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Motivation

• Power Grid Islanding mitigate cascading failures

• Partition the network into smaller operable islands
 Supply = demand in each island

 Island is large enough to have the capacity to deliver power

• Doubly Balanced Connected graph Partitioning (DBCP):

Given: Connected graph 𝐺 = 𝑉, 𝐸 with a weight (supply/demand) 
function 𝑝: 𝑉 → ℤ satisfying 𝑝 𝑉 =  𝑗∈𝑉 𝑝(𝑗) = 0

Objective: Partition 𝑉 into (𝑉1, 𝑉2) such that:
1. 𝐺 𝑉1 and 𝐺 𝑉2 are connected
2. 𝑝 𝑉1 , 𝑝 𝑉2 ≤ 𝑐𝑝 for some constant 𝑐𝑝

3. max
𝑉1

𝑉2
,
𝑉2

𝑉1
≤ 𝑐𝑠 for some constant 𝑐𝑠
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Related Work

• For 𝑘 > 3 no polynomial time algorithm is known to find 
such partition

Theorem (Lovász and Gyori 1977). Let 𝐺 = (𝑉, 𝐸) be a 𝑘-connected
graph. Let 𝑛 = 𝑉 , 𝑣1, 𝑣2, … , 𝑣𝑘 ∈ 𝑉, and 𝑛1, 𝑛2, … , 𝑛𝑘 be positive
integers satisfying 𝑛1 + 𝑛2 +⋯+ 𝑛𝑘 = 𝑛 . Then, there exists a
partition of 𝑉 into (𝑉1, 𝑉2, … , 𝑉𝑘) satisfying 𝑣𝑖 ∈ 𝑉𝑖, 𝑉𝑖 = 𝑛𝑖, and
𝐺 𝑉𝑖 is connected for 𝑖 = 1,2,… , 𝑘.



𝑠𝑡-numbering

• For 𝑘 = 2, use 𝑠𝑡-numbering:

(Evans and Tarjan 1976). An 𝑠𝑡-numbering for a 2-connected graph 
𝐺 can be found in 𝑂 𝑉 + 𝐸 for any pair of node.

Given nodes {𝑠, 𝑡} in a graph 𝐺
An 𝑠𝑡-numbering is numbering for nodes such that: 

1. Nodes of 𝐺 are numbered from 1 to 𝑛
2. Node 𝑠 receives number 1 and node 𝑡 receives number 𝑛
3. Every node except 𝑠 and 𝑡 is adjacent both to a lower-
numbered and to a higher-numbered node

𝑣1 2 𝑛 − 23 𝑛 − 1 𝑣2

𝑛1 nodes 𝑛2 nodes



Nonseparating Ear Decomposition

• For 𝑘 = 3, use nonseparating ear decomposition

Let 𝐻 be a subgraph of a graph 𝐺
An ear of 𝐻 in 𝐺 is a nontrivial path in 𝐺 whose
ends lie in 𝐻 but whose internal nodes do not
An ear decomposition of 𝐺 is a decomposition
𝐺 = 𝑃0 ∪⋯∪ 𝑃𝑘 such that:
1. 𝑃0 is a cycle
2. 𝑃𝑖 for 𝑖 ≥ 1 is an ear of 𝑃0 ∪ 𝑃1 ∪⋯∪ 𝑃𝑖−1

Every 2-connected graph has an ear decomposition (and vice-
versa), and such a decomposition can be found in linear time.

An ear decomposition is through edge {𝑡, 𝑟} and avoiding vertex 𝑢:
1. Cycle 𝑃0 contains edge {𝑡, 𝑟}
2. The last nontrivial ear, has 𝑢 as its only internal vertex

𝑃0

𝑃1

𝑃2 𝑃3𝑃4

𝑢

𝑡
𝑟



Nonseparating Ear Decomposition

Let 𝑉𝑖 = 𝑉 𝑃0 ∪ 𝑉 𝑃1 ∪⋯∪ 𝑉(𝑃𝑖)
Let 𝐺𝑖 = 𝐺[𝑉𝑖] and  𝐺𝑖 = 𝐺 𝑉\𝑉𝑖
A nonseparating ear decomposition is an ear
decomposition such that for all 0 ≤ 𝑖 < 𝑘:
1. Graph  𝐺𝑖 is connected
2. Each internal vertex of 𝑃𝑖 has a neighbor in  𝐺𝑖

𝑃0

𝑃1

𝑃2 𝑃3𝑃4

𝑢

𝑡
𝑟

(Cheriyan and Maheshwari 1988). Given an edge {𝑡, 𝑟} and a vertex
𝑢 of a 3-connected graph 𝐺, a nonseparating ear decomposition of
𝐺 through {𝑡, 𝑟} and avoiding 𝑢 can be found in 𝑂( 𝑉 + 𝐸 ) time.

