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Full-Duplex Wireless

Time-Division Duplexing (TDD)
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= Same-channel full-duplex -- simultaneous transmission and reception at
the same frequency -- can greatly improve network performance.



Self-Interference in Full Duplex
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Full Duplex requires >120dB of self-interference
cancellation, which must be obtained across all domains.




Fighting Fundamental Physics
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Breaking Lorentz Reciprocity requires exploiting the
magneto-optic Faraday Effect.




Full-Duplex Cross-Layer Research

Wi-Fi MAC D fTestbed Evaluatlon\ Channel Allocation
é s
. ((( )>> r— L Scheduling
5 | cellular MAC ! Tmrm‘m”’” ‘
© L =
2 Cross-Layer o0, Power Control
s Interference , 1
Management L A/ e
Modeling
e .~ — — 1
| s
1 3 - < |
51 © ) = § I | Ongoing
>1 o c O RF/analog Self- » 7 g | V| Research
© D c O Digital Self-Interference 0O |
> 1 € Q%5 Interference C : 2 4
= e 9 : ancellation =311
L1 0 < <€ Cancellation T c
o2 = = < © | | | Obtained
> <o
| L T I'l Results
| |!
I I

Flexl[Zol\’*ér

Full-duplex wireless: from Integrated Circuits to Networks

e . BT . Prof. H. Krishnaswam
= Fellowship - Fellowship PrOf. G . Zussman

SPAR RF-FPGA 2015-16  2016-17 Prof. Y. Zhong ;




State of The Art Full-Duplex Radios
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Limited RF Cancellation Bandwidth

Freq. selective self-
interference channel
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= 10ns delay in the SI channel results in a 20dB SIC BW of 3.2MHz.
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Delay-Based Wideband RF Cancellation

RF delay-line- -
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[Stanford University, SIGCOMM 2013]

Conventional wideband RF self-interference cancellation
requires silicon-averse bulky and lossy delay lines.
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Conventional Integrated RF Sl Canceller
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= A frequency-flat RF canceller can emulate a frequency-selective

antenna interface only at one frequency.
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RF Canceller with 2" Order BPF
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Replication of not only the amplitude/phase, but also
the slope of the amplitude/phase(i.e. group delay).
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Freq. Domain Equalization (FDE) at RF
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A filter bank enables replication at multiple points in
different sub-bands — Freq. Domain Equalization (FDE).
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RF SIC Equalizer Bandpass Filter

Linear Time-Invariant
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65nm CMOS Prototype
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J/ ‘;1"5‘5\ J. Zhou, T-H. Chuang, T. Dinc and H. Krishnaswamy, “Reconfigurable receiver with >20MHz bandwidth
i self-interference cancellation suitable for FDD, co-existence and full-duplex applications," in 2015
/) ISSCC, Feb. 2015.

J. Zhou, T-H. Chuang, T. Dinc and H. Krishnaswamy,“Integrated Wideband Cancellation of Transmitter
Self-Interference in the RF Domain for FDD and Full-Duplex Wireless,” IEEE JSSC, December 2015
(invited).




Measurement Highlights
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Proposed canceller has a cancellation BW of 24MHz
using two filters (8X improvement!).
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Polarization-Division Duplexing
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= Using different polarizations for T/R improves the isolation by 8-16 dB.
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Polarization-Based Antenna SIC
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= An auxiliary port is introduced on the RX antenna that is co-polarized with
TX and terminated with a reflective termination to achieve wideband SIC.
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5GHz Antenna SIC Results
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= 50 dB isolation over 300MHz at 4.6 GHz.

» Reflective termination can be reconfigured to combat
the variable Sl scattering from the environment.

r_\ Tolga Dinc and Harish Krishnaswamy, “A T/R Antenna Pair with Polarization-Based Reconfigurable
Wideband Self-Interference Cancellation for Simultaneous Transmit and Receive,” in the 2015 IEEE
IMs2015 - International Microwave Symposium, pp. 1-4, May 2015.
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60GHz 45nm CMOS Full Duplex TRX
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T. Dinc, A. Chakrabarti and H. Krishnaswamy, “A 60 GHz Same-Channel Full-Duplex CMOS Transceiver
and Link Based on Reconfigurable Polarization-Based Antenna Cancellation,” in the 2015 IEEE RFIC
Symposium, May 2015 (Best Student Paper Award — 1st Place).

