Doubly Balanced Connected Graph Partitioning

Saleh Soltan, Mihalis Yannakakis, and Gil Zussman Columbia University

Motivation

- Power Grid Islanding \rightarrow mitigate cascading failures
- Partition the network into smaller operable islands
$>$ Supply = demand in each island
$>$ Island is large enough to have the capacity to deliver power
- Doubly Balanced Connected graph Partitioning (DBCP):

Given: Connected graph $G=(V, E)$ with a weight (supply/demand) function $p: V \rightarrow \mathbb{Z}$ satisfying $p(V)=\sum_{j \in V} p(j)=0$

Objective: Partition V into $\left(V_{1}, V_{2}\right)$ such that:

1. $G\left[V_{1}\right]$ and $G\left[V_{2}\right]$ are connected
2. $\left|p\left(V_{1}\right)\right|,\left|p\left(V_{2}\right)\right| \leq c_{p}$ for some constant c_{p}
3. $\max \left\{\frac{\left|V_{1}\right|}{\left|V_{2}\right|}, \frac{\left|V_{2}\right|}{\left|V_{1}\right|}\right\} \leq c_{S}$ for some constant c_{S}

Presentation Outline

$>$ Related Work
> Balancing a single objective $\left(\left|p\left(V_{1}\right)\right|,\left|p\left(V_{2}\right)\right| \leq c_{p}\right)$
$>$ Balancing both objectives
\checkmark 3-connected graphs
\checkmark 2-connected graphs
$>$ Graphs with two types of Nodes

Related Work

Theorem (Lovász and Gyori 1977). Let $G=(V, E)$ be a k-connected graph. Let $n=|V|, v_{1}, v_{2}, \ldots, v_{k} \in V$, and $n_{1}, n_{2}, \ldots, n_{k}$ be positive integers satisfying $n_{1}+n_{2}+\cdots+n_{k}=n$. Then, there exists a partition of V into $\left(V_{1}, V_{2}, \ldots, V_{k}\right)$ satisfying $v_{i} \in V_{i},\left|V_{i}\right|=n_{i}$, and $G\left[V_{i}\right]$ is connected for $i=1,2, \ldots, k$.

- For $k>3$ no polynomial time algorithm is known to find such partition

st-numbering

- For $k=2$, use st-numbering:

Given nodes $\{s, t\}$ in a graph G
An st-numbering is numbering for nodes such that:

1. Nodes of G are numbered from 1 to n
2. Node s receives number 1 and node t receives number n
3. Every node except s and t is adjacent both to a lowernumbered and to a higher-numbered node
(Evans and Tarjan 1976). An st-numbering for a 2-connected graph G can be found in $O(|V|+|E|)$ for any pair of node.

Nonseparating Ear Decomposition

- For $k=3$, use nonseparating ear decomposition

Let H be a subgraph of a graph G
An ear of H in G is a nontrivial path in G whose ends lie in H but whose internal nodes do not An ear decomposition of G is a decomposition $G=P_{0} \cup \cdots \cup P_{k}$ such that:

1. P_{0} is a cycle
2. P_{i} for $i \geq 1$ is an ear of $P_{0} \cup P_{1} \cup \cdots \cup P_{i-1}$

Every 2-connected graph has an ear decomposition (and viceversa), and such a decomposition can be found in linear time.

An ear decomposition is through edge $\{t, r\}$ and avoiding vertex u :

1. Cycle P_{0} contains edge $\{t, r\}$
2. The last nontrivial ear, has u as its only internal vertex

Nonseparating Ear Decomposition

$$
\begin{aligned}
& \text { Let } V_{i}=V\left(P_{0}\right) \cup V\left(P_{1}\right) \cup \cdots \cup V\left(P_{i}\right) \\
& \text { Let } G_{i}=G\left[V_{i}\right] \text { and } \bar{G}_{i}=G\left[V \backslash V_{i}\right]
\end{aligned}
$$

A nonseparating ear decomposition is an ear decomposition such that for all $0 \leq i<k$:

1. Graph \bar{G}_{i} is connected
2. Each internal vertex of P_{i} has a neighbor in \bar{G}_{i}

(Cheriyan and Maheshwari 1988). Given an edge $\{t, r\}$ and a vertex u of a 3-connected graph G, a nonseparating ear decomposition of G through $\{t, r\}$ and avoiding u can be found in $O(|V|+|E|)$ time.

