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Motivation

* Power Grid Islanding > mitigate cascading failures

 Partition the network into smaller operable islands
» Supply = demand in each island
» Island is large enough to have the capacity to deliver power

* Doubly Balanced Connected graph Partitioning (DBCP):

Connected graph G = (V, E) with a weight (supply/demand)
function p: V' — Z satisfying p(V) = X ey p(j) = 0

Partition V into (V1,V,) such that:
1. G[Vy]and G[V,] are connected

2. |p(V)I [p(V2)| < ¢, for some constant ¢,

V4| [V3]
3. max{—1 —Z

, } < ¢, for some constant c;
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Presentation Qutline

> Related Work

» Balancing a single objective
(lp(VDL [p(V)] < ¢p)

» Balancing both objectives
v’ 3-connected graphs
v’ 2-connected graphs

» Graphs with two types of Nodes



Related Work

Let G = (V,E) be a k-connected
graph. Let n = |V|, v{,v,, ...,vx €V, and ny, n,, ..., N, be positive
integers satisfying n; +n, + ---+n; =n. Then, there exists a
partition of V into (V4,V,, ..., V}) satisfying v; € V;, |V;| = n;, and
G|V;] is connected fori = 1,2, ..., k.

* For k > 3 no polynomial time algorithm is known to find
such partition



st-numbering

* For k = 2, use st-numbering:

Given nodes {s,t} in a graph G
An is numbering for nodes such that:
1. Nodes of G are numbered from 1ton
2. Node s receives number 1 and node t receives number n
3. Every node except s and t is adjacent both to a lower-
numbered and to a higher-numbered node

An st-numbering for a 2-connected graph
G can be found in O(|V| + |E]|) for any pair of node.
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Nonseparating Ear Decomposition

* For k = 3, use nonseparating ear decomposition

Let H be a subgraph of a graph G
An of H in G is a nontrivial path in G whose
ends lie in H but whose internal nodes do not
of G is a decomposition
G =PyU---U P such that:
1. Pyisacycle
2. P;fori = lisanearof PpU P U---U P;_4

Every 2-connected graph has an ear decomposition (and vice-
versa), and such a decomposition can be found in linear time.

An ear decomposition is
1. Cycle P, contains edge {t, 1}
2. The last nontrivial ear, has u as its only internal vertex




Nonseparating Ear Decomposition

LetV; =V(P,) UV(P;)) U---UV(P)
Let Gi — G[Vl] and Gi — G[V\Vl]
IS an ear
decomposition such that forall 0 < i < k:
1. Graph G; is connected
2. Each internal vertex of P; has a neighbor in G;

Given an edge {t,r} and a vertex
u of a 3-connected graph G, a nonseparating ear decomposition of
G through {t,r} and avoiding u can be found in O(|V| + |E]) time.

* Using nonseparating ear decomposition for k = 3, a
solution can be found for the Lovaz/Gyori theorem
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Balancing Supply and Demand Only

Connected graph G = (V, E) with a weight (supply/demand)
function p: V' — Z satisfying p(V) = X ey () = 0

Partition V into (V4,V,) such that:
1. G|V;] and G|V,] are connected

2. |p(WDI, Ip(V2)| < ¢, for some constant ¢,

It is strongly NP-hard to determine whether there is a
solution to problem above for ¢, = 0, even when G in 2-connected.

If G is not 2-connected, then this problem is NP-hard
even when V i,p(i) = +1.




Balancing Supply and Demand Only

If G is 2-connected, there is always a solution such that

lp(VDI, [p(V2)] < maxlp(z—j)l, and can be found in polynomial time.

JEV

Proof. Use st-numbering between nodes u, v with p(u)p(v) > 0.
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There is an i such that Z}zlp(j) > 0 and ;J;llp(]) <0.

* IfVi,p(i) = £1 and G is 2-connected, there is always a
solution with p(I;) = p(V,) = 0.
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Doubly Balanced Connected Partitioning

Connected graph G = (V, E) with a weight (supply/demand)
function p:V - Z satisfying p(V) = X ey p(j) = 0

Partition I/ into (V4, V5) such that:
1. G[Vy]and G[V,] are connected

2. |p(V)I [p(V2)| < ¢, for some constant ¢,

Vil [Vl
3. max {—1—2 < ¢, for some constant c,
V2l V4

* We assumethatVi,p(i) = +1

* Techniques can be used in general case as well



3-Connected with a triangle

If G is a 3-connected graph with a triangle, then
1. If [V]| = 0(mod 4), then there exists a solution to the DBCP
problem with p(I;) = p(V,) = 0 and |V;| = |V].
2. If [V] = 2(mod 4), then there exists a solution to the DBCP
problem with p(V;) = p(V,) = 0 and |V4| = |V5]| + 2.

Proof. Use convex embedding of graphs

let X Cc V. A IS any mapping
f1V = RXI=1sych that for any v € V\X, f(v) € conv(f(N())).

A convex embedding is in general position if the set f (V) of the
points is in general position.




Proof of 3-connected with a triangle

Let G be a graph on
n vertices. The following two conditions are equivalent:
1. G is k-connected
2. Forevery X c V with |X| = k, G has a convex X-embedding in
general position.

