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Abstract—LTE evolved Multimedia Broadcast/Multicast Service
(eMBMS) is an attractive solution for video delivery to very large
groups in crowded venues. However, deployment and manage-
ment of eMBMS systems is challenging, due to the lack of real-
time feedback from the User Equipment (UEs). Therefore, we
present the Dynamic Monitoring (DyMo) system for low-overhead
feedback collection. DyMo leverages eMBMS for broadcasting
Stochastic Group Instructions to all UEs. These instructions
indicate the reporting rates as a function of the observed Quality
of Service (QoS). This simple feedback mechanism collects very
limited QoS reports from the UEs. The reports are used for
network optimization, thereby ensuring high QoS to the UEs.
We present the design aspects of DyMo and evaluate its per-
formance analytically and via extensive simulations. Specifically,
we show that DyMo infers the optimal eMBMS settings with
extremely low overhead, while meeting strict QoS requirements
under different UE mobility patterns and presence of network
component failures. For instance, DyMo can detect the eMBMS
Signal-to-Noise Ratio (SNR) experienced by the 0.1% percentile
of the UEs with Root Mean Square Error (RMSE) of 0.05% with
only 5 to 10 reports per second regardless of the number of UEs.

Keywords— Wireless Monitoring, LTE, eMBMS, Multi-
cast, Feedback Mechanism

I. INTRODUCTION

Wireless video delivery is an important service. However,
unicast video streaming over LTE to a large user population
in crowded venues requires a dense deployment of Base
Stations (BSs) [1], [2]. Such deployments require high capital
and operational expenditure and may suffer from extensive
interference between adjacent BSs.

LTE-eMBMS (evolved Multimedia Broadcast/Multicast
Service) [3], [4] provides an alternative method for content
delivery in crowded venues which is based on broadcasting to
a large population of User Equipment (UEs) (a.k.a. eMBMS
receivers). As illustrated in Fig. 1, in order to improve the
Signal-to-Noise Ratio (SNR) at the receivers, eMBMS uti-
lizes soft signal combining techniques.1 Thus, a large scale
Modulation and Coding Scheme (MCS) adaptation should be

1All the BSs in a particular venue transmit identical multicast signals in a
time synchronized manner.

Fig. 1. The DyMo system architecture: It exchanges control information
with the Multicast Coordination Entity (MCE) of BSs which use soft signal
combining for eMBMS. The Instruction Control module uses broadcast to
dynamically partition the UEs into groups, each sending QoS reports at a
different rate. The reports are sent to the Feedback Collection module and
allow the QoS Evaluation module to identify an SNR Threshold. It is used
by the MCS Control module to specify the optimal MCS to the MCEs.

conducted simultaneously for all the BSs based on the Quality
of Service (QoS) at the UEs.
eMBMS Limitations: Unfortunately, the eMBMS stan-
dard [3] only provides a mechanism for UE QoS reporting
once the communication terminates, thereby making it unsuit-
able for real-time traffic. Recently, the Minimization of Drive
Tests (MDT) protocol [5] was extended to provide eMBMS
QoS reports periodically from all the UEs or when a UE
joins/leaves a BS. However, in crowded venues with tens of
thousands of UEs (e.g., [1]), even infrequent QoS reports by
each UE may result in high signaling overhead and blocking of
unicast traffic.2 Due to the limited ability to collect feedback,
a deployment of an eMBMS system is very challenging. In
particular, it is hindered by the following limitations:

(i) Extensive and time consuming radio frequency surveys:
Such surveys are conducted before each new eMBMS
deployment. Yet, they provide only limited information
from a few monitoring nodes.

(ii) Conservative resource allocation: The eMBMS MCS and
Forward Error Correction (FEC) codes are set conserva-
tively to increase the decoding probability.

(iii) Oblivious to environmental changes: It is impossible to
infer QoS degradation due to environmental changes,
such as new obstacles or component failures.

2A BS can only support a limited number of connections while the minimal
duration for an LTE connection is in the order of hundreds of milliseconds.



eMBMS Parameter Tuning Challenge: Clearly, there is a
need to dynamically tune the eMBMS parameters according to
the feedback from UEs. However, a key challenge for eMBMS
parameter tuning for large scale groups is obtaining accurate
QoS reports with low overhead. Schemes for efficient feed-
back collection in wireless multicast networks have recently
received considerable attention, particularly in the context of
WiFi networks (e.g., [6]–[9]). Yet, WiFi feedback schemes
cannot be easily adapted to eMBMS since unlike WiFi, where
a single Access Point transmits to a node, transmissions from
multiple BSs are combined in eMBMS. Efforts for optimizing
eMBMS performance focus on periodically collecting QoS
reports from all UEs (e.g., [10]) but such approaches rely on
extensive knowledge of the user population (for more details,
see Section II).
DyMo System: This paper presents the Dynamic Monitoring
(DyMo) system designed to support efficient LTE-eMBMS de-
ployments in crowded and dynamic environments by providing
accurate QoS reports with low overhead. DyMo identifies the
maximal eMBMS SNR Threshold such that only a small num-
ber of UEs with SNR below the SNR Threshold may suffer
from poor service3. To identify the SNR Threshold accurately,
DyMo leverages the broadcast capabilities of eMBMS for fast
dissemination of instructions to a large UE population.

Each instruction is targeted at a sub-group of UEs that
satisfies a given condition. It instructs the UEs in the group
to send a QoS report with some probability during a reporting
interval.4 We refer to these instructions as Stochastic Group
Instructions. For instance, as shown in Fig. 2, DyMo divides
UEs into two groups. UEs with poor or moderate eMBMS
SNR are requested to send a report with a higher rate during
the next reporting interval. In order to improve the accuracy
of the SNR Threshold, the QoS reports are analyzed and the
group partitions and instructions are dynamically adapted such
that the UEs whose SNR is around the SNR Threshold report
more frequently. The SNR Threshold is then used for setting
the eMBMS parameters, such as the MCS and FEC codes.

