyber and
physical attacks.

In Section IV, we study the problem of recovering the phase
angles and detecting disconnected lines after a joint cyber and
physical attack, a problem related to line outage identification
from changes in phase angles [25], [26] [27]. These studies
however, were based on complete knowledge of phase angle
measurements and in the case of [25], [26] were limited to two
line failures. The problem of line failure identification in an
internal system using the information from an external system
was studied in [9], where a heuristic algorithm was proposed
for only one and two line failures.

In Section VII, we disucss the problem of partitioning the
power grid into the minimum number of attack-resilient zones.
This problem is similar to PMU placement problems [28]–
[30]. Recently, PMU placemnet problem has attracted much
attention in India after the major blackouts of 2013 [29]. In
[30] the problem of PMU placement for line outage detection
was studied. However, none of these previous works addressed
the problem of PMU placement from the security point of view
where both the PDC/PMUs and the physical network are under
attack.
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In Section VII, we reduce the attack-resilient zone parti-
tioning problem to the problem of partitioning a graph into
subgraphs where each subgraph is (i) acyclic, and (ii) there
is a matching between nodes inside and outside the subgraph
that covers all the subgraph nodes. This problem is closely
related to the problems of vertex arboricity (which is known
to be NP-hard to be determined [31, p.193]) and k-matching
cover of a graph (which can be found in Opn3q time [32]).
However, to the best of our knowledge, the joint problem ((i)
and (ii) above) was not studied before.

III. MODEL AND DEFINITIONS

A. DC Power Flow Model

We adopt the linearized (or DC) power flow model, which is
widely used as an approximation for the non-linear AC power
flow model [33]. In particular, we follow [7], [34]and represent
the power grid by a connected undirected graph G “ pV,Eq
where V “ t1, 2, . . . , nu and E “ te1, . . . , emu are the set of
nodes and edges corresponding to the buses and transmission
lines, respectively. Each edge ei is a set of two nodes ei “
tu, vu. pv is the active power supply (pv ą 0) or demand
(pv ă 0) at node v P V (for a neutral node pv “ 0). We
assume pure reactive lines, implying that each edge tu, vu P E
is characterized by its reactance ruv “ rvu.

Given the power supply/demand vector ~p P R|V |ˆ1 and the
reactance values, a power flow is a solution P P R|V |ˆ|V | and
~θ P R|V |ˆ1 of:

ÿ

vPNpuq

puv “ pu, @ u P V (1)

θu ´ θv ´ ruvpuv “ 0, @ tu, vu P E (2)

where Npuq is the set of neighbors of node u, puv is the
power flow from node u to node v, and θu is the phase angle
of node u. Eq. (1) guarantees (classical) flow conservation
and (2) captures the dependency of the flow on the reactance
values and phase angles. Additionally, (2) implies that puv “
´pvu. When the total supply equals the total demand in each
connected component of G, (1)-(2) has a unique solution [7,
lemma 1.1].2 Eq.(1)-(2) are equivalent to the following matrix
equation:

A~θ “ ~p (3)

where A P R|V |ˆ|V | is the admittance matrix of G,3 defined
as follows:

auv “

$

’

&

’

%

0 if u ‰ v and tu, vu R E,
´1{ruv if u ‰ v and tu, vu P E,
´
ř

wPNpuq auw if u “ v.

Note that in power grids nodes can be connected by multiple
edges, and therefore, if there are k multiple edges between
nodes u and v, auv “ ´

řk
i“1 1{ruvi . Once ~θ is computed,

the flows, puv , can be obtained from (2).

2The uniqueness is in the values of puvs rather than θus (shifting all θus
by equal amounts does not violate (2)).

3When ruv “ 1 @tu, vu P E, the admittance matrix A is the Laplacian
matrix of the graph.

Notation. Throughout this paper we use bold uppercase char-
acters to denote matrices (e.g., A), italic uppercase characters
to denote sets (e.g., V ), and italic lowercase characters and
overline arrow to denote column vectors (e.g., ~θ). For a matrix
Q, qij denotes its pi, jqth entry. For a column vector ~y, ~yt

denote its transpose, yi denotes its ith entry, }~y}1 :“
řn
i“1 |yi|

is its l1-norm, }~y}2 :“ p
řn
i“1 y

2
i q

1{2 is its l2-norm, and
suppp~yq :“ ti|yi ‰ 0u is its support.

B. Control Network

We use a modified version of the model described in [10]
to model the SCADA system to which we refer as the control
network. Fig. 1 illustrates the components of the control
network. We assume that there is a Phasor Measurement Unit
(PMU) at each node of G. The PMU at node i reports the phase
angle θi as well as the status of the lines (either operational or
failed) adjacent to node i. Phasor Data Concentrators (PDC)
gather the data collected by PMUs. The data gathered by PDCs
is sent to a control center which monitors and controls the
entire grid. A zone is a subgraph induced by a subset of nodes
with a single associated PDC.

C. Attack Model

We study attacks on power grids that affect both the physical
infrastructure and the control network. We assume that an
adversary attacks a zone by: (i) disconnecting some edges
within the attacked zone (physical attack), and (ii) obstructing
the flow of information from the PMUs within the zone to the
control center (cyber attack). An adversary can perform the
cyber attack by, for example, disabling the zone’s associated
PDC. Alternatively, the communication network between the
PMUs and the PDC or between the PDC and the control center
can be attacked. We assume that disconnecting edges within
a zone does not make G disconnected.

Fig. 2 shows an example of an attack on the zone repre-
sented by H . Due to the attack, some edges are disconnected
(we refer to these edges as failed lines) and the phase angles
and the status of the lines within the attacked zone become
unavailable. We denote the set of failed lines in zone H by
F Ď EH . Upon failure, the failed lines are removed from the
graph and the flows are redistributed according to (1)-(2).

Notation. Throughout this paper, we denote an attacked
zone by H “ pVH , EHq. Without loss of generality we assume
that the indices are such that VH “ t1, 2, . . . , |VH |u and
EH “ te1, e2, . . . , e|EH |u. We denote the complement of the
zone H by H̄ “ GzH . If X,Y are two subgraphs of G,
AX|Y and AVX |VY

both denote the submatrix of the admittance
matrix of G with rows from VX and columns from VY . For
instance, A can be written in any of the following forms,

A “
„

AH|H AH|H̄
AH̄|H AH̄|H̄



,A “
“

AG|H AG|H̄
‰

,A “
„

AH|G
AH̄|G



.

We use the very same notation for the vectors. For instance
~θH and ~θH̄ are the vectors of phase angle of the nodes in H
and H̄ , respectively. We use the prime symbol p1q to denote
the values after an attack. For instance, G1, A1, and ~θ1 are used
to represent the graph, the admittance matrix of the graph, and
the phase angles of the nodes after an attack.
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TABLE I: Summary of notation.