• Using nonseparating ear decomposition for 𝑘 = 3,  a 
solution can be found for the Lováz/Gyori theorem



Presentation Outline

 Related Work

 Balancing a single objective 
( 𝑝 𝑉1 , 𝑝 𝑉2 ≤ 𝑐𝑝)

 Balancing both objectives
 3-connected graphs

 2-connected graphs

 Graphs with two types of Nodes



Balancing Supply and Demand Only

Given: Connected graph 𝐺 = 𝑉, 𝐸 with a weight (supply/demand) 
function 𝑝: 𝑉 → ℤ satisfying 𝑝 𝑉 =  𝑗∈𝑉 𝑝(𝑗) = 0

Objective: Partition 𝑉 into (𝑉1, 𝑉2) such that:
1. 𝐺 𝑉1 and 𝐺 𝑉2 are connected
2. 𝑝 𝑉1 , 𝑝 𝑉2 ≤ 𝑐𝑝 for some constant 𝑐𝑝

Proposition. It is strongly NP-hard to determine whether there is a 
solution to problem above for 𝑐𝑝 = 0, even when 𝐺 in 2-connected.

Proposition. If 𝐺 is not 2-connected, then this problem is NP-hard 
even when ∀ 𝑖, 𝑝 𝑖 = ±1.



Balancing Supply and Demand Only

Proof. Use 𝑠𝑡-numbering between nodes 𝑢, 𝑣 with 𝑝 𝑢 𝑝 𝑣 > 0.

There is an 𝑖 such that  𝑗=1
𝑖 𝑝 𝑗 > 0 and   𝑗=1

𝑖+1 𝑝 𝑗 ≤ 0. 

Proposition. If 𝐺 is 2-connected, there is always a solution such that 

𝑝 𝑉1 , 𝑝 𝑉2 ≤ max
𝑗∈𝑉

𝑝 𝑗

2
, and can be found in polynomial time.

𝑢 2 𝑛 − 23 𝑛 − 1 𝑣

𝑉1 𝑉2

• If ∀ 𝑖, 𝑝 𝑖 = ±1 and 𝐺 is 2-connected, there is always a 
solution with 𝑝 𝑉1 = 𝑝 𝑉2 = 0.
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Doubly Balanced Connected Partitioning
Given: Connected graph 𝐺 = 𝑉, 𝐸 with a weight (supply/demand) 
function 𝑝: 𝑉 → ℤ satisfying 𝑝 𝑉 =  𝑗∈𝑉 𝑝(𝑗) = 0

Objective: Partition 𝑉 into (𝑉1, 𝑉2) such that:
1. 𝐺 𝑉1 and 𝐺 𝑉2 are connected
2. 𝑝 𝑉1 , 𝑝 𝑉2 ≤ 𝑐𝑝 for some constant 𝑐𝑝

3. max
𝑉1

𝑉2
,
𝑉2

𝑉1
≤ 𝑐𝑠 for some constant 𝑐𝑠

• We assume that ∀ 𝑖, 𝑝 𝑖 = ±1

• Techniques can be used in general case as well



3-Connected with a triangle

Proof. Use convex embedding of graphs

Lemma. If 𝐺 is a 3-connected graph with a triangle, then
1. If 𝑉 ≡ 0 mod 4 , then there exists a solution to the DBCP 

problem with 𝑝 𝑉1 = 𝑝 𝑉2 = 0 and 𝑉1 = |𝑉2|.
2. If 𝑉 ≡ 2 mod 4 , then there exists a solution to the DBCP 

problem with 𝑝 𝑉1 = 𝑝 𝑉2 = 0 and 𝑉1 = 𝑉2 + 2.

Let 𝑋 ⊂ 𝑉. A convex 𝑋-embedding of 𝐺 is any mapping 

𝑓: 𝑉 → ℝ 𝑋 −1 such that for any 𝑣 ∈ 𝑉\𝑋, 𝑓 𝑣 ∈ conv(𝑓(𝑁(𝑣))). 