From a statistics perspective, DyMo can be viewed as a
practical method for realizing importance sampling [11] in
wireless networks. Importance sampling improves the expec-
tation approximation of a rare event by sampling from a
distribution that overweighs the important region. With limited
knowledge of the SNR distribution, DyMo leverages Stochastic
Group Instructions to narrow down the SNR sampling to
UEs that suffer from poor service and consequently obtains
accurate estimation of the SNR Threshold. To the best of
our knowledge, this is the first realization of using broadcast
instructions for importance sampling in wireless networks.

The DyMo system architecture is illustrated in Fig. 1. It
operates on an independent server and exchanges control infor-
mation with several BSs supporting eMBMS. The Instruction
Control module instructs the different groups to send reports at

3While various metrics can be used for QoS evaluation, we consider the
commonly used eMBMS SNR, referred to as SNR, as a primary metric.

4A higher probability results in a higher reporting rate, and therefore, we
will use rate and probability interchangeably.

Fig. 2. Operation of DyMo for a sample UE QoS distribution: UEs are
partitioned into two groups based on their SNR and each group is instructed
to send QoS reports at a different rate. The partitioning is dynamically adjusted
based on the reports to yield more reports from UEs whose SNR is around
the estimated SNR Threshold.

different rates. The reports are sent via unicast to the Feedback
Collection module and allow the QoS Evaluation module to
identify an accurate SNR Threshold. The SNR Threshold is
determined such that only a predefined number of UEs with
SNR below the threshold, termed as outliers, may suffer from
poor service. The MCS Control module utilizes the SNR
Threshold to configure the eMBMS parameters (e.g., MCS)
accordingly. Finally, the QoS Evaluation module continually
refines group partitions based on the reports.

We focus on the QoS Evaluation module and develop a
Two-step estimation algorithm which can efficiently identify
the SNR Threshold as a one time estimation. We also de-
velop an Iterative estimation algorithm for estimating the
SNR Threshold iteratively, when the distribution changes due
to UE mobility or environmental changes, such as network
component failures. Our analysis shows that the Two-step
estimation and Iterative estimation algorithms can infer the
SNR Threshold with a small error and limited number of
QoS reports. It is also shown that they outperform the Order-
Statistics estimation method, a well-known statistical method,
which relies on sampling UEs with a fixed probability. For
instance, the Two-step estimation requires only 400 reports
when estimating the 1% percentile to limit the error to 0.3%
for each re-estimation. The Iterative estimation algorithm
performs even better and the maximum estimation error can be
bounded according to the maximum change of SNR Threshold.

We conduct extensive at-scale simulations, based on real
eMBMS radio survey measurements from a stadium and an
urban area. It is shown that DyMo accurately infers the SNR
Threshold and optimizes the eMBMS parameters with low
overhead under different mobility patterns and even in the
event of component failures. DyMo significantly outperforms
alternative schemes based on the Order-Statistics estimation
method which rely on random or periodic sampling.

Our simulations show that both in a stadium-like and urban
area, DyMo detects the eMBMS SNR value of the 0.1%
percentile with Root Mean Square Error (RMSE) of 0.05%
with only 5 messages per second. This is at least 8 times
better than Order-Statistics estimation based methods. DyMo
also infers the optimal SNR Threshold with RMSE of 0.3 dB
regardless of the UE population size, while the error of the
best Order-Statistics estimation method is above 1 dB. DyMo
violates the outlier bound (of 0.1%) with RMSE of at most
0.35 while the best Order-Statistics estimation method incurs
RMSE of over 4 times. The simulations also show that after



a failure, DyMo converges instantly (i.e., in a single reporting
interval) to the optimal SNR Threshold. Thus, DyMo is able
to infer the maximum MCS while preserving QoS constraints.
Our Main Contributions: To summarize, the main contribu-
tions of this paper are three-fold:
(i) We present the concept of Stochastic Group Instructions
for efficient realization of importance sampling in wireless
networks.
(ii) We present the system architecture of DyMo and efficient
algorithms for SNR Threshold estimation.
(iii) We show via analysis and extensive simulations that DyMo
performs well in diverse scenarios.
The principal benefit of DyMo is its ability to infer the
system performance based on a low number of QoS reports.
It converges very fast to the optimal eMBMS configuration
and it reacts very fast to changes in the environment. Hence,
it eliminates the need for service planning and extensive field
trials. Further, DyMo is compatible with existing LTE-eMBMS
deployments and does not need any knowledge of the UE
population. We note that, due to space constraints, the proofs
and some simulation results are omitted and appear in [12].

II. RELATED WORK

Wireless multicast control schemes received considerable
attention in recent years (see survey in [6] and references
therein). Below we briefly review the most relevant papers.
LTE-eMBMS: Most previous work on eMBMS (e.g., [13]–
[16]) assumes individual feedback from all the UEs and pro-
poses various MCS selection or resource allocation techniques.
Yet, extensive QoS reports impose significant overhead on
LTE networks, which are already highly congested in crowded
venues [1]. An efficient feedback scheme was proposed in [10]
but it relies on knowledge of path loss (or block error) of the
entire UE population to form the set of feedback nodes.

Recently, [17] proposed a multicast-based anonymous query
scheme for inferring the maximum MCS that satisfies all
UEs without sending individual queries. However, the scheme
cannot be implemented in current LTE networks, since it
will require UEs to transmit simultaneous beacon messages
in response to broadcast queries.
WiFi Multicast: Most of the wireless multicast schemes
are designed for WiFi networks. Some rely on individual
feedback from all nodes for each packet [8], [9]. Leader-
Based Schemes [18]–[20] collect feedback from a few se-
lected nodes with the weakest channel quality. Cluster-Based
Feedback Schemes in [7], [21] balance accurate reporting with
minimization of control overhead by selecting nodes with the
weakest channel condition in each cluster as feedback nodes.