Notation Description
G “ pV,Eq The graph representing the power grid

A Admittance matrix of G
~θ Vector of the phase angles of the nodes in G
H A subgraph of G representing the attacked zone
F Set of failed lines due to an attack
D Incidence matrix of G
©1 The value of © after an attack
© The complement of ©
©˚ The dual of ©

D. Graph Theoretical Terms

In this paper, we use several graph theoretical terms and
theorems mostly borrowed from [35]. We briefly review some
of the important definitions in this subsection.
Subgraphs, Cuts, and Cycles: Let X and Y be subsets of
the nodes of a graph G. GrXs denotes the subgraph of G
induced by X . We denote by ErX,Y s the set of edges of G
with one end in X and the other end in Y . We denote the
complement of a set X by X̄ “ V zX . The coboundary of X
is the set ErX, X̄s and is denoted by BpXq. Bpvq denotes the
coboundary of X “ tvu. GrX, X̄s denotes the subgraph of
G induced by the edges from ErX, X̄s. NpXq is the set of
neighbors of the nodes in X excluding X itself, and NcpXq “
X YNpXq. We say that Q Ď E is G-separable, if there are
pairwise edge-disjoint cycles Cqpq P Qq, such that @q P Q, q P
Cq [36].
Planar Graphs: A graph G is planar, if it can be drawn
in the plane so that its edges intersect only at their ends. A
planar graph G partitions the rest of the plane into a number
of edgewise-connected open sets called the faces of G.

Given a planar graph G, its dual graph G˚ is defined as
follows. Corresponding to each face c of G there is a node
c˚ of G˚, and corresponding to each edge e of G there is an
edge e˚ of G˚. Two nodes c˚1 and c˚2 are joined by the edge
e˚ in G˚, if and only if their corresponding faces c1 and c2
are separated by the edge e in G. It is easy to see that the
dual G˚ of a planar graph G is itself a planar graph [35].
Incidence Matrix: Suppose we assign an arbitrary orientation
to the edges of G. We denote the set of oriented edges by
E “ tε1, ε2, . . . , εmu. The (node-edge) incidence matrix of G
is denoted by D P t´1, 0, 1u|V |ˆ|E| and defined as follows,

dij “

$

’

&

’

%

0 if εj is not incident to node i,
1 if εj is coming out of node i,
´1 if εj is going into node i.

When we use the incidence matrix, we assume an arbitrary
orientation for the edges unless we mention an specific orien-
tation. DH P t´1, 0, 1u|VH |ˆ|EH | is the submatrix of D with
rows from VH and columns from EH .

IV. ATTACK ANALYSIS

In this section, we study the effects of an attack and provide
analytical methods for recovering the phase angles and detect-
ing failed lines in the attacked zone H . We find conditions
on the structural properties of a zone and constraints on the
failed lines for which these methods successfully recover the
phase angles and detect the failed lines. These conditions

depend on the connections between VH and V̄H as well as the
inner connections of the nodes in H . Therefore, we refer to
them as external and internal conditions on H , respectively.
Finally, we briefly study the case in which multiple zones
are attacked simultaneously. Table II summarizes the results
regarding the resilience of a zone based on its internal and
external conditions, and the constraints on the set of failed
lines F .

In this section, when we describe our methods, we assume
that there are no edges ti, ju P EH for which θ1i “ θ1j (we
refer to these edges as null-edges). Following (2), a null-edge
does not carry any flow. Thus, we cannot detect the status
of those edges since they cannot be distinguished from failed
lines. However, we can detect the null-edges and treat them
separately (we consider this in the PARD Algorithm provided
in the next section).

A. Recovery of Phase Angles

In this subsection, we introduce a method to recover the
phase angles of the nodes in an attacked zone H . We provide
sufficient conditions on GrVH , V̄H s such that the method
recovers the phase angles of the nodes in VH successfully.
As we mentioned, since these conditions depend only on the
connections between VH and V̄H , we refer to them as the
external conditions on H .

The following lemma is the first step towards designing the
method for recovering the phase angles and for detecting the
failed lines (see Subsection IV-B).

Lemma 1: supppAp~θ ´ ~θ1qq Ď VH .
Proof: Suppose F “ tei1 , ei2 , . . . , eiku Ď EH are the

edges that are disconnected from the grid after the attack on the
zone H . Define the column vectors ~x1, ~x2 . . . ~xk P t´1, 0, 1un

associated with the failed lines as follows. If eij “ tsj , tju
then ~xj is 1 in its s thj entry, ´1 in its tthj entry, and 0
everywhere else. It is easy to see that A1 is related to A
as A1 “ A ´

řk
j“1 asjtj ~xj ~xj

t. Since the graph G does not
get disconnected after an attack, the flow equations in G1 are
A1~θ1 “ ~p. On the other hand, A~θ “ ~p, therefore A~θ´A1~θ1 “ 0.
Thus,

0 “ A~θ ´ A1~θ1 “ A~θ ´ A~θ1 `
k
ÿ

j“1

asjtj ~xj ~xj
t~θ1

ñ supppAp~θ ´ ~θ1qq Ď
k
ď

i“1

tsj , tju Ď VH .

One of the immediate results of Lemma 1 is the following
corollary. This corollary gives a true statement about ~θ1 (recall
that ~θ1 is partly unknown). It states that ~θ1 is in the solution
space of the matrix equation (4).

Corollary 1: For any U Ď H̄ , AU |NcpUqp
~θNcpUq´

~θ1NcpUq
q “

0. In particular, when U “ H̄ ,

AH̄|Gp~θ ´ ~θ1q “ 0. (4)

For simplicity of the notations and equations, through the
most of this paper we consider the case in which U “ H̄ .
However, as we briefly describe in Subsection IV-D, using a
smaller U allows the recovery of the phase angles after an
attack on multiple zones.
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We find sufficient conditions such that the solution ~θ1H to
(4) is unique (given ~θ and ~θ1

H̄
), and consequently ~θ1H can

be recovered after any attack on H . We first define a well-
supported zone.

Definition 1: A zone H is called well-supported, if ~θ1H can
be recovered after any attack on H .

Using Corollary 1, the following theorem gives sufficient
condition for a zone H to be well-supported.

Theorem 1: A zone H is well-supported, if AH̄|H has
linearly independent columns.

Proof: From Corollary 1 we know that AH̄|Gp~θ´~θ1q “ 0,
therefore AH̄|H~θ1H “ AH̄|H̄p~θH̄ ´ ~θ1

H̄
q ` AH̄|H~θH . The only

unknown in this equation is ~θ1H . Now since AH̄|H has linearly
independent columns, this equation has a unique solution ~θ1H
which can be computed in polynomial time. Thus, ~θ1H can be
recovered in this case and zone H is well-supported.

It can be seen that the sufficient condition in Theorem 1
depends on the reactance values. However, the following
corollary relaxes the condition in Theorem 1. It shows that
if GrVH , V̄H s has a matching that covers VH , then for almost
any reactance values for the edges in ErVH , V̄H s, H is well-
supported. The idea is that the set of reactance values for
the edges in ErVH , V̄H s for which AH̄|H does not have
linearly independent columns is a measure zero set in the real
space [37].