A convex embedding is in general position if the set 𝑓(𝑉) of the 
points is in general position.



Proof of 3-connected with a triangle

Theorem (Linial, Lovász, and Wigderson 1988). Let 𝐺 be a graph on
𝑛 vertices. The following two conditions are equivalent:
1. 𝐺 is 𝑘-connected
2. For every 𝑋 ⊂ 𝑉 with 𝑋 = 𝑘, 𝐺 has a convex 𝑋-embedding in

general position.

Proof.
 Assign to every edge {𝑢, 𝑣} ∈ 𝐸 a positive elasticity coefficient 𝑐𝑢𝑣
 ∀𝑣𝑖 ∈ 𝑋, let 𝑓(𝑣𝑖) arbitrary in ℝ𝑘−1 so that 𝑓(𝑋) is in general position
 For almost any set of elasticity coefficients, the embedding 𝑓 that minimizes

the potential function 𝑃 provides a convex 𝑋-embedding in general position

𝑃 =  

𝑢,𝑣 ∈𝐸

𝑐𝑢𝑣||𝑓 𝑢 − 𝑓 𝑣 ||
2

 The embedding can be computed as:

𝑓 𝑣 =
1

𝑐𝑣
 

𝑢∈𝑁(𝑣)

𝑐𝑢𝑣𝑓(𝑢) , ∀𝑣 ∈ 𝑉\X

in which 𝑐𝑣 =  𝑢∈𝑁(𝑣) 𝑐𝑢𝑣



Proof of 3-connected with a triangle

 Assume 𝑢,𝑤, 𝑣 form a triangle in 𝐺

 𝑉1 = 𝑉2 = 𝑉 /2

 For each line tangent to 𝒞, 
𝐺[𝑉1] and 𝐺[𝑉2] are connected 

 Move ℒ from being tangent
at point 𝐴 to 𝐵

 As ℒ moves, 𝑝(𝑉𝑖) changes at most
by ±2 or 0

 Somewhere in the middle we
get 𝑝 𝑉1 = 𝑝 𝑉2 = 0

𝐴

𝐵

𝑢′ 𝑤′ 𝑣′
ℒ

𝒞
𝑢 𝑣

𝑤

𝑉1 𝑉2



3-connected and triangle-free

• The previous proof does not work

• Find an embedding such that if 𝑢, 𝑣 are in the same side, 
then so does the path that connects them

𝑢

𝑣
𝑤

𝑢

𝑣
𝑤



Lemma. If 𝐺 is 3-connected, then there exist a set 𝑢, 𝑣, 𝑤 ∈ 𝑉 and 
a partition of 𝑉 into (𝑉1

′, 𝑉2
′) such that: 

1. 𝐺 𝑉1
′ and 𝐺 𝑉2

′ are connected
2. 𝑤 ∈ 𝑉1

′, 𝑢, 𝑣 ∈ 𝑉2
′, and 𝑢, 𝑣 are not cutpoints of 𝐺[𝑉2

′]
3. 𝑢,𝑤 , 𝑣, 𝑤 ∈ 𝐸
4. 𝑉2

′ ≤ 𝑉 /2

Proof. Consider a non-separating induced cycle in 𝐺 (Tutte)

𝑉2
′ 𝑉1

′

𝑤

𝑢

𝑣

(a) 𝐶0 ≤ V /2+1 (b) 𝐶0 > V /2+1

𝑢

𝑤

𝑣

𝑉1
′𝑉2

′



Lemma. Given a partion (𝑉1
′, 𝑉2
′) of a 3-connected graph 𝐺 with 

following properties: 
1. 𝐺 𝑉1

′ and 𝐺 𝑉2
′ are connected

2. 𝑤 ∈ 𝑉1
′, 𝑢, 𝑣 ∈ 𝑉2

′, and 𝑢, 𝑣 are not cutpoints of 𝐺[𝑉2
′]

𝐺 has a convex 𝑋-embedding in general position with mapping 
𝑓: 𝑉 → ℝ2 as below:

𝑢 𝑣

𝑤

𝑉1′

𝑉2′

ℒ1

ℒ2
ℒ3

𝐵

ℒ

𝒞

𝐴

(0,0.5) (0.5,0.5)

(0,0)

(0,1)

(1,0)



3-connected and triangle-free
Theorem. If 𝐺 is a 3-connected graph, then
1. If 𝑉 ≡ 0 mod 4 , then there exists a solution to the DBCP 

problem with 𝑝 𝑉1 = 𝑝 𝑉2 = 0 and 𝑉1 = |𝑉2|.
2. If 𝑉 ≡ 2 mod 4 , then there exists a solution to the DBCP 

problem with 𝑝 𝑉1 = 𝑝 𝑉2 = 0 and 𝑉1 = 𝑉2 + 2.
Moreover, this solution can be find in polynomial time.