However, WiFi multicast solutions cannot easily be applied
to LTE-eMBMS systems. First, in WiFi, each node is associ-
ated with an Access Point, and therefore, the Access Point is
aware of every node and can specify the feedback nodes. In
LTE, eMBMS UEs could be in the idle state and the network
may not be aware of the number of active UEs. Second,
eMBMS is based on simultaneous transmission from various
BSs. Thus, unlike in WiFi where MCS adaptation is done at

each Access Point independently, a common MCS adaptation
should be done at all BSs.

III. MODEL AND OBJECTIVE

A. Network Model

We consider an LTE-Advanced network with multiple BSs
providing eMBMS service to a very large group of m UEs in
a given large venue (e.g., sports arena, transportation hub).5

Such venues can accommodate tens of thousands of users. The
eMBMS service is managed by a single DyMo server as shown
in Fig. 1 and all the BSs transmit identical multicast signals
in a time synchronized manner. The multicast flows contain
FEC code that allows the UEs to tolerate some level of losses
` (e.g., up to 5% packet losses).

All UEs can detect and report the eMBMS QoS they expe-
rience. More specifically, time is divided into short reporting
intervals, a few seconds each. We assume that the eMBMS
SNR distribution of the UEs does not change during each
reporting interval.6 We define the individual SNR value hv(t),
such that at least a given percentage 1 − ` (e.g., 95%) of
the eMBMS packets received by an UE v during a reporting
interval t have an SNR above hv(t). For a given SNR value,
hv(t), there is a one-to-one mapping to an eMBMS MCS such
that a UE can decode all the packets whose SNR is above
hv(t) [15], [16]. The remaining packets ` can be recovered by
appropriate level of FEC assuming ` is not too large.

B. Objective

We aim to design a scalable efficient eMBMS monitoring
and control system for which the objective is outlined below
and that satisfies the following constraints:
(i) QoS Constraint – Given a QoS Threshold p� 1, at most

a fraction p of the UEs may suffer from packet loss of
more than `. This implies that, with FEC, a fraction 1−p
of the UEs should receive all of the transmitted data. We
refer to the set UEs that suffer from packet loss after FEC
as outliers and the rest are termed normal UEs.

(ii) Overhead Constraint – The average number of UE reports
during a reporting interval should be below a given
Overhead Threshold r.

Objective: Accurately identify at any given time t the maxi-
mum SNR Threshold, s(t) that satisfies the QoS and Overhead
Constraints.
Namely, the calculated s(t) needs to ensure that a fraction
1− p of the UEs have individual SNR values hv(t) ≥ s(t).

The network performance can be maximized by using s(t)
to calculate the maximum eMBMS MCS that meets the QoS
constraint [15], [16]. This allows reducing the resource blocks
allocated to eMBMS. Alternatively for a service such as video,
the video quality can be enhanced without increasing the
bandwidth allocated to the video flow.

5In this paper, we consider only the UEs subscribing to eMBMS services.
6The SNR of each individual eMBMS packet is a random variable selected

from the UE SNR distribution. We assume that this distribution does not
change significantly during the reporting interval.



TABLE I
EXAMPLE OF THE DyMo FEEDBACK REPORT OVERHEAD.

Group
No.

of UEs
Report
Prob.

Avg. reports
per interval

Avg.
per sec

Rate
per min

H 250 20% 50 5 ≈ 100%
L 2250 2% 45 ≈ 5 ≈ 12%

IV. THE DyMo SYSTEM

We now briefly present the DyMo system architecture,
shown in Fig. 1. The details can be found in [12].
Feedback Collection: This module operates in the DyMo
server and in a DyMo Mobile-Application on each UE. At the
beginning of each reporting interval, the Feedback Collection
module broadcasts Stochastic Group Instructions to all the
UEs. These instructions specify the QoS report probability as a
function of the observed QoS (i.e., eMBMS SNR). In response,
each UE independently determines whether it should send a
QoS report at the current reporting interval.
QoS Evaluation: The UE feedback is used to estimate the
eMBMS SNR distribution, as shown in Fig. 2. Since the
system needs to determine the SNR Threshold, s(t), the
estimation of the low SNR range of the distribution has to
be more accurate. To achieve this goal, the QoS Evaluation
module partitions the UEs into two or more groups, according
to their QoS values. This allows DyMo to accurately infer
the optimal value of s(t), by obtaining more reports from
UEs with low SNR. We elaborate on the algorithms for s(t)
estimation in Section V.
MCS Control: The initial eMBMS MCS is determined from
unicast SNR values reported by the UEs during unicast
connections. Then, after each reporting interval, the QoS
Evaluation module infers the SNR Threshold, s(t), and the
MCS Control module determines the desired eMBMS settings,
mainly the eMBMS MCS and FEC, according to commonly
used one-to-one mappings [15], [16]. This iterative process is
demonstrated in the following example.
Example: Consider an eMBMS system that serves 2, 500 UEs
with the QoS Constraint that at most p = 1% = 25 UEs may
suffer from poor service. Assume a reporting interval of 10
seconds. To infer the SNR Threshold, s(t), that satisfies the
constraint, the UEs are divided into two groups:
• High-Reporting-Rate (H): 10% (250) of UEs that experi-
ence poor or moderate service quality report with probability
of 20%, i.e., an expected number of 50 reports per interval.
• Low-Reporting-Rate (L): 90% (2250) of the UEs that expe-
rience good or excellent service quality report with probability
of 2%, implying about 45 reports per interval.
Table I presents the reporting probability of each UE and the
number of QoS reports per reporting interval by each group.
It also shows the number of QoS reports per second and the
reporting rate per minute (i.e., the expected fraction of UEs
that send QoS reports in a minute). Since the QoS Constraint
implies that only 25 UEs may suffer from poor service, these
UEs must belong to group H. Although only 10 QoS reports
are received at each second, all the UEs in group H send QoS
reports at least once a minute. Thus, the SNR Threshold can
be accurately detected within one minute.