= Assign to every edge {u, v} € E a positive elasticity coefficient c,,,,

= VYy; € X, let f(v;) arbitrary in R¥~1 so that £(X) is in general position

= For almost any set of elasticity coefficients, the embedding f that minimizes
the potential function P provides a convex X-embedding in general position

p= Z cunllf W) = FW)] 2

{uv}ee
= The embedding can be computed as:

1
fv) == Z e f (1), V0 € VAX
v UEN(v)
in which ¢, = Xy enw) Cuv




Proof of 3-connected with a triangle

= Assume u, w, v form a triangle in G
= V| = Vo] = |V]/2

= For each line tangent to C,
G[Vi] and G[V,] are connected

= Move L from being tangent
at point Ato B

= As L moves, p(V;) changes at most
by +2or0 Y v

= Somewhere in the middle we
getp(Vy) =p(y) =0




3-connected and triangle-free

* The previous proof does not work

u

w

* Find an embedding such that if u, v are in the same side,
then so does the path that connects them




If G is 3-connected, then there exist a set {u,v,w} € V and
a partition of VV into (V{, V5) such that:
G[V{] and G[V,] are connected
w € Vi, u,v € V,, and u, v are not cutpoints of G[V/,]
. {u,w}l{v,w} €E
. V2l = V]2

BwN e

Proof. Consider a non-separating induced cycle in G (Tutte)

(a) [Col < |V]/2+1 (b) [Col > [VI/2+1




Lemmoa. Given a partion (V{, V) of a 3-connected graph G with
following properties:
1. G[V{]and G[V,] are connected
2. weV/,u,v eV, andu,v are not cutpoints of G[V,]
G has a convex X-embedding in general position with mapping
f:V - R? as below:

v




3-connected and triangle-free

If G is a 3-connected graph, then
1. If V = 0(mod 4), then there exists a solution to the DBCP
problem with p(V;) = p(V,) = 0 and |V, | = |V].
2. If V = 2(mod 4), then there exists a solution to the DBCP
problem with p(V;) = p(V,) = 0 and |V4| = |V5]| + 2.
Moreover, this solution can be find in polynomial time.

* Results can be generalized to arbitrary supply/demand
values:

If G is a 3-connected graph, then the DBCP problem has

solution for ¢,, = max i)land c. = 1.
p = Mas Ip(@)| s
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Extreme Cases

-1 -1 -1 +1 +1 +1

2s+1 =

Observation. If ¢, = 0, then for any ¢y < [V]/2 — 1, there exist a
2-connected graph such that DBCP problem does not have solution.

Proof. Set t = 0.

Observation. If ¢ = 1, then for any ¢, < |V|/6, there exist a
2-connected graph such that DBCP problem does not have solution.

Proof. Sets = 1.




Graph Contraction

An induced subgraph H of a 2-connected graph G is , if

there is a separating pair {u, v} € V such that H = (Vy, Ey) is a
connected component of G[V\{u, v}].

If we replace H by a weighted edge e’ with w(e') = |Vy| to obtain
a smaller graph G', we say G is G'.




In every 2-connected graph G = (V, E), given an integer
q = 3, one of the following cases holds:

1. There is a separation pair {u,v} c V such that for each
connected component H of G[V\{u, v}], |Vy| < [(q_l)lvlj

q
2. After a set of contractions, G can be transformed into a

3-connected graph G* = (V*,G*)such that for every e*,
o <[] _
w(e*) < [q} 2.




Given a 2-connected graph G, and an integer g = 3, if G

has a separation pair {u,v} c V such that for every connected
(q-DIV|

component H; = (Vy,, Ey;) of G[V\{u, v}], |VHl.| <| - |, then
the DBCP problem has a solution forc, = 1, ¢, = q — 1.
A between nodesu and vin G = (V,E), is a sequence

of nodes v{, vy, ..., V¢ such that if vy: = u and v, 1: = v then
forany 1 < i < t, v; has neighbors v; and vy such thatj < i < k.

Proof. Each H; can be shown by a pseudo path between u and v.
Divide pseudol-glaths into two sets S; and S, such that:

z:Pj€5i|PJ'| = [7} -1

e —————
- ~ ~

/”’ Ql \\\
So G can be shown als |follows . "' \
1%4 !
such that Q{,0Q, = [7} — 1. \ v

~ -
TN —m— e e ="




Proof. [V'| = % and assume p(V'") = 0.

V" = %and p(V''") < 0.




Given an integer g = 4, if after a set of contractions, G can
be contracted into a 3-connected graph G* = (V*,G™) such that

for every e*, w(e*) < [lj‘ﬂ — 2. Then the DBCP problem has a

solution forc, = 1,¢; = q — 1.

* Some care is needed to carry out the argument of the
3-connected case for the contracted graph

* As we move L, at some , |
point p(V{)p(Vz) = 0. e e




2-connected

Theorem. If G is 2-connected, then the DBCP problem has a
solution for ¢, =1 and c¢; = 3. Moreover, this solution can be

found in polynomial time.

* Recently showed that for ¢, = 1 and ¢ = 2 has a
solution.

Corollary. If G is 2-connected, then the DBCP problem with

arbitrary weights has a solution for ¢, = max lp(j)| and ¢5 = 3.
)
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Graphs with Two Types of Nodes

Given a 3-connected graph G with nodes colored either
red (R € V) or blue (B € V). There is always a partition (V;,15) of
I/ such that

1. G[V¢]and G[V,] are connected

2. V| = |V,

3. IRnVy|=|RnV,| and |BNVy| =|B NV, (assuming |R|
and |B| are both even)

Given a 2-connected graph G with nodes colored either
red (R € V) or blue (B € V). There is always a partition (V;,15) of
I/ such that

1. G[Vy]and G[V,] are connected

2. Vil [Vl = |V]/4

3. The ratio of red to blue nodes in each side V; differs from
IR|/|B| by O(1/n).




Thank You!