Corollary 2: If there is a matching in GrVH , V̄H s that covers
VH , then H is well-supported almost surely.4

Proof: Suppose M “ pU, VHq is the matching for
GrVH , V̄H s that covers VH , and suppose U Ď V̄H are the
matched nodes which are in V̄H . Since M is the matching
in GrVH , V̄H s that covers H , thus |U | “ |VH |. Regarding
Theorem 1, to show that H is well-supported almost surely, we
need to show that the columns of the matrix AH̄|H are linearly
independent almost surely. For this reason, we show that
detpAU |VH

q ‰ 0 almost surely. detpAU |VH
q can be considered

as a polynomial of the nonzero entries of the admittance matrix
using Leibniz formula. Now assume U “ tu1, u2, . . . , u|VH |u

are matched to VH “ tv1, v2, . . . , v|VH |u in order. It can be
seen that

ś|VH |

i“1 auivi is a term with nonzero coefficient in
detpAU |VH

q. Therefore, detpAU |VH
q is not a zero polynomial

in terms of its nonzero entries. Now since the set of reactance
values for the edges in ErVH , V̄H s such that detpAU |VH

q “ 0
is a measure zero set in the real space, thus detpAU |VH

q ‰ 0
almost surely.

In reality, since the reactance values are derived by the
physical properties of the lines, we expect that these values
are relatively random around a mean value. Thus, following
Corollary 2, the existence of a matching that covers every node
in VH is enough for a zone to be well-supported (see Fig. 3
for an example of a graph in which every node in a zone is
covered by a matching). Hence, in the following sections we
consider the existence of a matching as a sufficient external
condition on H to be well-supported.

Zone 1

Zone 2

Zone 3

Zone 4

Fig. 3: An example of a graph and set of zones such that each
zone is both well-supported and acyclic.

B. Detecting Failed Lines
In this subsection, we assume that after an attack, the phase

angles are recovered using the method in Subsection IV-A (i.e.,
by solving (4)). We introduce methods to detect the failed lines
using ~θ1. We provide sufficient conditions on H such that these
methods detect the failed lines successfully. As we mentioned,
since these conditions depend only on the connections between
the nodes in H , we refer to them as internal conditions on H .

The following Lemma is the foundation for our approach
to find the failed lines. It limits the set of failed lines to the
solution space of the matrix equation (5). It can be considered
as the complement of Corollary 1.

Lemma 2: There exists a vector ~x P R|EH | such that
suppp~xq “ ti|ei P F u and

DH~x “ AH|Gp~θ ´ ~θ1q. (5)

Moreover, for any W Ď G such that NcpHq Ď W , DH~x “
AH|W p~θW ´ ~θ1W q.

Proof: We use the notation that we used in proof of
Lemma 1. Recall from the proof of Lemma 1 that Ap~θ´~θ1q “
´
řk
j“1 asjtj ~xj ~xj

t~θ1. It is easy to see that if ~d1, ~d2, . . . , ~dm are
the columns of the incidence matrix D, then @jp1 ď j ď kq,
there exists bj P R such that bj ~dij “ ´asjtj ~xj ~xj

t~θ1.
Therefore, Ap~θ ´ ~θ1q “

řk
j“1 bj

~dij . Thus, if we define
~y P Rm such that @eij P F, yij “ bj and 0 elsewhere, then
Ap~θ´~θ1q “ D~y and suppp~yq Ď ti1, i2, . . . , iku. However, from
the Corollary 1 we know that AH̄|Gp~θ ´ ~θ1q “ 0. Moreover,
since F Ď EH , ~yH̄ “ 0. Thus, we can restrict the equation
only to the components of the zone H , which means that
AH|Gp~θ ´ ~θ1q “ DH~yH . Now it is easy to see that since we
assumed that no null-edges are in F , all the bis are nonzero and
suppp~yHq “ ti1, i2, . . . , iku. Therefore, ~x “ ~yH is a solution
to (5) and suppp~xq “ ti|ei P F u. Now, since for any i P H
and j R NcpHq we have aij “ 0, it is easy to see that for any
W Ď G such that NcpHq Ď W , DH~x “ AH|W p~θW ´ ~θ1W q.

Lemma 2 provides important information regarding the
failed lines. It states that there exists a solution ~x to (5)
such that suppp~xq reveals the set of failed lines. However,
the solution to (5) may not be unique. Again, for simplicity of
the notations and equations, through the most of this paper we
consider the case in which W “ G. However, as we briefly
describe in Subsection IV-D, using a smaller W allows the
failed lines detection after an attack on multiple zones.

4In probability theory, one says that an event happens almost surely, if it
happens with probability one.
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TABLE II: Summary of the results in Section IV. The external/internal conditions on the structural properties of a zone H
such that after an attack with certain constraints, the phase angles can be recovered and the failed lines can be detected by
solving (8). Matching and partial matching refer to matchings in GrVH , V̄H s that cover VH and VHzpV in

H YV
out
H q, respectively.

Case External conditions Internal conditions Attack constraints Resilience Results
I Matching Acyclic None attack-resilient Corollary 2/Lemma 3

II Matching Planar @ cycle C, |C X F | ă |CzF |
F˚ is H˚-separable weakly-attack-resilient Corollary 2/Theorem 2

III Partial matching Acyclic @v P V in
H , |Bpvq X F | ă |BpvqzF | weakly-attack-resilient Lemmas 3,6/Corollary 5

IV Partial matching
Planar

No cycle contains an
inner-connected-node

@ cycle C, |C X F | ă |CzF |
@v P V in

H , |Bpvq X F | ă |BpvqzF |
F˚ is H˚-separable

weakly-attack-resilient Theorem 3/Corollary 5

The lemma below provides a necessary and sufficient con-
dition on H such that the solution to (5) is unique.

Lemma 3: The solution to (5) is unique and suppp~xq “
ti|ei P F u, if and only if H is acyclic.

Proof: It is easy to see that the solution to (5) is unique
if and only if DH has linearly independent columns. It is
known that rankpDHq “ |VH |´c in which c is the number of
connected components of H [38, Theorem 2.3]. Therefore, DH
has linearly independent columns if and only if each connected
component of DH is a tree, which means that DH should be
acyclic.

According to Lemma 3 the set of failed lines for any attack
can be detected, if and only if H is acyclic. Fig. 3 shows an
example of a graph and set of zones such that each zone is
both well-supported and acyclic (case I in Table II).

Although Lemma 3 requires H to be an acyclic graph in
order for the solution of (5) to be unique, by setting some
constraints on the failed lines F , we provide a method to detect
the failed lines in broader class of graphs. The underlying idea
is that the set of failed lines is expected to be relatively sparse
compared to the overall set of edges within a zone. Thus, we
are interested in the solutions of (5) that are relatively sparse.
The l0-norm should be used to capture the sparseness of a
vector. However, since minimizing l0-norm is a combinatorial
problem in general cases, we prefer to use l1-norm which is
known to be a good approximation of the l0-norm. Thus, we
consider the following minimization problem,

min }~x}1 s.t. DH~x “ AH|Gp~θ ´ ~θ1q. (6)

Notice that (6) is still linear and can be solved using Linear
Programming. Moreover, when the solution to (6) also appears
to be sparse, which is usually the case in the considered
scenario, there are very fast algorithms to solve it [39].

The Lemma below states that by solving (6), the failed lines
can be detected in more cases than by solving (5). The idea
that we use in proof of Lemma 4 is the core idea in proofs
of Theorems 2 and 3, as well. Namely, the null space of DH

is in one-to-one correspondence with the cycle space of the
graph H . Therefore, there are graph theoretical interpretations
to the solution space of (5). Hence, by using tools from graph
theory and linear algebra, we find the solution to (5) with the
minimum l1-norm.