V. ALGORITHMS FOR SNR THRESHOLD ESTIMATION

This section describes the algorithms utilized by DyMo
for estimating the SNR Threshold, s(t), for a given QoS
Constraint, p and Overhead Constraint r. In particular, it
addresses the challenges of partitioning the UEs into groups
according to their SNR distribution as well as determining
the group boundaries and the reporting rate from the UEs in
each group, such that the overall estimation error of s(t) is
minimized. We first consider a static setting where the SNR
values of UEs are fixed and then extend to the case of dynamic
environments and UE mobility. The proofs are omitted due to
space constraints and can be found in [12].

A. Order Statistics

We first briefly review a known statistical method in quan-
tile estimation, referred to as Order-Statistics estimation. It
provides a baseline for estimating s(t) and is also used by
DyMo for determining the initial SNR distribution in its first
iteration assuming a single group. Let F (x) be a Cumulative
Distribution Function (CDF) for a random variable X , the
quantile function F−1(p) is given by, inf{x | F (x) ≥ p}.

Let X1, X2, . . . , Xr be a sample from the distribution F ,
and Fr its empirical distribution function. It is well known
that the empirical quantile F−1r (p) converges to the population
quantile F−1(p) at all points p where F−1 is continuous [22].
Moreover, the true quantile, Sp = F (F−1r (p)), of the empirical
quantile estimate F−1r (p) is asymptotically normal [22] with
mean p and variance

V ar[Sp] = p(1− p)/r. (1)

For SNR Threshold estimation, F is the SNR distribution
of all UEs. A direct way to estimate the SNR Threshold s(t)
is to collect QoS reports from r randomly selected UEs, and
calculate the empirical quantile F−1r (p) as an estimate.7

B. The Two-Step Estimation Algorithm

We now present the Two-step estimation algorithm that uses
two groups for estimating the SNR Threshold, s(t), in a static
setting. We assume a fixed number of UEs, m, and a bound r
on the number of expected reports. By leveraging Stochastic
Group Instructions, DyMo is not restricted to collecting reports
uniformly from all UEs and can use these instructions to
improve the accuracy of s(t). One way to realize this idea is
to perform a two-step estimation that approximates the shape
of the SNR distribution before focusing on the low quantile
tail. The Two-step estimation algorithm works as follows:

Algorithm 1: Two-Step Estimation for the Static Case
1) Select p1 and p2 such that p1p2 = p. Use p1 as the

percentile boundary for defining the two groups.
2) Select number of reports r1 and r2 for each step such

that r1 + r2 = r.

7Note that F can have at most m points of discontinuity. Therefore, we
assume p is a point of continuity for F−1 to enable normal approximation.
If the assumption does not hold, we can always perturb p by an infinitesimal
amount to make it a point of continuity for F−1.



3) Instruct all UEs to send QoS reports with probability
r1/m and use these reports to estimate the p1 quantile
x̂1 = F−1r1 (p1).

4) Instruct UEs with SNR value below x̂1 to send reports
with probability r2/(p1 ·m) and calculate the p2 quantile
x̂2 =G−1r2 (p2) as an estimation for s(t) (G is the CDF
of the subpopulation with SNR below x̂1).

Upper Bound Analysis of the Two-Step Algorithm: To
simplify the notation, we use r1 and r2 to denote the expected
number of reports at each step. From (1) we know that
p̂1 = F−1(x̂1) and p̂2 = G−1(x̂2) are unbiased estimators
of p1 and p2 with variance p1(1− p1)/r1 and p2(1− p2)/r2.
Our estimate x̂2 has true quantile p̂1p̂2. Assume p̂1 is less than
p1 + ε1 and p̂2 is less than p2 + ε2 with high probability (for
example, we can take ε1 and ε2 to be 3 times the standard
deviation for > 99.8% probability). Then, the over-estimation
error is bounded by (p1 + ε1)(p2 + ε2) − p ≈ ε1p2 + ε2p1,
after ignoring the small higher order term ε1ε2.

The case for under-estimation is similar. By using symmetry
arguments, we show in [12] that the error is minimized by
taking p1 = p2 =

√
p, and r1 = r2 = r/2 so that ε1 = ε2 =

3
√√

p(1−√p)/(r/2). This leads to proposition 1.

Proposition 1. The distance between p and the quantile of
the Two-Step estimator x̂2, p̂ = F−1(x2), is bounded by

6
√

2

√
p
√
p(1−√p)
r

with probability at least 1 − 2(1 − Φ(3)) > 99.6%, where Φ
is the normal CDF.

We now compare this result against the bound of 3 standard
deviations in the Order Statistics case, which is 3

√
p(1− p)/r.

With some simple calculations, it can be easily shown that
if p ≤ 1/49 ≈ 2%, the Two-step estimation has smaller
error than the Order-Statistics estimation method. Essentially
the Order-Statistics estimation method has an error of order√
p/
√
r, while the Two-step estimation has an error of order

p3/4/
√
r. Since p� 1, the difference can be significant.

Example: We validated the error estimation of the Two-
step estimation algorithm and the Order-Statistics estimation
method by numerical analysis. We considered the cases of
p = 1% and p = 0.1% of uniform distribution on [0, 1] using
r = 400 samples over population size of 106. The Two-step
estimation algorithm has smaller standard error compared to
the Order-Statistics estimation, as shown in Fig. 3. Its accuracy
is significantly better for very small p.

The Two-step estimation algorithm can be generalized to 3
or more telescoping group sizes, but p will need to be much
smaller for these sampling schemes in order to reduce the
number of samples.

C. The Iterative Estimation Algorithm

We now turn to the dynamic case in which DyMo uses the
SNR Threshold estimation s(t−1) from the previous reporting
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Fig. 3. Estimates of (a) p = 1% and (b) p = 0.1% quantiles for 500 runs for
the Order-Statistics estimation (1-step) method and the Two-step estimation
algorithm.

interval to estimate s(t) at the end of reporting interval t.
Assume that the total number of UEs m is known initially.