Corollary. If 𝐺 is a 3-connected graph, then the DBCP problem has 
solution for 𝑐𝑝 = max

𝑖∈𝑉
𝑝 𝑖 and 𝑐𝑠 = 1.

• Results can be generalized to arbitrary supply/demand
values:
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Extreme Cases

Proof. Set 𝑡 = 0.

Observation. If 𝑐𝑝 = 0, then for any 𝑐𝑠 < 𝑉 /2 − 1, there exist a 

2-connected graph such that DBCP problem does not have solution.

−1

−1

−1

−1

−1

−1

−1

+1

+1

+1

+1

+1

+1

+1

+1

+1

+1

−1

−1

−1

2𝑡 + 1 2𝑡 + 1

−1 −1 +1+1+1−1

2𝑠 + 1

Proof. Set s = 1.

Observation. If 𝑐𝑠 = 1, then for any 𝑐𝑝 < 𝑉 /6, there exist a 

2-connected graph such that DBCP problem does not have solution.



Graph Contraction
An induced subgraph 𝐻 of a 2-connected graph 𝐺 is contractible, if
there is a separating pair 𝑢, 𝑣 ⊂ 𝑉 such that 𝐻 = (𝑉𝐻 , 𝐸𝐻) is a
connected component of 𝐺[𝑉\{𝑢, 𝑣}].

If we replace 𝐻 by a weighted edge 𝑒′ with 𝑤 𝑒′ = |𝑉𝐻| to obtain
a smaller graph 𝐺′, we say 𝐺 is contracted to 𝐺′.

𝑣1

𝑣2
𝑣3

𝑣4
𝑣7

𝑣9

𝑣8
𝑣10

𝐺

𝑣5 𝑣6

𝑣1

𝑣4

𝑣7

𝑣11
3

𝑣2
𝑣3
𝑣4

𝑣5

𝐺′



Lemma. In every 2-connected graph 𝐺 = 𝑉, 𝐸 , given an integer
𝑞 ≥ 3, one of the following cases holds:
1. There is a separation pair 𝑢, 𝑣 ⊂ 𝑉 such that for each

connected component 𝐻 of 𝐺[𝑉\{𝑢, 𝑣}], 𝑉𝐻 < ⌊
𝑞−1 𝑉

𝑞
⌋

2. After a set of contractions, 𝐺 can be transformed into a
3-connected graph 𝐺∗ = 𝑉∗, 𝐺∗ such that for every 𝑒∗ ,

𝑤 𝑒∗ ≤
𝑉

𝑞
− 2.

𝑣11

𝑣1

𝑣2
𝑣3
𝑣4

𝑣7
𝑣9

𝑣8
𝑣10

𝑣5 𝑣6

𝑣12
𝑣13

𝑣14 𝑣15

𝑣11

𝑣1

𝑣2
𝑣3
𝑣4

𝑣7

𝑣5 𝑣6

𝑣12
𝑣13

𝑣14 𝑣15

3

3
𝑣11

𝑣1

𝑣7

𝑣6

𝑣12
𝑣13

𝑣14 𝑣15

3
𝑣5

𝑣1

𝑣2

𝑣3

𝑣5

𝑣4

𝑣7

𝑣6

𝑣3

𝑣7

𝐻1

𝐻2
𝐻3



Proof. Each 𝐻𝑖 can be shown by a pseudo path between 𝑢 and 𝑣.
Divide pseudo-paths into two sets 𝑆1 and 𝑆2 such that: 
 𝑃𝑗∈𝑆𝑖 𝑃𝑗 ≥

𝑉

𝑞
− 1

So 𝐺 can be shown as follows
such that 𝑄1, 𝑄2 ≥

𝑉

𝑞
− 1.