- Using nonseparating ear decomposition for $k=3$, a solution can be found for the Lováz/Gyori theorem

Presentation Outline

$>$ Related Work
> Balancing a single objective $\left(\left|p\left(V_{1}\right)\right|,\left|p\left(V_{2}\right)\right| \leq c_{p}\right)$
$>$ Balancing both objectives
\checkmark 3-connected graphs
\checkmark 2-connected graphs
$>$ Graphs with two types of Nodes

Balancing Supply and Demand Only

Given: Connected graph $G=(V, E)$ with a weight (supply/demand) function $p: V \rightarrow \mathbb{Z}$ satisfying $p(V)=\sum_{j \in V} p(j)=0$

Objective: Partition V into $\left(V_{1}, V_{2}\right)$ such that:

1. $G\left[V_{1}\right]$ and $G\left[V_{2}\right]$ are connected
2. $\left|p\left(V_{1}\right)\right|,\left|p\left(V_{2}\right)\right| \leq c_{p}$ for some constant c_{p}

Proposition. It is strongly NP-hard to determine whether there is a solution to problem above for $c_{p}=0$, even when G in 2-connected.

Proposition. If G is not 2-connected, then this problem is NP-hard even when $\forall i, p(i)= \pm 1$.

Balancing Supply and Demand Only

Proposition. If G is 2-connected, there is always a solution such that $\left|p\left(V_{1}\right)\right|,\left|p\left(V_{2}\right)\right| \leq \max _{j \in V} \frac{|p(j)|}{2}$, and can be found in polynomial time.
Proof. Use st-numbering between nodes u, v with $p(u) p(v)>0$.

There is an i such that $\sum_{j=1}^{i} p(j)>0$ and $\sum_{j=1}^{i+1} p(j) \leq 0$.

- If $\forall i, p(i)= \pm 1$ and G is 2-connected, there is always a solution with $p\left(V_{1}\right)=p\left(V_{2}\right)=0$.

Presentation Outline

$>$ Related Work
> Balancing a single objective $\left(\left|p\left(V_{1}\right)\right|,\left|p\left(V_{2}\right)\right| \leq c_{p}\right)$
$>$ Balancing both objectives
\checkmark 3-connected graphs
\checkmark 2-connected graphs
$>$ Graphs with two types of Nodes

Doubly Balanced Connected Partitioning

Given: Connected graph $G=(V, E)$ with a weight (supply/demand) function $p: V \rightarrow \mathbb{Z}$ satisfying $p(V)=\sum_{j \in V} p(j)=0$

Objective: Partition V into $\left(V_{1}, V_{2}\right)$ such that:

1. $G\left[V_{1}\right]$ and $G\left[V_{2}\right]$ are connected
2. $\left|p\left(V_{1}\right)\right|,\left|p\left(V_{2}\right)\right| \leq c_{p}$ for some constant c_{p}
3. $\max \left\{\frac{\left|V_{1}\right|}{\left|V_{2}\right|}, \frac{\left|V_{2}\right|}{\left|V_{1}\right|}\right\} \leq c_{s}$ for some constant c_{S}

- We assume that $\forall i, p(i)= \pm 1$
- Techniques can be used in general case as well

3-Connected with a triangle

Lemma. If G is a 3-connected graph with a triangle, then

1. If $|V| \equiv 0(\bmod 4)$, then there exists a solution to the DBCP problem with $p\left(V_{1}\right)=p\left(V_{2}\right)=0$ and $\left|V_{1}\right|=\left|V_{2}\right|$.
2. If $|V| \equiv 2(\bmod 4)$, then there exists a solution to the DBCP problem with $p\left(V_{1}\right)=p\left(V_{2}\right)=0$ and $\left|V_{1}\right|=\left|V_{2}\right|+2$.

Proof. Use convex embedding of graphs
Let $X \subset V$. A convex X-embedding of G is any mapping $f: V \rightarrow \mathbb{R}^{|X|-1}$ such that for any $v \in V \backslash X, f(v) \in \operatorname{conv}(f(N(v)))$.

A convex embedding is in general position if the set $f(V)$ of the points is in general position.

Proof of 3-connected with a triangle

Theorem (Linial, Lovász, and Wigderson 1988). Let G be a graph on n vertices. The following two conditions are equivalent:

1. G is k-connected
2. For every $X \subset V$ with $|X|=k, G$ has a convex X-embedding in general position.

Proof.