Suppose that DyMo has a current estimate x̂ of the SNR
threshold, s(t), and s(t) changes over time. We assume that
the change in SNR of each UE is bounded over a time period.
Formally, |hv(t1)−hv(t2)| ≤ L|t1−t2|, where L is a Lipschitz
constant for SNR changes. For example, we can assume that
the UEs’ SNR cannot change by more than 5dB during a
reporting interval. 8 This implies that within the interval, only
UEs with SNR below x̂ + 5dB affect the estimation of the p
quantile (subject to small estimation error in x̂).

DyMo only needs to monitor UEs with SNR below xL =
x̂ + L. Denote the true quantile of xL, defined by F−1(xL),
as pL. To apply a process similar to the second step of the
Two-step estimation algorithm by focusing on UEs with SNR
below xL, first an estimate of pL is required. DyMo uses the
previous SNR distribution to estimate pL and instructs the
UEs to send reports at a rate q = r/(pL ·m). Let Y be the
number of reports received during the last reporting interval,
then Y/m ·q can be used as an updated estimator for pL. This
estimator is unbiased and has variance pL

m
1−q
q . As a result, the

Iterative Estimation algorithm works as follows:

Algorithm 2: Iterative Estimation for the Dynamic Case
1) Instruct UEs with SNR below x̂+L to send reports at a

rate q. Construct an estimator p̂L of pL from the number
of received reports Y .

2) Set p′ = p/p̂L. Find the p′ quantile x′ = G−1Y (p′) and
report it as the p quantile of the whole population (G is
the CDF of the subpopulation with SNR below x̂+L).

Upper Bound Analysis of the Iterative Algorithm: Suppose
the estimation error of pL is bounded by ε1, and the estimation
error of p′ = p/p̂L is bounded by ε2 with high probability.
Then, the estimation error is

(
p

p̂L
± ε2)pL − p = (

p

pL ± ε1
± ε2)pL − p.

The over-estimation error is bounded by
p

pL − ε1
ε1 + pLε2. (2)

If we assume pL− ε1 ≥ p (we know pL ≥ p by the Lipschitz
assumption), then the bound can be simplified to ε1 + pLε2.
The same bound also works for the under-estimation error.

8In our simulations, each reporting interval has a duration of 12s.



If r denotes also the expected number of samples collected,
r = pL ·m · q. The standard deviation of p̂L can be written as:√

pL
m

1− q
q

=

√
p2L
r

(1− r

pLm
) ≤ pL√

r
.

If we assume ε1 = 3pL/
√
r, the error of p̂L is less than ε1

with probability at least Φ(3). Since we assume pL−ε1 ≥ p
above, this implies (1−3/

√
r)pL≥p. If r≥100, then p<0.7pL

will satisfy our requirement.
The standard deviation of estimating the p′ = p/p̂L quantile

is √
1

Y

p

p̂L
(1− p

p̂L
) ≤ 1

2
√
Y
, (3)

by using the fact that x(1 − x) ≤ 1/4 for x ∈ [0, 1] and Y
is the number of reports received (a random variable). If the
expected number of reports r is reasonably large (≥ 100, say),
then Y can be well approximated by a normal and Y ≥ 0.7r
with high probability Φ(3) = 99.8%. Then, (3) is bounded
by 2/(3

√
r) ≥ 1/(2

√
0.7r) with high probability (Φ(3) =

99.8%), and we can set ε2 = 2/
√
r. Substituting these back

into (2), gives us the following proposition.

Proposition 2. The distance between p and the quantile of
the estimator x, p̂ = F−1(x), is approximately bounded by

5
pL√
r

with probability at least 1 − 2(1 − Φ(3)) > 99.6%, if the
expected sample size r ≥ 100 and p ≤ 0.7pL.

This shows that the error is of order pL/
√
r. We can see

that the estimation error can be smaller compared to the error
of order p3/4/

√
r in the static Two-step estimation if pL is

small (i.e., the SNR of individual users does not change much
during a reporting interval).

Exponential Smoothing: DyMo applies exponential smooth-
ing by weighing past and current reports to smooth the esti-
mates of the SNR Threshold, s(t), and take older reports into
account. It estimates the SNR Threshold as s(t) = αx̂(t) +
(1 − α)s(t − 1), where x̂(t) is the new raw SNR Threshold
estimate using the Iterative estimation above and s(t − 1) is
the SNR Threshold from the previous reporting interval. We
set α = 0.5 to allow some re-use of past reports without
letting them have too strong an effect on the estimates (e.g.,
samples older than 7 reporting intervals have less than 1%
weight). DyMo also uses the exponential smoothing method
for estimating the SNR distribution while taking into account
QoS reports from previous reporting intervals.

Unknown Number of UEs: If the total number of UEs, m,
is unknown or changes dynamically, DyMo can estimate m
by requiring UEs above the threshold x̂ + L to send reports.
These UEs can send reports at a lower rate, since m is not
expected to change rapidly. Similar to the Two-step estimation
algorithm, DyMo allocates r1 = r2 = r/2 reports to each
group. The errors in estimating the total number of UEs m
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Fig. 4. (a) The heatmap of UE SNR distribution in a stadium area of
1000 × 1000m2 and (b) the evolution of the number of active UEs over
time compared to the number estimated by DyMo for a stadium environment.
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Fig. 5. The heatmap of the SNR distribution of UEs (a) before a failure and
(b) after a failure.

will contribute to the error ε1 in the estimation of pL in (2).
The error analysis in this case is largely similar.

VI. PERFORMANCE EVALUATION

A. Methodology

We perform extensive simulations to evaluate the perfor-
mance of DyMo with various values of QoS Constraint, p,
Overhead Constraint, r, and number of UEs, m. Our evaluation
considers dynamic environments with UE mobility and a
changing number of active UEs, dynamically selected from
the given set of m UEs. In this paper, we present a few sets of
simulation results in which the SNR Threshold, s(t), changes
significantly over time. Additional results can be found in [12].