Lemma 4: If H is a cycle and |EH X F | ă |EHzF |, the
solution to (6) is unique and suppp~xq “ ti|ei P F u.

Proof: Here without loss of generality, we assume that
DH is the incidence matrix of H when edges of H has
been oriented clockwise. Since H is connected, it is known
that rankpDHq “ |VH | ´ 1 [38, Theorem 2.2]. Therefore,

dimpNullpDHqq “ 1. Suppose ~e P R|EH | is the all one vector.
It is easy to see that DH~e “ 0. Since dimpNullpDHqq “ 1, ~e
is the basis for the null space of D. Suppose ~x is a solution
to (5) such that suppp~xq “ ti|ei P F u (from Lemma 2
we know that such a solution exists). To prove that ~x is
the unique solution for (6), we only need to prove that
@c P Rzt0u, }~x}1 ă }~x ´ c~e}1. Without loss of generality
we can assume that x1, x2, . . . , xk are the nonzero elements
of ~x, in which k “ |F |. From the assumption we know that
|EH X F | ă |EHzF |, therefore k ă |EH |{2. Hence, we have

}~x´ c~e}1 “
k
ÿ

i“1

|xi ´ c| ` p|EH | ´ kq|c|

“

k
ÿ

i“1

p|xi ´ c| ` |c|q ` p|EH | ´ 2kq|c|

ě

k
ÿ

i“1

|xi| ` p|EH | ´ 2kq|c| ą
k
ÿ

i“1

|xi| “ }~x}1.

Thus, the solution to (6) is unique.
Corollary 3: If all the cycles in H are edge-disjoint and for

any cycle C in H , |C X F | ă |CzF |, then the solution to (6)
is unique and suppp~xq “ ti|ei P F u.

The following Theorem extends the idea in the proof of
Lemma 4 and provides sufficient conditions for failed lines in
a planar graph H to be detected by solving (6) (recall from
subsection III-D that H˚ is the dual of the planar graph H
and F˚ is the dual of the set of failed lines). For the proof
details see [1].

Theorem 2: In a planar graph H , the solution to (6) is unique
and suppp~xq “ ti|ei P F u, if (i) for any cycle C in H ,
|C X F | ă |CzF |, and (ii) F˚ is H˚-separable.
Fig. 4 shows an example of a zone H for which the set of
failed lines can be detected by solving (6) based on Theorem 2
(case II in Table II).

The Corollary below states that in planar bipartite graphs,
condition (ii) in Theorem 2 immediately holds, if condition (i)
holds. For the proof details see [1].

Corollary 4: In a planar bipartite graph H , the solution to
(6) is unique and suppp~xq “ ti|ei P F u, if for any cycle C in
H , |C X F | ă |CzF |.
Theorem 2 and Corollary 4 are important since power grids
are usually considered to be planar. For instance, lattice graphs
are planar bipartite.

C. Simultaneous Phase Angles Recovery and Failed Lines
Detection

In Subsection IV-A we showed that the phase angles of the
zone H are recoverable, if there is a matching in GrVH , V̄H s
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𝑂3
∗

Fig. 4: An example of a zone H and a set of failed lines (shown
by red dashed lines) that can be detected by solving (6) based
on Theorem 2. The diamond orange nodes are the nodes of the
dual graph H˚. As can be seen, the dual of the failed lines can
be covered by three edge disjoint cycles O˚1 , O

˚
2 , O

˚
3 (shown

by dotted lines) in H˚. Thus, as Theorem 2 requires, F˚ is
H˚-separable.

that covers VH . However, in reality, this condition might be
very difficult and costly to maintain (i.e., it may require to
increase the number of zones). Therefore, in this subsection,
using similar ideas as in subsection IV-B, we relax the external
conditions on H .

The key idea which is summarized in the following Lemma,
is to combine Corollary 1 and Lemma 2.

Lemma 5: There exist vectors ~x P R|EH | and ~δH P R|VH |

such that suppp~xq “ ti|ei P F u, ~δH “ ~θH ´ ~θ
1
H , and

DH~x “ AH|H~δH ` AH|H̄~δH̄ (7)

AH̄|H~δH ` AH̄|H̄~δH̄ “ 0

where ~δH̄ “ ~θH̄ ´ ~θ
1
H̄

and is known.
From Subsections IV-A and IV-B we know that the solution

to (7) is unique, if and only if H is acyclic and AH̄|H has
linearly independent columns. Therefore, to deal with cases
for which AH̄|H does not have linearly independent columns,
we consider a similar optimization problem as in (6) but
with more constraints. For this reason, as we mentioned in
Subsection IV-B, since the set of failed lines is expected to
be relatively sparse compared to the overall set of edges, we
consider the following optimization problem,

min }~x}1 s.t. (8)

DH~x “ AH|H~δH ` AH|H̄~δH̄
AH̄|H~δH ` AH̄|H̄~δH̄ “ 0.

The following Lemma states that if there is an independent
set of nodes in H with no neighbors in H̄ , then under some
conditions on F , we can recover F and ~θ1H by solving (8)
even when AH̄|H does not have linearly independent columns
(case III in Table II). First, we define inner-connected nodes.

Definition 2: A node v P VH is called H-inner-connected
if Npvq Ď VH . It is called H-outer-connected if Npvq Ď
VH̄ . We denote the set of H-inner-connected and H-outer-
connected nodes by V in

H and V out
H , respectively.

Lemma 6: Suppose H-inner-connected nodes form an inde-
pendent set. If H is acyclic, rankpAH̄|Hq “ |VH | ´ |V in

H |, and
@v P V in

H , |BpvqXF | ă |BpvqzF |, then the solution ~x, ~δ to (8) is
unique. Moreover, suppp~xq “ ti|ei P F u and ~δH “ ~θH ´ ~θ

1
H .

Proof: The idea of the proof is very similar to the proof
of Lemma 4. Suppose ~x, ~δH is the solution to (7) such that

suppp~xq “ ti|ei P F u and ~δH “ ~θH´~θ
1
H . From Lemma 5 we

know that such a solution exists. We show that this solution
is the unique solution to (8) in this setting.

Without loss of generality in addition to assuming VH “

t1, 2, 3, . . . , |VH |u and EH “ te1, e2, . . . , e|EH |u, we can
assume the labeling of the nodes in G is such that V in

H “

t1, 2, . . . , tu is the set of H-inner-connected nodes. Suppose
~α1, ~α2, . . . , ~αt P R|VH | are the coordinate vectors, in other
words ~αi is 1 at its ith entry and 0 everywhere else. It is easy
to see that @i P V in

H : AH̄|H~αi “ 0. On the other hand, since
rankpAH̄|Hq “ |VH | ´ t and ~αis are linearly independent,
~α1, ~α2, . . . , ~αt form a basis for NullpAH̄|Hq.

Assume DH is the incidence matrix of H when its edges are
oriented such that for each i P V in

H , the edges are coming out
of i. Now suppose ~z is another solution to (8), it is easy to see
that DHp~z´~xq “ AH|H~α for a vector ~α P NullpAH̄|Hq. Since
~α P NullpAH̄|Hq, there are unique coefficients c1, c2, . . . , ct P
R such that ~α “ c1 ~α1 ` c2 ~α2 ` ¨ ¨ ¨ ` ct ~αt. Thus,

DHp~z ´ ~xq “ AH|H~α “ AH|Hpc1~α1 ` c2~α2 ` ¨ ¨ ¨ ` ct~αtq

“ c1AH|H~α1 ` c2AH|H~α2 ` ¨ ¨ ¨ ` ctAH|H~αt.