Lemma. Given a 2-connected graph 𝐺, and an integer 𝑞 ≥ 3, if 𝐺
has a separation pair 𝑢, 𝑣 ⊂ 𝑉 such that for every connected

component 𝐻𝑖 = (𝑉𝐻𝑖 , 𝐸𝐻𝑖) of 𝐺[𝑉\{𝑢, 𝑣}], 𝑉𝐻𝑖 < ⌊
𝑞−1 𝑉

𝑞
⌋, then

the DBCP problem has a solution for 𝑐𝑝 = 1, 𝑐𝑠 = 𝑞 − 1.

A pseudo-path between nodes 𝑢 and 𝑣 in 𝐺 = (𝑉, 𝐸), is a sequence 
of nodes 𝑣1, 𝑣2, … , 𝑣𝑡 such that if 𝑣0: = 𝑢 and 𝑣𝑡+1: = 𝑣 then
for any 1 ≤ 𝑖 ≤ 𝑡, 𝑣𝑖 has neighbors 𝑣𝑗 and 𝑣𝑘 such that 𝑗 < 𝑖 < 𝑘.  

𝑢
𝑣

𝑄1

𝑄2



Proof. 𝑉′ =
𝑉

𝑞
and assume 𝑝 𝑉′ ≥ 0.

𝑉1

𝑉2

𝑢
𝑣

𝑉′

𝑉1

𝑉2

𝑢
𝑣

𝑉′

𝑉1

𝑉2

𝑢
𝑣

𝑉′

𝑉′′′

𝑢
𝑣

𝑉1

𝑉2

𝑉′

𝑉′′′

𝑉′′′ =
𝑉

𝑞
and 𝑝 𝑉′′′ < 0.

(a) (b)

(c) (d)



Lemma. Given an integer 𝑞 ≥ 4, if after a set of contractions, 𝐺 can
be contracted into a 3-connected graph 𝐺∗ = (𝑉∗, 𝐺∗) such that

for every 𝑒∗, 𝑤 𝑒∗ ≤
𝑉

𝑞
− 2. Then the DBCP problem has a

solution for 𝑐𝑝 = 1, 𝑐𝑠 = 𝑞 − 1.

• Some care is needed to carry out the argument of the 
3-connected case for the contracted graph

• As we move ℒ,  at some
point 𝑝 𝑉1

′ 𝑝 𝑉2
′ ≥ 0. 𝐴

𝐵

𝑢′ 𝑤′ 𝑣′
ℒ

𝒞
𝑢 𝑣

𝑤

𝑉1
′ =
𝑉

𝑞
𝑉2
′ =
𝑉

𝑞



2-connected

• Recently showed that for 𝑐𝑝 = 1 and 𝑐𝑠 = 2 has a 
solution. 

Theorem. If 𝐺 is 2-connected, then the DBCP problem has a
solution for 𝑐𝑝 = 1 and 𝑐𝑠 = 3. Moreover, this solution can be

found in polynomial time.

Corollary. If 𝐺 is 2-connected, then the DBCP problem with
arbitrary weights has a solution for 𝑐𝑝 = max

𝑗∈𝑉
|𝑝(𝑗)| and 𝑐𝑠 = 3.
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Graphs with Two Types of Nodes
Corollary. Given a 3-connected graph 𝐺 with nodes colored either
red (𝑅 ⊆ 𝑉) or blue (𝐵 ⊆ 𝑉). There is always a partition (𝑉1, 𝑉2) of
𝑉 such that
1. 𝐺 𝑉1 and 𝐺 𝑉2 are connected
2. 𝑉1 = 𝑉2
3. 𝑅 ∩ 𝑉1 = |𝑅 ∩ 𝑉2| and 𝐵 ∩ 𝑉1 = |𝐵 ∩ 𝑉2| (assuming 𝑅

and |𝐵| are both even)

Corollary. Given a 2-connected graph 𝐺 with nodes colored either
red (𝑅 ⊆ 𝑉) or blue (𝐵 ⊆ 𝑉). There is always a partition (𝑉1, 𝑉2) of
𝑉 such that
1. 𝐺 𝑉1 and 𝐺 𝑉2 are connected
2. 𝑉1 , 𝑉2 ≥ |𝑉|/4
3. The ratio of red to blue nodes in each side 𝑉𝑖 differs from
𝑅 / 𝐵 by 𝑂(1/𝑛).



Thank You!