We consider a variant of DyMo where the number of active
UEs is unknown and is estimated from its measurements. We
compare the performance of DyMo to four other schemes.
To demonstrate the advantages of DyMo, we augment each
scheme with additional information, which is hard to obtain
in practice. The evaluated benchmarks are the following:
• Optimal – Full knowledge of SNR values of the UEs at

any time and consequently accurate information of the SNR
distribution. This is the best possible benchmark although
impractical, due to its high overhead.
• Uniform – Full knowledge of the SNR characteristics

at any location while assuming uniform UE distribution and
static eMBMS settings. In practice, this knowledge cannot be
obtained even with rigorous field trial measurements.
• Order-Statistics – It is based estimation of the SNR

Threshold using random sampling. The active UEs send
reports with a fixed probability of r/E[m(t)] per second,
assuming that the expected number of active UEs, E[m(t)],
is known. We assume that the UEs are configured with this
reporting rate during initialization. In practice, E[m(t)] is not
available. We also ignore initial configuration overhead in



our evaluation. Order-Statistics is the best possible approach
when not using broadcast messages for UE configuration. We
consider two variants of Order-Statistics. The first is Order-
Statistics w.o. History which ignores SNR measurements from
earlier reporting intervals. The second variant Order-Statistics
w. History considers the history of reports.

Both DyMo and Order-Statistics w. History perform the
same exponential smoothing process for assigning weights
to the measurements from previous reporting intervals with
a smoothing factor of α = 0.5. We use the following metrics
to evaluate the performance of the schemes:

(i) Accuracy – The accuracy of the SNR Threshold esti-
mation, s(t). After calculating s(t) at each reporting
interval, we check the actual SNR Threshold Percentile
in the accurate SNR distribution. This metric provides
the percentile of active UEs with individual SNR values
below s(t).

(ii) QoS Constraint violation – The number of outliers above
the QoS Constraint p.

(iii) Overhead Constraint violation – The number of reports
above the Overhead Threshold r.

The total simulation time for each instance is 30mins with
5 reporting intervals per minute (each is 12s). During each
reporting interval, an active UE may send its SNR value at
most once. The accuracy of each SNR report is 0.1dB.

B. Simulated Environments

We simulated a variety of environments with different
SNR distributions and UE mobility patterns. Although the
simulated environments are artificial, their SNR distributions
mimic those of real eMBMS networks obtained through field
trial measurements. To capture the SNR characteristics of an
environment, we divide its geographical area into rectangles
of 10m × 10m. For each reporting interval, each UE draws
its individual SNR value, hv(t), from a Gaussian-like dis-
tribution which is a characteristic of the rectangle in which
its located. The rectangles have different mean SNR, but
the same standard deviation of roughly 5dB (as observed in
real measurements). Thus, the SNR characteristics of each
environment are determined by the mean SNR values of the
rectangles at any reporting interval.

In some environments, typically where the SNR variations
are small, the SNR Threshold, s(t), barely changes over time.
For such scenarios, the Uniform scheme, based on rigorous
field trial measurements, is an appropriate solution. In such a
situation, DyMo can efficiently infer the SNR Threshold and
reduce the need for expansive field trails. The results for these
simulations are in [12]. In this paper, we discuss two types of
environments in which s(t) changes significantly over time.
• Stadiums: In a stadium, the eMBMS service quality is

typically significantly better inside the stadium than in the
surrounding vicinity (e.g., the parking lots). To capture this,
we simulate several stadium-like environments, in which the
stadium, in the center of the venue, has high eMBMS SNR
with mean values in the range of 15−25dB. On the other hand,

the vicinity has significantly lower SNR with means values of
5− 10dB. An example of a stadium is shown in Fig. 4(a).

We assume a mobility pattern in which, the UEs move from
the edges to the inside of the stadium in 12mins, stay there for
3mins, and then go back to the edges.9 As shown in Fig. 4(b),
as the UEs move toward the center, the number of active UEs
gradually increases from 10% of the UEs to 100%, and then
declines again as they move away.
• Failures: In the case of a malfunctioning component, the

QoS in some parts of a venue can degrade significantly. To
simulate failures, we consider cases in which the eMBMS SNR
is high with a mean between 15−25dB. During the simulation,
(around the 10th minute), we mimic a failure by reducing the
mean SNR values of some of the rectangles by over 10dB to
the range of 5− 10dB. The mean SNR values are restored to
their original values after a few minutes. Figs. 5(a) and 5(b)
provide an example of the mean SNR values of such a venue
before and after a failure, respectively.

In such instances, we assume random mobility pattern, in
which each UE moves back and forth between two uniformly
selected points. During the simulation, 50% of the UEs are
always active, while the other 50% join and leave at some
random time.

C. Performance over time

We first illustrate the performance of the different schemes
over time for two given instances, a stadium and a failure
scenario, with m = 20, 000 UEs, QoS Constraint p = 0.1%,
and Overhead constraint r = 5 reports/sec, i.e., 60 messages
per reporting interval. The number of permitted outliers can
be at most 20 at any given time. These values correspond
to typical situations in dense eMBMS environments. The key
difference between the two instances is the rate at which the
SNR Threshold changes. In the case of the stadium, the SNR
Threshold gradually change as the UEs change their locations.
In the failure scenario, the SNR Threshold is roughly fixed but
it drops instantly by 10dBs for the duration of the failure.

The results of the stadium and failure case are shown in
Figs. 6 and 7, respectively. Figs. 6(a), 6(b), 7(a), and 7(b)
show the actual SNR Threshold percentile over time. From
Figs. 6(a) and 7(a), we observe that DyMo can accurately infer
the SNR Threshold with an estimation error of at most 0.1%.
Fig. 7(a) shows slightly higher error of 0.25% at the time of
the failure (at the 7th minute). The Order-Statistics variants
suffer from much higher estimation error to the order of a few
percentage points, as shown by Figs. 6(b) and 6(b).10 This
performance gap results in different estimation accuracy of
the SNR Threshold for DyMo and Order-Statistics schemes
as illustrated in Figs. 6(c) and 7(c), respectively. These fig-
ures show that the performance of DyMo and Optimal is
almost identical. Even in the event of a failure, DyMo reacts

9While significant effort has been dedicated to modeling mobility (e.g.,
[23], [24] and references therein), we use a simplistic mobility model since
our focus is on the multicast aspects rather than the specific mobility patterns.