Suppose ~dj is the column associated with edge ej in DH .
Notice that for each i P V in

H , Bpiq Ď EH . Therefore, @i P V in
H

and @ej P Bpiq, ~dj is a column of DH . It is easy to see that
for any i P V in

H ,
ř

j:ejPBpiq
~dj “ AH|H~αi. If for any i P V in

H

we define vector ~bi P t0, 1u|EH | as follows,

bij :“

#

1 if ej P Bpiq
0 otherwise,

then DH~bi “ AH|H~αi for any i P V in
H . Thus,

DHpc1~b1 ` ¨ ¨ ¨ ` ct~btq “ c1AH|H~α1 ` ¨ ¨ ¨ ` ctAH|H~αt
ñ DHp~z ´ ~xq “ DHpc1~b1 ` c2~b2 ` ¨ ¨ ¨ ` ct~btq.

Now since H is acyclic, DH has linearly independent columns.
Thus, from the equation above we can conclude that,

~z ´ ~x “ c1~b1 ` c2~b2 ` ¨ ¨ ¨ ` ct~bt

ñ ~z “ ~x` c1~b1 ` c2~b2 ` ¨ ¨ ¨ ` ct~bt.

Using equation above, we show that }~z}1 ą }~x}1 unless
c1 “ c2 “ ¨ ¨ ¨ “ ct “ 0. First, notice that since V in

H is an
independent set, @i ‰ j P V in

H , Bpiq X Bpjq “ H. Suppose
@i P V in

H , |Bpiq X F | “ ki, we have

}~z}1 “ }~x` c1~b1 ` c2~b2 ` ¨ ¨ ¨ ` ct~bt}1

“
ÿ

iPV in
H

´

p|Bpiq| ´ kiq|ci| `
ÿ

jPFXBpiq

|xj ` ci|
¯

`
ÿ

iPF zBpV in
Hq

|xi|

“
ÿ

iPV in
H

´

p|Bpiq| ´ 2kiq|ci| `
ÿ

jPFXBpiq

`

|xj ` ci| ` |ci|
˘

¯

`
ÿ

iPF zBpV in
Hq

|xi|

ě
ÿ

iPV in
H

´

p|Bpiq| ´ 2kiq|ci| `
ÿ

jPFXBpiq

|xj |
¯

`
ÿ

iPF zBpV in
Hq

|xi|

“
ÿ

iPV in
H

`

p|Bpiq| ´ 2kiq|ci|
˘

`
ÿ

iPV in
H

ÿ

jPFXBpiq

|xj | `
ÿ

iPF zBpV in
Hq

|xi|

“
ÿ

iPV in
H

`

p|Bpiq| ´ 2kiq|ci|
˘

` }~x}1.
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Zone H

Fig. 5: An example of a zone H and an attack such that the
phase angles can be recovered and the failed lines can be
detected by solving (8) based on Theorem 3. The squared
green nodes are the H-inner-connected nodes. The failed lines
are shown by red dashed edges.

Now, since from the assumptions @i P V in
H , ki ă |Bpiq|{2, it

is easy to see that
ř

iPV in
H
ppBpiq ´ 2kiq|ci|q ` }~x}1 ą }~x}1,

unless c1 “ c2 “ ¨ ¨ ¨ “ ct “ 0. Since ~z is a solution to (8),
we should have c1 “ c2 “ ¨ ¨ ¨ “ ct “ 0, and ~z “ ~x. Thus, ~x
is the unique solution to (8) and suppp~xq “ ti|ei P F u. From
the proof, it is easy to see that ~δH is also unique.

To generalize Lemma 6, first let us consider cases in which
H contains H-outer-connected nodes. The Lemma below
shows that the value of δ for these nodes is unique.

Lemma 7: If v is H-outer-connected and ~δH is a solution to
(7), then δv is unique and equal to δv “ 1{dpvq

ř

uPNpvq δu,
where dpvq is the degree of node v.

Proof: First, notice that since v is H-outer-connected,
Npvq Ď V̄H . Thus, δv “ 1{dpvq

ř

uPNpvq δu implies that δv is
unique. Now, let us compute the vth entry of the vectors on
the both side of the equation DH~x “ AH|H~δH ` AH|H̄~δH̄ .
Since v is H-outer-connected, the vth row of DH is a zero
vector. Thus, pDH~xqv “ 0 for any ~x. It is also easy to see
that pAH|H~δHqv “ δvdpvq and pAH|H̄~δH̄qv “ ´

ř

uPNpvq δu.
Since pDH~xqv “ pAH|H~δHqv`pAH|H̄~δH̄qv , we can conclude
that δv “ 1{dpvq

ř

uPNpvq δu. Thus, the proof is complete.
In the following theorem, we generalize Lemma 6. This

theorem combines Lemma 6 and Theorem 2, and provides a
broader class of graphs in which solving (8) recovers phase
angles and detects the failed lines after an attack. For the proof
details see [1].

Theorem 3: In a planar graph H , the solution ~x, ~δH to (8) is
unique with suppp~xq “ ti|ei P F u and ~δH “ ~θH ´ ~θ

1
H , if the

following conditions hold: (i) @v P V in
H , |BpvqXF | ă |BpvqzF |,

(ii) for any cycle C in H , |C X F | ă |CzF |, (iii) F˚ is
H˚-separable, (iv) in AH̄|H , columns associated with nodes
that are neither H-inner-connected nor H-outer-connected are
linearly independent, (v) no cycle in H contains a H-inner-
connected node, and (vi) H-inner-connected nodes form an
independent set.
Note that when H is well-supported, there are no H-inner-
connected or H-outer-connected nodes. Thus, conditions (i),
(iv), (v), and (vi) immediately hold and Theorem 3 reduces to
Theorem 2.

Fig. 5 shows an example of a zone H and an attack such that
the phase angles can be recovered and the failed lines can be
detected by solving (8) using Theorem 3 (case IV in Table II).
As it can be seen, this theorem covers a broad set of graphs
and attacks for which we can recover the phase angles and

detect the failed lines. Notice that here, with similar argument
as in Corollary 2 we can replace condition (iv) in Theorem 3
with a simpler matching condition as follows.

Corollary 5: If there is a matching in GrVH , V̄H s that covers
VHzpV

in
H Y V out

H q, then condition (iv) in Theorem 3 holds
almost surely.

To conclude, we define the attack-resilient and weakly-
attack-resilient notions to summarize the resilience of a zone
to joint cyber and physical attacks.

Definition 3: A zone H is called attack-resilient, if it is both
well-supported and acyclic.

Definition 4: A zone H is called weakly-attack-resilient, if
~θ1H and F can be uniquely found after a constrained attack on
the zone H by solving (8).
It is easy to see that an attack-resilient zone is also weakly-
attack-resilient.

