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Full-Duplex Wireless

• (Same channel) Full-duplex communication = simultaneous 
transmission and reception on the same frequency channel

• Viability is limited by self-interference

Transmitted signal is billions of times stronger than the received signal!

Legacy wireless systems separate transmission and reception in either:

• Time – Time Division Duplex (TDD)
• Frequency – Frequency Division Duplex (FDD)



Full-Duplex Wireless

• Benefits of full-duplex: 
− Increased system throughput 
− More flexible use of the wireless spectrum 

Self-Interference Cancellation (SIC):
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Full Duplex wireless – from Integrated Circuits to Networks
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Outline
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Concept and Measured Results
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• An integrated frequency-flat canceller can emulate an antenna interface 
only at one frequency, resulting in narrow cancellation bandwidths.

Conventional Integrated RF SI Canceller



A filter bank at RF enables replication at multiple points in different sub-
bands – Freq. Domain Equalization.

Frequency Domain Equalization at RF



65nm CMOS Implementation and Results

Proposed integrated canceller has a ~10X wider cancellation bandwidths 
compared to a conventional one.
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Imperfect Self-Interference Cancellation
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Model
• : channel index;     : # of channels

• Self-interference on channel    : constant fraction of the 
transmission power on channel  

• Variables: transmission power levels            and  

• Constraints:

• Remaining notation:
– Noise:

– Wireless channel gain: 

Shannon capacity formula: 
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Sum Rate Maximization: Power Control and 
Throughput Gains

Results for Single Channel:

• Always optimal to Tx at maximum power level;
• Characterization of achievable throughput gain;
• Condition for bi-concavity of the sum UL/DL rate in  

power levels independent of the circuit model

Achievable throughput gain
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Results for OFDM Channels:



FD and TDFD Capacity Region
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• Maximization of the sum of the 
rates gives us only one pair of 
uplink and downlink rates

• But, in many cases we want to 
prioritize one of the rates

• Using only full-duplex and 
varying the power allocation will 
give us one set of achievable 
rates, which may be non-convex

• Combining FD and TDD 
“convexifies” the capacity 
region → time division FD (TDFD)

• Having convex capacity region is 
important for scheduling (and in 
our case gives higher rates)
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Single Channel: Structural Results

• FD Capacity Region:

Proposition. At the boundary of the capacity region either the uplink or 
downlink power must be equal to its maximum value.
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Single Channel: FD and TDFD Capacity Regions

Proposition. Any point on the TDFD capacity region can be 
determined either in a closed form, or through a simple bisection.

Asymmetric UL/DL SNRSymmetric UL/DL SNR

�bb = 1, �mm = 10
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Fixed Power Allocation

• The shape of the power allocation is fixed, but the sum TX power over 
channels can be varied
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Lemma: At the boundary of the capacity region, either uplink or downlink sum 
of the  power levels must be equal to its maximum value 



Fixed Power Allocation (cont.)

• Do not have the same structural properties for the shape of the FD 
capacity region as in the single channel case

• However, the convex hull (TDFD capacity region) can still be 
determined in reasonable time
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General Power Allocation
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Full-Duplex Testbed Based on USRP

Prototype (emulating the RFIC SI canceller):
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Transmitted signal 
at Radio 1

Transmitted signal at 
Radio 2

Received signal after 
analog SIC at Radio 2

Received signal after 
digital SIC at Radio 2

Demonstrated ~90dB overall self-interference-cancellation (SIC) across the 
antenna, RF, and digital domains.

Desired Signal
Self-Interference

Full-Duplex Demo Video
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