10Notice that Figs. 6(a) and 6(b) as well as Figs. 7(a) and 7(b) use different
scales for the Y axes.
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Fig. 6. Simulation results from a single simulation instance lasting for 30mins in a stadium environment with 20, 000 UEs moving from the edges to the
center and back, with p = 0.1 and r = 5 messages/sec. (a) The actual percentile of the SNR Threshold estimated by DyMo, (b) the actual percentile of the
SNR Threshold estimated by Order-Statistics, (c) the SNR Threshold estimation, and (d) the QoS report overhead.
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Fig. 7. Simulation results from a single simulation instance lasting for 30mins in a component failure environment with 20, 000 UEs moving side to side
between two random points, with p = 0.1 and r = 5 messages/sec. (a) The actual percentile of the SNR Threshold estimated by DyMo, (b) the actual
percentile of the SNR Threshold estimated by Order-Statistics, (c) the SNR Threshold estimation, and (d) the QoS report overhead.
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Fig. 8. The Root Mean Square Error (RMSE) of different parameters averaged over 5 different simulation instances lasting for 30mins each in a stadium
environment with different SNR characteristics and UE mobility patterns. (a) SNR Threshold percentile RMSE vs. the total number of UEs in the system,
(b) SNR Threshold percentile RMSE vs. the QoS Constraint p, (c) SNR Threshold percentile RMSE vs. the number of permitted reports, and (c) Overhead
RMSE vs. the amount of permitted reports.

immediately and detects the SNR Threshold accurately. The
Order-Statistics variants react quickly to a failure but not as
accurately as DyMo. After the recovery, both DyMo and Order-
Statistics w. History gradually increase their SNR Threshold
estimates, due to the exponential smoothing process.

The SNR Threshold estimation gap directly impacts the
number of outliers as well as the network utilization, i.e.,
the spectral efficiency. Figs. 6(d) and 7(d) indicate only mild
violation of the Overhead Constraint by both the DyMo and
Order-Statistics variants. The detailed results for the spectral
efficiency appear in [12]. We observe that accurate SNR
Threshold estimation allows DyMo to achieve near optimal
spectral efficiency with negligible violation of the QoS Con-
straint. The other schemes suffer from sub-optimal spectral
efficiency, excessive number of outliers, or both. Given that
the permitted number of outliers is at most 20, the Order-
Statistics w. History and Order-Statistics w.o. History schemes
exceed this value sometimes by a factor of 10 and 40,
respectively. Among these two alternatives, Order-Statistics w.

History leads to lower number of outliers. We observe that
in this stadium example, the Uniform scheme yields a very
conservative eMBMS MCS setting, which causes low network
utilization. In the failure scenario, the conservative eMBMS
MCS of Uniform is not sufficient to cope with the low SNR
Threshold and it leads to excessive number of outliers.

D. Impact of Various Parameters

We now turn to evaluate the quality of the SNR Threshold
estimation and the schemes ability to preserve the QoS and
Overhead Constraints under various settings. We use the same
configuration of m = 20, 000 UEs, p = 0.1% and r = 5
reports/sec and we evaluate the impact of changing the values
of one of the parameters. The results are shown in Fig. 8,
where each point in the figure is the average of 5 different
stadium simulation instances of 30mins each with different
SNR characteristics and UE mobility patterns. The error bars
are small and not shown. In these examples, we compare
DyMo only with Optimal and Order-Statistics w. History



which is the best performing alternative. The results for failure
scenarios are similar and can be found in [12].

Fig. 8(a) shows the Root Mean Square Error (RMSE) in
SNR Threshold percentile estimation vs. m. The non-zero
values of RMSE in Optimal are due to quantization of SNR
reports. The RMSE in the SNR Threshold estimation of DyMo
is close to that of Optimal regardless of the number of UEs.
Fig. 8(b) shows the RMSE in SNR Threshold estimation
as the QoS Constraint p changes. DyMo outperforms the
alternative schemes as p increases. As p increases, we observe
an increasing quantization error, which impacts the RMSE of
all the schemes including the Optimal.

Fig. 8(c) illustrates the SNR Threshold percentile RMSE
as the Overhead Constraint is relaxed. The SNR Threshold
percentile RMSE of DyMo is 0.05% even with Overhead
Constraint of 5 reports/sec while Optimal RMSE due to quan-
tization is 0.025%. DyMo error slightly reduces by relaxing the
Overhead Constraint (Optimal error stays 0.25%). Even with
10 times higher reporting rate, DyMo significantly outperforms
the Order-Statistics alternatives. The RMSE in SNR Threshold
percentile for Order-Statistics is in the order of the required
average value of 0.1 even with a permitted overhead of 50
reports/sec, i.e,. 3000 reports per reporting interval. This is
a very high overhead on the unicast traffic, since in LTE
networks each connection lasts several hundred msecs even for
sending a short update. Unlike the downlink, uplink resources
are not reserved for eMBMS systems and utilize the unicast
resources. The RMSE of number of outliers is qualitatively
similar to the SNR Threshold percentile results.

We also compute the overhead RMSE for different UE pop-
ulation sizes, m, QoS Constraint p, and Overhead Constraints
r. In each case, the overhead RMSE of DyMo is between 2−4.
We notice an interesting case when the permitted overhead is
allowed to increase as shown in Fig. 8(d). While the DyMo
RMSE is consistently small, the RMSE of Order-Statistics
scales almost linearly with the permitted overhead. This is due
to the static reporting rate of Order-Statistics despite changing
number of active UEs.

VII. CONCLUSION

This paper presents a Dynamic Monitoring (DyMo) system
for large scale monitoring of eMBMS services, based on the
concept of Stochastic Group Instructions. Our extensive sim-
ulations show that DyMo achieves accurate, close to optimal,
estimation of the SNR Threshold even when the number of
active UEs is unknown. It can improve the spectral efficiency
for eMBMS operation while adding a low reporting overhead.