D. Recovery and Detection After Attacks on Multiple Zones

In this subsection, we study the case in which multiple
zones are attacked simultaneously. When the attacked zones
are close to each other, it may not always be possible to recover
information. However, if the attacked zones are relatively
distant from each other, any of the methods provided in the
previous subsections (depending on the conditions on the
zones and attacks) can be applied to recover the information
and detect the failures in the attacked zones.

The idea is to use Corollary 1 and Lemma 2 for sets U
and W much smaller than H̄ and G, respectively. Assume H1

and H2 are two attacked zones. Let U1 and U2 be two sets
with the minimum size such that U1 Ď H̄1, H1 Ď NcpU1q,
U2 Ď H̄2, and H2 Ď NcpU2q. Following Corollary 1,
AU1|NcpU1qp

~θNcpU1q´
~θ1NcpU1q

q “ 0 and AU2|NcpU2qp
~θNcpU2q´

~θ1NcpU2q
q “ 0. Now if NcpU1qXH2 “ NcpU2qXH1 “ H (i.e.,

H1 and H2 are distant enough), and both AU1|H1
and AU2|H2

have linearly independent columns, then similar to the proof
of Theorem 1, the phase-angles of the nodes in H1 and H2

can be recovered by solving a set of linear equations.
To detect the failed lines, let W1 and W2 be two sets with

the minimum size such that W1,W2 Ď G, NcpH1q Ď W1,
and NcpH2q Ď W2. Following Lemma 2, there exist vectors
~x1, ~x2 P R|EH | such that suppp ~x1q and suppp ~x2q give the
failed lines in H1 and H2, and also DH1 ~x1 “ AH1|W1

p~θW1 ´

~θ1W1
q and DH2

~x2 “ AH2|W2
p~θW2

´ ~θ1W2
q. Now, if H1 and H2

are acyclic and W1 X H2 “ W2 X H1 “ H, then similar to
the Lemma 3, the solutions to DH1 ~x1 “ AH1|W1

p~θW1 ´
~θ1W1

q

and DH2 ~x2 “ AH2|W2
p~θW2 ´

~θ1W2
q are unique and the failed

lines can be detected by suppp ~x1q and suppp ~x2q.
Notice that the methods in subsection IV-C can also be sim-

ply used to recover the phase angles and detect the failed lines
in the attacked zones that are distant enough. The following
corollary summarizes our discussion in this subsection.

Corollary 6: The phase angles and the failed lines can
be recovered/detected after a simultaneous attack on zones
H1, H2, . . . ,Hk, if followings hold: (i) for any 1 ď i ď k,
if Hi was the only attacked zone, then the phase angle of the
nodes and the failed lines could be recovered/detected using
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Algorithm 1 - Post-Attack Recovery & Detection (PARD)
Input: A connected graph G, phase angles before the attack ~θ, and
partial phase angles after the attack ~θ1H̄ .

1: Detect the attacked zone H by checking for missing data.
2: Compute ~x, ~δH the solution to (8) by Linear Programming.
3: Compute ~θ1H “ ~θH ´ ~δH .
4: Compute F “ tei|i P suppp~xqu.
5: Detect the set of null-edges that appear after the attack as N “

tti, ju P EH |θ
1
i “ θ1ju.

6: return N , F , ~θ1H .

the methods in subsections IV-A,IV-B, and IV-C, (ii) there
exist U1, U2, . . . , Uk Ď G and W1,W2, . . .Wk Ď G such that:

1. For any 1 ď i ď k, Ui Ď H̄i, Hi Ď NcpUiq, and
NcpHiq ĎWi.

2. For any 1 ď i ‰ j ď k, NcpUiqXHj “ H and WiXHj “

H.
Proof: For any 1 ď i ď k, consider equa-

tions AUi|NcpUiqp
~θNcpUiq ´

~θ1NcpUiq
q “ 0 and DHi

~xi “

AHi|Wi
p~θWi ´

~θ1Wi
q instead of (4) and (5). Then, recover

the phase angle of the nodes and detect the failed lines at
each Hi separately using any of the methods provided in
subsections IV-A,IV-B, and IV-C.

V. POST-ATTACK RECOVERY AND DETECTION
ALGORITHM

In this section, we present the Post-Attack Recovery and
Detection (PARD) Algorithm for recovering the phase angles
and detecting the failed lines after an attack on a zone H .
Based on the results provided in previous subsections, if a
zone H is weakly-attack-resilient, the PARD Algorithm will
recover the phase angles and detect the failed lines after a
constrained attack.

Notice that if there are some failed lines but no data is
missing, then from the data that is gathered by the PDCs from
the PMUs, all the information regarding the status of the lines
and phase angles is available and there is no need for the
algorithm. Thus, as the first step, the PARD Algorithm detects
the attacked zone H by checking the missing data (line 1).
Then, it solves (8) by Linear Programming to obtain ~x, ~δH .
If H is weakly-attack-resilient, from the results in previous
subsections, we know that ~x, ~δH are unique, ~θ1H “ ~θH ´ ~δH
(line 3), and F “ tei|i P suppp~xqu (line 4). Finally, using ~θ1

computed in previous line, the PARD Algorithm detects the
set of null-edges N (line 5), and returns N , F , and ~θ1H .

VI. ATTACK ANALYSIS IN THE PRESENCE OF
MEASUREMENT NOISE AND UNCERTAINTY

In this section, we briefly discuss the problem of infor-
mation recovery after an attack in the presence of a mea-
surement noise and uncertainty. We follow [21] and model
the measurement noise by changing (3) to Ap~θ ´ ~eq “ ~p
where ~e P R|V |ˆ1 is a Gaussian measurement noise with
a diagonal covariance matrix Σ. Following [9], ~e can also
account for the perturbations in ~p after failures. It is obvious
that in the presence of noise, the optimization problem (8) has
no feasible solution. However, since the l1-norm is relatively

Algorithm 2 - 3-Acyclic Partition of Planar (3APP)
Input: A non-empty planar graph G.

1: Find a node v P V such that degpvq ď 5.
2: if Gzv “ H then set Q1 “ Q2 “ Q3 “ H.
3: else Find 3-partition of Gzv using 3APP Algorithm as

Q1, Q2, Q3.
4: Add v to the partition that |Npvq XQi| is minimum.
5: return Q1, Q2, Q3.

Algorithm 3 - Zone Selection (ZS)
Input: A connected graph G.

1: Find an optimal matching cover M1,M2, . . . ,Mt of G [32].
2: For each Mi, separate the matched nodes into two set of nodes
V2i´1, V2i such that @tv, uu PM , v P V2i´1 and u P V2i.

3: For any 1 ď i ď 2t, Qi “ Viz
Ťi´1

j“1 Qj .
4: for each Qi do
5: if GrQis is acyclic then continue
6: if GrQis is a planar graph then
7: Use 3APP Algorithm to partition GrQis.
8: else
9: Use any greedy algorithm to partition GrQis into acyclic

subgraphs.
10: Name the resulted partitions P1, . . . , Pk.
11: return P1, . . . , Pk.

robust against noise, one possible approach to generalize the
optimization problem (8) to the noisy case is to relax the
conditions as follows:

min }~x}1 s.t. (9)

}DH~x´ AH|H~δH ´ AH|H̄~δH̄}2 ă ε

}AH̄|H~δH ` AH̄|H̄~δH̄}2 ă ε.