- Assign to every edge $\{u, v\} \in E$ a positive elasticity coefficient $c_{u v}$
- $\forall v_{i} \in X$, let $f\left(v_{i}\right)$ arbitrary in \mathbb{R}^{k-1} so that $f(X)$ is in general position
- For almost any set of elasticity coefficients, the embedding f that minimizes the potential function P provides a convex X-embedding in general position

$$
P=\sum_{\{u, v\} \in E} c_{u v}\|f(u)-f(v)\|^{2}
$$

- The embedding can be computed as:

$$
f(v)=\frac{1}{c_{v}} \sum_{u \in N(v)} c_{u v} f(u), \forall v \in V \backslash X
$$

in which $c_{v}=\sum_{u \in N(v)} c_{u v}$

Proof of 3-connected with a triangle

- Assume u, w, v form a triangle in G
- $\left|V_{1}\right|=\left|V_{2}\right|=|V| / 2$
- For each line tangent to \mathcal{C}, $G\left[V_{1}\right]$ and $G\left[V_{2}\right]$ are connected
- Move \mathcal{L} from being tangent at point A to B
- As \mathcal{L} moves, $p\left(V_{i}\right)$ changes at most by ± 2 or 0
- Somewhere in the middle we get $p\left(V_{1}\right)=p\left(V_{2}\right)=0$

3-connected and triangle-free

- The previous proof does not work

- Find an embedding such that if u, v are in the same side, then so does the path that connects them

Lemma. If G is 3-connected, then there exist a set $\{u, v, w\} \in V$ and a partition of V into $\left(V_{1}^{\prime}, V_{2}^{\prime}\right)$ such that:

1. $G\left[V_{1}^{\prime}\right]$ and $G\left[V_{2}^{\prime}\right]$ are connected
2. $w \in V_{1}^{\prime}, u, v \in V_{2}^{\prime}$, and u, v are not cutpoints of $G\left[V_{2}^{\prime}\right]$
3. $\{u, w\},\{v, w\} \in E$
4. $\left|V_{2}^{\prime}\right| \leq|V| / 2$

Proof. Consider a non-separating induced cycle in G (Tutte)
(a) $\left|C_{0}\right| \leq|V| / 2+1$

(b) $\left|C_{0}\right|>|V| / 2+1$

Lemma. Given a partion $\left(V_{1}^{\prime}, V_{2}^{\prime}\right)$ of a 3-connected graph G with following properties:

1. $G\left[V_{1}^{\prime}\right]$ and $G\left[V_{2}^{\prime}\right]$ are connected
2. $w \in V_{1}^{\prime}, u, v \in V_{2}^{\prime}$, and u, v are not cutpoints of $G\left[V_{2}^{\prime}\right]$
G has a convex X-embedding in general position with mapping $f: V \rightarrow \mathbb{R}^{2}$ as below:

3-connected and triangle-free

Theorem. If G is a 3-connected graph, then

1. If $V \equiv 0(\bmod 4)$, then there exists a solution to the DBCP problem with $p\left(V_{1}\right)=p\left(V_{2}\right)=0$ and $\left|V_{1}\right|=\left|V_{2}\right|$.
2. If $V \equiv 2(\bmod 4)$, then there exists a solution to the DBCP problem with $p\left(V_{1}\right)=p\left(V_{2}\right)=0$ and $\left|V_{1}\right|=\left|V_{2}\right|+2$.
Moreover, this solution can be find in polynomial time.

- Results can be generalized to arbitrary supply/demand values:

Corollary. If G is a 3-connected graph, then the DBCP problem has solution for $c_{p}=\max _{i \in V}|p(i)|$ and $c_{s}=1$.

Presentation Outline

$>$ Related Work
> Balancing a single objective $\left(\left|p\left(V_{1}\right)\right|,\left|p\left(V_{2}\right)\right| \leq c_{p}\right)$
$>$ Balancing both objectives
\checkmark 3-connected graphs
\checkmark 2-connected graphs
$>$ Graphs with two types of Nodes

Extreme Cases

Observation. If $c_{p}=0$, then for any $c_{s}<|V| / 2-1$, there exist a 2-connected graph such that DBCP problem does not have solution.

Proof. Set $t=0$.
Observation. If $c_{s}=1$, then for any $c_{p}<|V| / 6$, there exist a 2-connected graph such that DBCP problem does not have solution.

Proof. Set s=1.

Graph Contraction

An induced subgraph H of a 2-connected graph G is contractible, if there is a separating pair $\{u, v\} \subset V$ such that $H=\left(V_{H}, E_{H}\right)$ is a connected component of $G[V \backslash\{u, v\}]$.

If we replace H by a weighted edge e^{\prime} with $w\left(e^{\prime}\right)=\left|V_{H}\right|$ to obtain a smaller graph G^{\prime}, we say G is contracted to G^{\prime}.

