Doubly Balanced Connected Graph Partitioning

Saleh Soltan, Mihalis Yannakakis, and Gil Zussman Columbia University

Motivation

- Power Grid Islanding → mitigate cascading failures
- Partition the network into smaller operable *islands*
 - Supply = demand in each island
 - Island is large enough to have the capacity to deliver power
- Doubly Balanced Connected graph Partitioning (DBCP):

Given: Connected graph G=(V,E) with a weight (supply/demand) function $p:V\to\mathbb{Z}$ satisfying $p(V)=\sum_{j\in V}p(j)=0$

Objective: Partition V into (V_1, V_2) such that:

- 1. $G[V_1]$ and $G[V_2]$ are connected
- 2. $|p(V_1)|, |p(V_2)| \le c_p$ for some constant c_p
- 3. $\max\left\{\frac{|V_1|}{|V_2|}, \frac{|V_2|}{|V_1|}\right\} \le c_s$ for some constant c_s

Presentation Outline

- > Related Work
- Balancing a single objective $(|p(V_1)|, |p(V_2)| \le c_p)$
- Balancing both objectives
 - √ 3-connected graphs
 - ✓ 2-connected graphs
- Graphs with two types of Nodes

Related Work

Theorem (Lovász and Gyori 1977). Let G=(V,E) be a k-connected graph. Let $n=|V|,\,v_1,v_2,\ldots,v_k\in V$, and n_1,n_2,\ldots,n_k be positive integers satisfying $n_1+n_2+\cdots+n_k=n$. Then, there exists a partition of V into (V_1,V_2,\ldots,V_k) satisfying $v_i\in V_i,\,|V_i|=n_i$, and $G[V_i]$ is connected for $i=1,2,\ldots,k$.

• For k>3 no polynomial time algorithm is known to find such partition

st-numbering

• For k = 2, use *st-numbering*:

Given nodes $\{s, t\}$ in a graph G

An *st-numbering* is numbering for nodes such that:

- 1. Nodes of *G* are numbered from 1 to *n*
- 2. Node s receives number 1 and node t receives number n
- 3. Every node except s and t is adjacent both to a lower-numbered and to a higher-numbered node

(Evans and Tarjan 1976). An st-numbering for a 2-connected graph G can be found in O(|V| + |E|) for any pair of node.

Nonseparating Ear Decomposition

• For k = 3, use nonseparating ear decomposition

Let H be a subgraph of a graph GAn ear of H in G is a nontrivial path in G whose ends lie in H but whose internal nodes do not An ear decomposition of G is a decomposition $G = P_0 \cup \cdots \cup P_k$ such that:

- 1. P_0 is a cycle
- 2. P_i for $i \ge 1$ is an ear of $P_0 \cup P_1 \cup \cdots \cup P_{i-1}$

Every 2-connected graph has an ear decomposition (and viceversa), and such a decomposition can be found in linear time.

An ear decomposition is through edge $\{t, r\}$ and avoiding vertex u:

- 1. Cycle P_0 contains edge $\{t, r\}$
- 2. The last nontrivial ear, has u as its only internal vertex

Nonseparating Ear Decomposition

Let
$$V_i = V(P_0) \cup V(P_1) \cup \cdots \cup V(P_i)$$

Let $G_i = G[V_i]$ and $\bar{G}_i = G[V \setminus V_i]$

A nonseparating ear decomposition is an ear decomposition such that for all $0 \le i < k$:

- 1. Graph \bar{G}_i is connected
- 2. Each internal vertex of P_i has a neighbor in \bar{G}_i

(Cheriyan and Maheshwari 1988). Given an edge $\{t,r\}$ and a vertex u of a 3-connected graph G, a nonseparating ear decomposition of G through $\{t,r\}$ and avoiding u can be found in O(|V|+|E|) time.

• Using nonseparating ear decomposition for k=3, a solution can be found for the Lováz/Gyori theorem

Presentation Outline

- > Related Work
- Balancing a single objective $(|p(V_1)|, |p(V_2)| \le c_p)$
- Balancing both objectives
 - √ 3-connected graphs
 - ✓ 2-connected graphs
- Graphs with two types of Nodes

Balancing Supply and Demand Only

Given: Connected graph G=(V,E) with a weight (supply/demand) function $p:V\to\mathbb{Z}$ satisfying $p(V)=\sum_{j\in V}p(j)=0$

Objective: Partition V into (V_1, V_2) such that:

- 1. $G[V_1]$ and $G[V_2]$ are connected
- 2. $|p(V_1)|, |p(V_2)| \le c_p$ for some constant c_p

Proposition. It is strongly NP-hard to determine whether there is a solution to problem above for $c_p=0$, even when G in 2-connected.

Proposition. If G is not 2-connected, then this problem is NP-hard even when $\forall i, p(i) = \pm 1$.

Balancing Supply and Demand Only

Proposition. If G is 2-connected, there is always a solution such that $|p(V_1)|, |p(V_2)| \le \max_{j \in V} \frac{|p(j)|}{2}$, and can be found in polynomial time.

Proof. Use *st*-numbering between nodes u, v with p(u)p(v) > 0.