It is easy to see that the optimization problem (9) is a second-
order cone program that can be solved using gradient decent
methods. After solving (9), the line failures can then be
detected as before by F “ tei|i P suppp~xqu.

Generalizing Theorem 3 to take into account the noisy
case modeled by (9) is part of the future work. However,
in Section VIII, we show via simulation that solving the
optimization problem (9) can correctly recover the phase
angles and detect the failed lines depending on the level of
the Signal to Noise Ratio (SNR).5

VII. ZONE SELECTION ALGORITHM

In this section we use the results from Section IV to provide
an algorithm for partitioning the power grid into the mini-
mum number of attack-resilient zones. From Lemma 3 and
Corollary 2, for a zone H to be attack-resilient, it is sufficient
that H is acyclic and there is a matching in GrVH , V̄H s that
covers every node in VH . Fig. 3 shows an example of a
partitioning such that each zone is attack-resilient. Thus, we
define a matched-forest partition of a graph G as follows.

Definition 5: A matched-forest partition of a graph G into
H1, H2, . . . ,Hk is a partition such that for any i, Hi is acyclic
and GrVHi , V̄His has a matching that covers VHi .

The problem of finding a matched-forest partition of G is
closely related to two previously known problems of vertex ar-
boricity and k-matching cover of a graph. The vertex arboricity

5We define the SNR (in dB) as 20 log10p}
~θ}2{}~e}2q.
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apGq of a graph G is the minimum number of subsets into
which the nodes of G can be partitioned so that each subset
induces an acyclic graph. It is known that determining apGq
is NP-hard [31, p.193].

A k-matching cover of a graph G is a union of k matchings
of G which covers V . The matching cover number of G,
denoted by mcpGq, is the minimum number k such that G has
a k-matching cover. An optimal matching cover of a graph on
n nodes can be found in Opn3q time [32].

Using these results, we study the time complexity of the
minimum matched-forest partition problem.6 The following
Lemma shows that it is hard to find the minimum matched-
forest partition of a graph. For the proof details see [1].

Lemma 8: The problem of finding the minimum matched-
forest partition of a graph G is NP-hard.

Moreover, we show that finding the minimum matched-
forest partition is even hard to approximate. We use the well-
known result by Zuckerman [40] that for all ε ą 0, it is NP-
hard to approximate chromatic number to within n1´ε.

Lemma 9: For all ε ą 0, it is NP-hard to approximate
the minimum matched-forest partition of a graph G to within
n1´ε.

Proof: For a graph G, assume χpGq is its chromatic num-
ber. Since each color gives an independent set of G, induced
subgraph by the nodes with the same color is acyclic with no
edges. Thus, it is easy to see that apGq ď χpGq. Suppose there
is an α-approximation algorithm for the minimum matched-
forest problem. Define Ĝ as in proof of Lemma 8. Assume
this algorithm partitions Ĝ into k subsets. From the proof of
Lemma 8, it is easy to see that k ď αapGq. On the other hand,
since each acyclic graph has the chromatic number of at most
2, this algorithm gives the 2k coloring of graph G. However,
2k ď 2αapGq ď 2αχpGq. Thus, this algorithm gives a 2α-
approximation of the chromatic number of G. However, the
result by Zuckerman [40] states that for all ε ą 0, it is NP-hard
to approximate chromatic number to within n1´ε. Therefore,
for all ε ą 0, it is NP-hard to approximate the minimum
matched-forest problem to within n1´ε as well.

Despite these hardness results, we provide the polynomial-
time Zone Selection (ZS) Algorithm to find a matched-forest
partition of a graph. We prove that the ZS Algorithm provides
a constant approximation for the minimum matched-forest
partition of a graph G when G is planar.

Before describing the ZS Algorithm in detail, we first
describe an algorithm that is used in the ZS Algorithm,
when G is planar. It is known that for a planar graph G,
apGq ď 3 [41]. Based on the proof provided in [41], we
introduce a recursive 3-Acyclic Partition of Planar (3APP)
Algorithm. The Lemma below shows the correctness of this
Algorithm.

Lemma 10: The 3APP Algorithm partitions the nodes of a
planar graph G into 3 subsets such that each subset induces
an acyclic graph.

Proof: It is known that every planar graph has a node
of degree less than or equal to 5 [42]. Therefore, line 1

6To the best of our knowledge, this is the first time that the problem is
studied.

1 2 3 4 5

9 8 7 6

Zone H

10

𝑒1 𝑒2 𝑒3 𝑒4

𝑒5𝑒7𝑒9

𝑒6𝑒8

Fig. 6: The graph and the zone H that are used in the
simulations in Subsection VIII-A. All the edges in the graph
have admittance value equal 1. The supply/demand values are
chosen randomly.

of the algorithm can always find v. At line 4, recursively
we know that subgraphs induced by Q1, Q2, Q3 in Gzv are
acyclic. Now since degpvq ď 5, there exists a partition such
that |Npvq X Qi| ď 1. Without loss of generality we can
assume that |Npvq X Q1| ď 1. Hence, adding v to Q1

does not produces any cycles. Thus, subgraphs induced by
Q1 Y tvu, Q2, Q3 in G are acyclic.

We now present the ZS Algorithm. The ZS Algorithm
first finds an optimal matching cover M1,M2, . . . ,Mt of G
using an Opn3q algorithm introduced in [32] (line 1). Then,
in lines 2 and 3, it uses this matching cover to partition
V into Q1, Q2, . . . , Q2t. It is easy to see that for each Qi,
Mri{2s X ErQi, Q̄is is the matching in GrQi, Q̄is that covers
nodes in Qi. Then, in order to satisfy the acyclicity condition
on the partitions, it partitions Qis that do not induce an acyclic
graph, into subsets so that each subset induces an acyclic
graph. When GrQis is a planar graph, it uses 3APP Algorithm
to partition GrQis. When it is not, it uses any greedy algorithm
to do so. Thus, the resulted partition P1, P2, . . . , Pk satisfies
the conditions of a matched-forest partition.

The lemma below states that when G is planar, the ZS
Algorithm provides a constant approximation of the optimal
matched-forest partition. We demonstrate the results obtained
by the algorithm in the following section. For the proof details
see [1].

Lemma 11: If G is planar, the ZS Algorithm provides a 6-
approximation of the minimum matched-forest partition of G
in Opn3q.
Notice that the planarity of G is a sufficient but not a necessary
condition for the successful execution of the 3APP Algorithm.
Hence, as we show in Section VIII, the ZS algorithm can be
applied to almost any power grid network without checking
its planarity as long as the 3APP algorithm is executed
successfully.