G

G^{\prime}

Lemma. In every 2-connected graph $G=(V, E)$, given an integer $q \geq 3$, one of the following cases holds:

1. There is a separation pair $\{u, v\} \subset V$ such that for each connected component H of $G[V \backslash\{u, v\}],\left|V_{H}\right|<\left\lfloor\frac{(q-1)|V|}{q}\right\rfloor$
2. After a set of contractions, G can be transformed into a 3-connected graph $G^{*}=\left(V^{*}, G^{*}\right)$ such that for every e^{*}, $w\left(e^{*}\right) \leq\left\lceil\frac{|V|}{q}\right\rceil-2$.

Lemma. Given a 2-connected graph G, and an integer $q \geq 3$, if G has a separation pair $\{u, v\} \subset V$ such that for every connected component $H_{i}=\left(V_{H_{i}}, E_{H_{i}}\right)$ of $G[V \backslash\{u, v\}],\left|V_{H_{i}}\right|<\left[\frac{(q-1)|V|}{q}\right]$, then the DBCP problem has a solution for $c_{p}=1, c_{s}=q-1$.

A pseudo-path between nodes u and v in $G=(V, E)$, is a sequence of nodes $v_{1}, v_{2}, \ldots, v_{t}$ such that if $v_{0}:=u$ and $v_{t+1}:=v$ then for any $1 \leq i \leq t, v_{i}$ has neighbors v_{j} and v_{k} such that $j<i<k$.

Proof. Each H_{i} can be shown by a pseudo path between u and v. Divide pseudo-paths into two sets S_{1} and S_{2} such that:
$\sum_{P_{j} \in S_{i}}\left|P_{j}\right| \geq\left|\frac{|V|}{q}\right|-1$
So G can be shown as follows such that $Q_{1}, Q_{2} \geq\left\lceil\frac{|V|}{q}\right\rceil-1$.

Proof. $\left|V^{\prime}\right|=\frac{|V|}{q}$ and assume $p\left(V^{\prime}\right) \geq 0$.

(a)
$\left|V^{\prime \prime \prime}\right|=\frac{|V|}{q}$ and $p\left(V^{\prime \prime \prime}\right)<0$.
(c)

(b)

(d)

Lemma. Given an integer $q \geq 4$, if after a set of contractions, G can be contracted into a 3-connected graph $G^{*}=\left(V^{*}, G^{*}\right)$ such that for every $e^{*}, w\left(e^{*}\right) \leq\left\lceil\frac{|V|}{q}\right\rceil-2$. Then the DBCP problem has a solution for $c_{p}=1, c_{s}=q-1$.

- Some care is needed to carry out the argument of the 3-connected case for the contracted graph
- As we move \mathcal{L}, at some
point $p\left(V_{1}^{\prime}\right) p\left(V_{2}^{\prime}\right) \geq 0$.

$$
V_{1}^{\prime}=\frac{|V|}{q} \quad V_{2}^{\prime}=\frac{|V|}{q}
$$

2-connected

Theorem. If G is 2 -connected, then the DBCP problem has a solution for $c_{p}=1$ and $c_{s}=3$. Moreover, this solution can be found in polynomial time.

- Recently showed that for $c_{p}=1$ and $c_{s}=2$ has a solution.

Corollary. If G is 2 -connected, then the DBCP problem with arbitrary weights has a solution for $c_{p}=\max _{j \in V}|p(j)|$ and $c_{s}=3$.

Presentation Outline

$>$ Related Work
> Balancing a single objective $\left(\left|p\left(V_{1}\right)\right|,\left|p\left(V_{2}\right)\right| \leq c_{p}\right)$
$>$ Balancing both objectives
\checkmark 3-connected graphs
\checkmark 2-connected graphs
$>$ Graphs with two types of Nodes

Graphs with Two Types of Nodes

Corollary. Given a 3-connected graph G with nodes colored either red ($R \subseteq V$) or blue ($B \subseteq V$). There is always a partition $\left(V_{1}, V_{2}\right)$ of V such that

1. $G\left[V_{1}\right]$ and $G\left[V_{2}\right]$ are connected
2. $\left|V_{1}\right|=\left|V_{2}\right|$
3. $\left|R \cap V_{1}\right|=\left|R \cap V_{2}\right|$ and $\left|B \cap V_{1}\right|=\left|B \cap V_{2}\right|$ (assuming $|R|$ and $|B|$ are both even)

Corollary. Given a 2-connected graph G with nodes colored either red $(R \subseteq V)$ or blue ($B \subseteq V$). There is always a partition $\left(V_{1}, V_{2}\right)$ of V such that

1. $G\left[V_{1}\right]$ and $G\left[V_{2}\right]$ are connected
2. $\left|V_{1}\right|,\left|V_{2}\right| \geq|V| / 4$
3. The ratio of red to blue nodes in each side V_{i} differs from $|R| /|B|$ by $O(1 / n)$.

Thank You!