T. Dinc, A. Chakrabarti and H. Krishnaswamy, “A 60GHz CMOS Full-Duplex Transceiver and Link with
Polarization-Based Antenna and RF Cancellation,” IEEE Journal of Solid-State Circuits, vol. 51, no. 5,
pp. 1125-1140, May 2016 (invited). 22
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60GHz Full Duplex Wireless Link
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Shared-Antenna Interfaces

Magnetic Active
Materials Devices
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[Ref: N. Esteﬁ, etal., | highIY'“near circulators x extra duplexer

Nature Physics 2014.]

x >20dB loss or linearity are desirable. x form factor




Staggered Commutation
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Inspired by Faraday rotation, phase non-reciprocity
can be achieved by using staggered commutation.
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Non-Magnetic Passive Circulator
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This is the first CMOS non-magnetic passive non-
reciprocal circulator IC.

‘—‘LXX/ ¥ N. Reiskarimian, and H. Krishnaswamy, “Magnetic-free Non-Reciprocity Based on Staggered

nature — o o _ N
COMMUNICATIONs COommutation,” Nature Communications. 7:11217 doi: 10.1038/ncomms11217 (2016). -



65nm CMOS FD Radio Prototype
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/ m\‘ J. Zhou, N. Reiskarimian, and H. Krishnaswamy, " Receiver with Integrated Magnetic-Free N-Path-Filter-
| Based Non-Reciprocal Circulator and Baseband Self-Interference Cancellation for Full-Duplex
\ ¥ Wireless," in 2016 ISSCC, Feb. 2016.

' N. Reiskarimian, J. Zhou, and H. Krishnaswamy,“A CMOS Passive LPTV Non-Magnetic Circulator and

Its Application in a Full-Duplex Receiver,” IEEE JSSC (in revision).
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SIC across ANT, Analog and Dig. Domains
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First full-duplex link demonstration with —=7dBm TX
output power and —92dBm noise floor based on an
integrated full-duplex radio.
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Power Allocation and Rate Gains In
Practical Full-Duplex Systems

J. MaraS$evic, J. Zhou, H. Krishnaswamy, Y. Zhong and G. Zussman, "Resource Allocation and Rate
Gains in Practical Full-Duplex Systems," in Proceedings of the 2015 ACM (Association for
Computing Machinery) SIGMETRICS, June 2015

J. Maras$evic, J. Zhou, H. Krishnaswamy, Y. Zhong, and G. Zussman, “Resource allocation and rate
gains in practical full-duplex systems,” IEEE/ACM Transactions on Networking, 2016.
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Modeling Cancellation at Integrated MSs
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= A mathematical model is developed for the self-interference cancellation
achieved by compact integrated radios with frequency-flat cancellers.
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Power Allocation Under High SINR

MS Power Levels
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Rate Improvements
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Significant — over 60% throughput gains — are achieved
In the high SNR regime.
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FD and TDFD Capacity Regions

»  Maximization of the sum of the rates
gives us only one pair of uplink and
downlink rates ‘ .

| e OMbps
«  But, in many cases we want to % 1 D — —> (,((X))
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* Using only full-duplex and varying
the power allocation will give us one
set of achievable rates, which may L
be non-convex Tb/’l“b

«  Combining FD and TDD g uplink 5 Auplink
“convexifies” the capacity region — 2 z
time-division FD (TDFD) region : ol
. : requenc g 1 fr n
« Having convex capacity region is 2 downlink FHTHE g'\downhnk el
important for scheduling (and in our 2, 2 '
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: frequency
«  We provide many structural and

algorithmic results for constructing
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settings M_} m_>
Rl Tl

m J. MaraSevi¢ and G. Zussman, “On the Capacity Regions of Single-Channel and Multi-Channel
Full-Duplex Links,” in Proc. ACM MobiHoc'16, 2016.




Full-Duplex Testbed for Evaluation of
MAC Algorithms
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Software-Defined Full-Duplex Transceiver

1.5mm —»

ort ort H
control 2%’;33 e l- EmUIatIng the RFIC
curcu1t ¥ ‘;__:‘ | e SI CanCe”er E
coupler ‘ I a
(@)

TX input &=
port

!

RF SI
Canceller

RX input

4 MATLAB (host PC):

-  RF canceller Control

USB
NI USRP  Control

Canceller
Controller

Data

NI LabVIEW (host PC):
- Data transmission
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= The full-duplex transceiver is equipped with our adaptive RF SIC algorithm
and supports real-time digital SIC.
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Full-Duplex Demo

at ACM MobiHoc 2016
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~90dB overall self-interference-cancellation across the
antenna, RF, and digital domains.
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Conclusion

Integrated full-duplex radios with SIC at the antenna, RF,
analog, and digital domains are presented at both RF and mm-
wave frequencies.

The first integrated non-reciprocal magnetic-free passive
circulator based staggered commutation is introduced.

Full-duplex power allocation and rate gains are derived based
on the model of our integrated full-duplex radios

Cross-layered full-duplex testbed with real-time SIC is

demonstrated.
FlexiCoN

Full-duplex wireless: from In

flexicon.ee. columbla edu Wlm net

s & Maobile Networking Lab