There is an i such that $\sum_{j=1}^{i} p(j) > 0$ and $\sum_{j=1}^{i+1} p(j) \leq 0$.

• If $\forall i, p(i) = \pm 1$ and G is 2-connected, there is always a solution with $p(V_1) = p(V_2) = 0$.

Presentation Outline

- ➤ Related Work
- ➤ Balancing a single objective $(|p(V_1)|, |p(V_2)| \le c_p)$
- Balancing both objectives
 - √ 3-connected graphs
 - ✓ 2-connected graphs
- Graphs with two types of Nodes

Doubly Balanced Connected Partitioning

Given: Connected graph G = (V, E) with a weight (supply/demand) function $p: V \to \mathbb{Z}$ satisfying $p(V) = \sum_{j \in V} p(j) = 0$

Objective: Partition V into (V_1, V_2) such that:

- 1. $G[V_1]$ and $G[V_2]$ are connected
- 2. $|p(V_1)|, |p(V_2)| \le c_p$ for some constant c_p
- 3. $\max\left\{\frac{|V_1|}{|V_2|}, \frac{|V_2|}{|V_1|}\right\} \le c_s$ for some constant c_s

- We assume that $\forall i, p(i) = \pm 1$
- Techniques can be used in general case as well

3-Connected with a triangle

Lemma. If G is a 3-connected graph with a triangle, then

- 1. If $|V| \equiv 0 \pmod{4}$, then there exists a solution to the DBCP problem with $p(V_1) = p(V_2) = 0$ and $|V_1| = |V_2|$.
- 2. If $|V| \equiv 2 \pmod{4}$, then there exists a solution to the DBCP problem with $p(V_1) = p(V_2) = 0$ and $|V_1| = |V_2| + 2$.

Proof. Use convex embedding of graphs

Let $X \subset V$. A convex X-embedding of G is any mapping $f: V \to \mathbb{R}^{|X|-1}$ such that for any $v \in V \setminus X$, $f(v) \in \text{conv}(f(N(v)))$.

A convex embedding is in general position if the set f(V) of the points is in general position.

Proof of 3-connected with a triangle

Theorem (Linial, Lovász, and Wigderson 1988). Let G be a graph on n vertices. The following two conditions are equivalent:

- 1. *G* is *k*-connected
- 2. For every $X \subset V$ with |X| = k, G has a convex X-embedding in general position.

Proof.

- Assign to every edge $\{u,v\} \in E$ a positive *elasticity coefficient* c_{uv}
- $\forall v_i \in X$, let $f(v_i)$ arbitrary in \mathbb{R}^{k-1} so that f(X) is in general position
- For almost any set of elasticity coefficients, the embedding f that minimizes the potential function P provides a convex X-embedding in general position

$$P = \sum_{\{u,v\} \in E} c_{uv} ||f(u) - f(v)||^2$$

The embedding can be computed as:

$$f(v) = \frac{1}{c_v} \sum_{u \in N(v)} c_{uv} f(u), \forall v \in V \setminus X$$

in which $c_v = \sum_{u \in N(v)} c_{uv}$

Proof of 3-connected with a triangle

- Assume u, w, v form a triangle in G
- $|V_1| = |V_2| = |V|/2$
- For each line tangent to C, $G[V_1]$ and $G[V_2]$ are connected
- Move \mathcal{L} from being tangent at point A to B
- As \mathcal{L} moves, $p(V_i)$ changes at most by ± 2 or 0
- Somewhere in the middle we get $p(V_1) = p(V_2) = 0$

3-connected and triangle-free

The previous proof does not work

• Find an embedding such that if u, v are in the same side, then so does the path that connects them

Lemma. If G is 3-connected, then there exist a set $\{u, v, w\} \in V$ and a partition of V into (V_1', V_2') such that:

- 1. $G[V_1']$ and $G[V_2']$ are connected
- 2. $w \in V'_1$, $u, v \in V'_2$, and u, v are not cutpoints of $G[V'_2]$
- 3. $\{u, w\}, \{v, w\} \in E$
- 4. $|V_2'| \leq |V|/2$

Proof. Consider a non-separating induced cycle in G (Tutte)

Lemma. Given a partion (V'_1, V'_2) of a 3-connected graph G with following properties:

- 1. $G[V_1']$ and $G[V_2']$ are connected
- 2. $w \in V_1', u, v \in V_2'$, and u, v are not cutpoints of $G[V_2']$ G has a convex X-embedding in general position with mapping $f: V \to \mathbb{R}^2$ as below:

3-connected and triangle-free

Theorem. If *G* is a 3-connected graph, then

- 1. If $V \equiv 0 \pmod{4}$, then there exists a solution to the DBCP problem with $p(V_1) = p(V_2) = 0$ and $|V_1| = |V_2|$.
- 2. If $V \equiv 2 \pmod{4}$, then there exists a solution to the DBCP problem with $p(V_1) = p(V_2) = 0$ and $|V_1| = |V_2| + 2$.

Moreover, this solution can be find in polynomial time.