VIII. NUMERICAL RESULTS

A. Recovering the Information in the Presence of a Measure-
ment Noise

In this subsection, we show via simulation that solving
the optimization problem (9) can correctly recover the phase
angles and detect the failed lines in the presence of the
measurement noise depending on the SNR level. To evaluate
the results, we count number of false negatives and false
positives. False negatives are the failed lines that are not
detected in the solution of (9). False positives are the edges
that are detected as failed lines in the solution of (9) despite
the fact that they were not failed. We use the Matlab-based
solver CVX [43] for solving the optimization problem (9).
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Fig. 9: The average number of false negatives and positives in detecting line failures by solving (9) in the presence of the
measurement noise versus the SNR. Each data point is the average over 100 trials. (a)-(h) Show this relationship for different
number of line failures (|F |). Figs. 7 and 8 provide the detailed information for two of the points in (c).
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𝑒1 𝑒2 𝑒3 𝑒4

𝑒5𝑒7𝑒9

𝑒8

Actual

 𝜃𝐻
′

Recovered 

 𝜃𝐻
′

0.1062 0.1030

0.0882 0.0872

0.0042 0.0075

0.0062 0.0036

0.0342 0.0334

-0.0758 -0.0752

-0.0971 -0.0937

-0.0925 -0.0919

0.0442 0.0441

0.0322 0.0321

 𝑥 -0.0074 -0.0068 0 0 0 -0.0857 0 0 0

supp(  𝑥) 1 1 0 0 0 1 0 0 0

SNR = 50dB

Fig. 7: An example of an attack and recovered information
in the presence of the measurement noise for SNR“ 50dB.
Red dashed lines show the attacked lines. As can be seen, the
attacked lines can be detected successfully in this case.

We provide simulation results with the graph and zone H
shown in Fig. 6 (it is easy to see that H is attack-resilient).
Notice that the graph in Fig. 6 can be part of a much bigger
graph, however following Corollary 1 and Lemma 2, only
the local information is needed to recover the information
inside the attacked zone. As we mentioned in Section VI, in
the simulations, we assume that the readings from the PMUs
somewhat differ from the solution of (3) (i.e., to the DC power
flow). Hence, if ~θ and ~θ1 are the phase angles obtained from
the PMUs (before and after the attack, respectively), then
Ap~θ ´ ~eq “ ~p and A1p~θ1 ´ ~e1q “ ~p for unknown Gaussian
noise vectors ~e and ~e1 with equal covariance matrices.

Figs. 7 and 8 show two attack scenarios with different SNR
values and the information recovered by solving (9). Fig. 9
shows the average number of false negatives and positives in

𝑒8
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𝑒1 𝑒2 𝑒3 𝑒4

𝑒5𝑒7𝑒9

𝑒6

Actual

 𝜃𝐻
′

Recovered 

 𝜃𝐻
′

0.1071 0.1203

0.1428 0.1242

0.1085 0.0997

0.1013 0.0884

0.1271 0.1273

-0.1409 -0.1381

-0.1623 -0.1496

-0.1576 -0.1563

-0.0429 -0.0299

-0.0329 0.0321

 𝑥 0 0 0 0 0 -0.1938 0 -0.1164 0

supp(  𝑥) 0 0 0 0 0 1 0 1 0

SNR = 30dB

Fig. 8: An example of an attack and recovered information in
the presence of the measurement noise for SNR“ 30dB. Red
dashed lines show the attacked lines. As can be seen, 2 out of
the 3 attacked lines can be detected in this case.

detecting line failures by solving (9) versus the SNR level
for different numbers of line failures. As can be seen, for any
number of line failures, when the SNR is above a certain level
(e.g., 40 dB) the solution to (9) can detect the line failures with
acceptable accuracy (less than one false negative and zero false
positives on average). Using the CVX solver, the solution to
the optimization problem (9) can be found in 0.07 sec in our
system with Intel Core i7-2600 @3.40GHz CPU and 16GB
RAM for the graph depicted in Fig. 6.

B. Evaluating the Performance of the ZS Algorithm

In this subsection, we demonstrate the results obtained by
the ZS Algorithm in several known power grid networks.
Table III lists the considered grids and number of resulting
partitions. For example, Fig. 10 shows the partitions obtained
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TABLE III: Number of partitions into which the ZS Algorithm
divides different networks.

Network Nodes Edges Partitions
IEEE 14-Bus 14 20 2
IEEE 30-Bus 30 41 2
IEEE 118-Bus 118 179 5
IEEE 300-Bus 300 409 14

Polish grid 3120 3684 10
Colorado state grid 662 864 6

Western interconnection 13135 16860 9

Zone 1

Zone 2

(a) IEEE 14 bus

Zone 1

Zone 2

(b) IEEE 30 bus

Fig. 10: Partitioning of the IEEE 14 and IEEE 30 bus systems
into 2 attack resilient zones (using the ZS Algorithm).

by ZS Algorithm in the IEEE 14-Bus and 30-Bus benchmark
systems [44]. As can be seen, in both cases the graphs can be
partitioned into two attack-resilient zones. We also evaluated
the ZS Algorithm on the IEEE 118 and 300-bus systems, the
Polish grid (available with MATPOWER [45]), the Colorado
state grid, and the U.S. Western Interconnection network.7

Recall form Section VII that when G is planar, the ZS
Algorithm is a 6-approximation algorithm for the minimum
matched-forest problem. However, as can be seen from the
examples above, in practice, it partitions the networks into
few zones.

We note that the ZS Algorithm does not take the geographi-
cal constraints into account. Thus, when partitioning very large
networks such as the Western Interconnection (see Fig. 11), the
nodes in the same partition may be geographically distant from
each other. This is impractical, since the PMUs from the same
zone should send the data to a single PDC. However, it is easy
to see that if a zone is attack-resilient, any of its subgraphs is
also attack-resilient. Therefore, the partitions obtained by the
ZS Algorithm can be further divided into smaller zones based
on geographical constraints (e.g., into zones within different
states in Fig. 11). This approach does not result in an optimal
partitioning. Hence, obtaining an efficient partitioning with
geographical constraints is a subject of future work.

IX. CONCLUSION

We studied joint cyber and physical attacks on power grids.
We developed methods to estimate the state of the grid inside
the attacked zone using only the information available outside
of the attacked zone. We identified graph topologies and
constraints on the attacked edges for which these methods
are guaranteed to recover the state information. We briefly
studied the problem of information recovery in the presence
of measurement noise and showed that by relaxing some of
the constraints the same methods can be used for information

7The data of the Western Interconnection (and of Colorado) was obtained
from the Platts Geographic Information System (GIS) [46].

Fig. 11: Partitioning of the U.S. Western Interconnection into
9 attack-resilient zones (using the ZS Algorithm). Nodes with
the same color are in the same zone.

recovery in noisy scenarios. Moreover, we showed that the
problem of partitioning the grid into the minimum number
of attack-resilient zones is not approximable to within n1´ε

for all ε ą 0 unless P=NP. However, for planar graphs, we
developed an approximation algorithm for the partitioning
problem and numerically illustrated the operation of the
algorithm.

This is one of the first steps towards understanding the
vulnerabilities of power grids to joint cyber and physical
attacks and developing methods to mitigate their effects.
Hence, there are still many open problems. In particular,
we have been evaluating the performance of the recovery
method presented in Section VI when the phase angles are
obtained using the AC power flow model. Preliminary results
are promising, and therefore, future work will focus on its
large scale evaluation using MATPOWER [45]. We also plan
to generalize Theorems 2 and 3 to a broader class of graphs,
noisy scenarios, and when the control network is limited
(e.g, limited number of PMUs). Moreover, we will develop
algorithms to partition the grid into weakly-attack-resilient
zones while taking into account geographical constraints and
constraints on the number and positions of the PDCs.
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