VIII. ACKNOWLEDGMENT

This work was supported in part by NSF grants CNS-16-
50669 and CNS-14-23105.

REFERENCES

[1] J. Erman and K. K. Ramakrishnan, “Understanding the super-sized
traffic of the super bowl.” in Proc. ACM IMC’13, 2013.

[2] A. Kaya, D. Calin, and H. Viswanathan, “On the performance of stadium
high density carrier Wi-Fi enabled LTE small cell deployments,” in Proc.
IEEE WCNC’15, 2015.

[3] “3GPP TS 26.346 V13.1.0, 3rd Generation Partnership Project;
Technical Specification Group Services and System Aspects; Multimedia
Broadcast/Multicast Service (MBMS); Protocols and codecs (Release
13),” June 2015. [Online]. Available: http://www.3gpp.org/DynaReport/
26346.htm

[4] D. Lecompte and F. Gabin, “Evolved multimedia broadcast/multicast
service (eMBMS) in LTE-advanced: overview and rel-11 enhance-
ments,” IEEE Comm. Mag., vol. 50, no. 11, pp. 68–74, 2012.

[5] “3GPP TS 37.320 V12.2.0 , 3rd Generation Partnership
Project; Technical Specification Group Radio Access Network;
Universal Terrestrial Radio Access (UTRA) and Evolved Universal
Terrestrial Radio Access (E-UTRA); Radio measurement collection
for Minimization of Drive Tests (MDT); Overall description;
Stage 2 (Release 12),” Sept. 2014. [Online]. Available:
http://www.3gpp.org/DynaReport/37320.htm

[6] J. Vella and S. Zammit, “A survey of multicasting over wireless access
networks,” IEEE Commun. Surv. & Tut., vol. 15, no. 2, pp. 718–753,
2013.

[7] V. Gupta, Y. Bejerano, C. Gutterman, J. Ferragut, K. Guo,
T. Nandagopal, and G. Zussman, “Light-weight feedback mechanism
for WiFi multicast to very large groups - experimental evaluation,” IEEE
Trans. Netw., vol. 24, no. 6, pp. 3826–3840, 2016.

[8] X. Wang, L. Wang, and D. Wang, Y.and Gu, “Reliable multicast
mechanism in WLAN with extended implicit MAC acknowledgment,”
in Proc. IEEE VTC’08, 2008.

[9] Z. Feng, G. Wen, C. Yin, and H. Liu, “Video stream groupcast
optimization in WLAN,” in Proc. IEEE ITA’10, 2010.

[10] Y. Cai, S. Lu, L. Zhang, C. Wang, P. Skov, Z. He, and K. Niu, “Reduced
feedback schemes for LTE MBMS,” in Proc. IEEE VTC’09, 2009.

[11] A. B. Owen, Monte Carlo theory, methods and examples, 2013.
[12] Y. Bejerano, C. Raman, C.-N. Yu, V. Gupta, C. Gutterman, T. Young,

H. Infante, Y. Abdelmalek, and G. Zussman, “DyMo: Dynamic monitor-
ing of large scale LTE-multicast systems,” in arXiv:1701.02809 [cs.NI],
2017.

[13] J. Yoon, H. Zhang, S. Banerjee, and S. Rangarajan, “MuVi: a multi-
cast video delivery scheme for 4G cellular networks,” in Proc. ACM
MOBICOM’11, 2012.

[14] R. Sivaraj, A. Pande, and P. Mohapatra, “Spectrum-aware radio resource
management for scalable video multicast in LTE-advanced systems,” in
Proc. IFIP Networking’13, 2013.

[15] L. Militano, D. Niyato, M. Condoluci, G. Araniti, A. Iera, and G. M.
Bisci, “Radio resource management for group-oriented services in LTE-
A,” IEEE Trans. Veh. Technol., vol. 64, no. 8, pp. 3725–3739, 2015.

[16] J. Chen, M. Chiang, J. Erman, G. Li, K. Ramakrishnan, and R. K. Sinha,
“Fair and optimal resource allocation for LTE multicast (eMBMS):
group partitioning and dynamics,” in Proc. IEEE INFOCOM’15, 2015.

[17] F. Wu, Y. Yang, O. Zhang, K. Srinivasan, and N. B. Shroff, “Anonymous-
query based rate control for wireless multicast: Approaching optimality
with constant feedback,” in Proc. ACM MOBIHOC ’16, 2016.

[18] J. Villalon, P. Cuenca, L. Orozco-Barbosa, Y. Seok, and T. Turletti,
“Cross-layer architecture for adaptive video multicast streaming over
multirate wireless LANs,” IEEE J. Sel. Areas Commun., vol. 25, no. 4,
pp. 699–711, 2007.

[19] R. Chandra, S. Karanth, T. Moscibroda, V. Navda, J. Padhye, R. Ramjee,
and L. Ravindranath, “DirCast: a practical and efficient Wi-Fi multicast
system,” in Proc. IEEE ICNP’09, 2009.

[20] S. Sen, N. K. Madabhushi, and S. Banerjee, “Scalable WiFi media
delivery through adaptive broadcasts,” in Proc. USENIX NSDI’10, 2010.

[21] V. Gupta, C. Gutterman, Y. Bejerano, and G. Zussman, “Dynamic
rate adaptation for WiFi multicast to very large groups design and
experimental evaluation,” in Proc. IEEE INFOCOM’16, 2016.

[22] A. W. Van der Vaart, Asymptotic statistics. Cambridge university press,
2000.

[23] I. Rhee, M. Shin, S. Hong, K. Lee, S. J. Kim, and S. Chong, “On the
levy-walk nature of human mobility,” IEEE Trans. Netw., vol. 19, no. 3,
pp. 630–643, 2011.

[24] S. Scellato, I. Leontiadis, C. Mascolo, P. Basu, and M. Zafer, “Evaluating
temporal robustness of mobile networks,” IEEE Trans. Mobile Comput.,
vol. 12, no. 1, pp. 105–117, 2013.