Results can be generalized to arbitrary supply/demand values:

Corollary. If G is a 3-connected graph, then the DBCP problem has solution for $c_p = \max_{i \in V} |p(i)|$ and $c_s = 1$.

Presentation Outline

- ➤ Related Work
- ➤ Balancing a single objective $(|p(V_1)|, |p(V_2)| \le c_p)$
- Balancing both objectives
 - √ 3-connected graphs
 - ✓ 2-connected graphs
- Graphs with two types of Nodes

Extreme Cases

Observation. If $c_p = 0$, then for any $c_s < |V|/2 - 1$, there exist a 2-connected graph such that DBCP problem does not have solution.

Proof. Set t = 0.

Observation. If $c_s=1$, then for any $c_p<|V|/6$, there exist a 2-connected graph such that DBCP problem does not have solution.

Proof. Set s = 1.

Graph Contraction

An induced subgraph H of a 2-connected graph G is *contractible*, if there is a separating pair $\{u,v\} \subset V$ such that $H = (V_H, E_H)$ is a connected component of $G[V \setminus \{u,v\}]$.

If we replace H by a weighted edge e' with $w(e') = |V_H|$ to obtain a smaller graph G', we say G is contracted to G'.

Lemma. In every 2-connected graph G = (V, E), given an integer $q \ge 3$, one of the following cases holds:

- 1. There is a separation pair $\{u,v\} \subset V$ such that for each connected component H of $G[V \setminus \{u,v\}], |V_H| < \lfloor \frac{(q-1)|V|}{q} \rfloor$
- 2. After a set of contractions, G can be transformed into a 3-connected graph $G^* = (V^*, G^*)$ such that for every e^* , $w(e^*) \leq \left\lceil \frac{|V|}{g} \right\rceil 2$.

Lemma. Given a 2-connected graph G, and an integer $q \geq 3$, if G has a separation pair $\{u,v\} \subset V$ such that for every connected component $H_i = (V_{H_i}, E_{H_i})$ of $G[V \setminus \{u,v\}], |V_{H_i}| < \lfloor \frac{(q-1)|V|}{q} \rfloor$, then the DBCP problem has a solution for $c_p = 1$, $c_s = q - 1$.

A *pseudo-path* between nodes u and v in G = (V, E), is a sequence of nodes v_1, v_2, \ldots, v_t such that if $v_0 := u$ and $v_{t+1} := v$ then for any $1 \le i \le t$, v_i has neighbors v_j and v_k such that j < i < k.

Proof. Each H_i can be shown by a pseudo path between u and v. Divide pseudo-paths into two sets S_1 and S_2 such that:

$$\sum_{P_j \in S_i} \left| P_j \right| \ge \left\lceil \frac{|V|}{q} \right\rceil - 1$$

So G can be shown as follows such that $Q_1, Q_2 \ge \left\lceil \frac{|V|}{g} \right\rceil - 1$.

Proof. $|V'| = \frac{|V|}{q}$ and assume $p(V') \ge 0$.

$$|V'''| = \frac{|V|}{q}$$
 and $p(V''') < 0$.

Lemma. Given an integer $q \geq 4$, if after a set of contractions, G can be contracted into a 3-connected graph $G^* = (V^*, G^*)$ such that for every e^* , $w(e^*) \leq \left\lceil \frac{|V|}{q} \right\rceil - 2$. Then the DBCP problem has a solution for $c_p = 1$, $c_s = q - 1$.

- Some care is needed to carry out the argument of the 3-connected case for the contracted graph
- As we move \mathcal{L} , at some point $p(V_1')p(V_2') \geq 0$.

2-connected

Theorem. If G is 2-connected, then the DBCP problem has a solution for $c_p=1$ and $c_s=3$. Moreover, this solution can be found in polynomial time.

• Recently showed that for $c_p=1$ and $c_s=2$ has a solution.

Corollary. If G is 2-connected, then the DBCP problem with arbitrary weights has a solution for $c_p = \max_{j \in V} |p(j)|$ and $c_s = 3$.

Presentation Outline

- ➤ Related Work
- ➤ Balancing a single objective $(|p(V_1)|, |p(V_2)| \le c_p)$
- Balancing both objectives
 - √ 3-connected graphs
 - ✓ 2-connected graphs
- Graphs with two types of Nodes

Graphs with Two Types of Nodes

Corollary. Given a 3-connected graph G with nodes colored either red $(R \subseteq V)$ or blue $(B \subseteq V)$. There is always a partition (V_1, V_2) of V such that

- 1. $G[V_1]$ and $G[V_2]$ are connected
- 2. $|V_1| = |V_2|$
- 3. $|R \cap V_1| = |R \cap V_2|$ and $|B \cap V_1| = |B \cap V_2|$ (assuming |R| and |B| are both even)

Corollary. Given a 2-connected graph G with nodes colored either red $(R \subseteq V)$ or blue $(B \subseteq V)$. There is always a partition (V_1, V_2) of V such that

- 1. $G[V_1]$ and $G[V_2]$ are connected
- 2. $|V_1|, |V_2| \ge |V|/4$
- 3. The ratio of red to blue nodes in each side V_i differs from |R|/|B| by O(1/n).

Thank You!