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Full-Duplex Wireless

* (Same channel) Full-duplex communication = simultaneous
transmission and reception on the same frequency channel

 Viability is limited by self-interference

o i

Transmitted signal is billions of times stronger than the received signal!

Legacy wireless systems separate transmission and reception in either:

* Time - Time Division Duplex (TDD)
* Frequency - Frequency Division Duplex (FDD)



Full-Duplex Wireless

* Benefits of full-duplex:

- Increased system throughput D («( »)))

— More flexible use of the wireless spectrum
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Full Duplex wireless — from Integrated Circuits to Networks
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FD Antenna Interfaces
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Concept and Measured Results
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Conventional Integrated RF SI Canceller
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An integrated frequency-flat canceller can emulate an antenna interface
only at one frequency, resulting in narrow cancellation bandwidths.



Frequency Domain Equalization at RF
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A filter bank at RF enables replication at multiple points in different sub-
bands - Freq. Domain Equalization.
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65nm CMOS Implementation and Results
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Proposed integrated canceller has a ~10X wider cancellation bandwidths
compared to a conventional one.
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Imperfect Self-Interference Cancellation
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Model

* k: channel index; K:# of channels

e Self-interference on channel &: constant fraction of the
transmission power on channel k (Awb ko, Rrm. k)

@)
 Variables: transmission power levels Pk and Db,k m D 34) (EA)[)

* Constraints: 22{:1 Pyp <P, Zf:l Poi < Py,

* Remaining notation:
— Noise: Nk, Nok

—  Wireless channel gain: Amp i, Rom, k

Shannon capacity formula: » = log (1 + received signal )

noise+interference

K K
P khmb ke ) < Py 1:hom. x )
T = log | 1+ ’ : T, = log | 1+ ’ :
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Sum Rate Maximization: Power Control and
Throughput Gains

Results for Single Channel:

* Always optimal to Tx at maximum power level; (@ (@
* Characterization of achievable throughput gain; // /

 Condition for bi-concavity of the sum UL/DL ratein
power levelsindependent of the circuit model D
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FD and TDFD Capacity Region

Maximization of the sum of the ...
rates gives us only one pair of o8l e
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Single Channel: Structural Results

FD Capacity Region:

Proposition. Atthe boundary of the capacity region either the uplink or
downlink power must be equal to its maximum value.
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Single Channel: FD and TDFD Capacity Regions

Proposition. Any point on the TDFD capacity region can be
determined either in a closed form, or through a simple bisection.

Symmetric UL/DL SNR Asymmetric UL/DL SNR
UL and DL SNRs grow, UL and DL SNRs grow,
DL SNR = UL SNR DLSNR>ULSNR

Yoo = 1, Yrmom = 10




Fixed Power Allocation

e The shape of the power allocation is fixed, but the sum TX power over
channels can be varied

power

frequency

Lemma: At the boundary of the capacity region, either uplink or downlink sum
of the power levels must be equal to its maximum value




Residual Self-Interference

Fixed Power Allocation (cont.)

Do not have the same structural properties for the shape of the FD
capacity region as in the single channel case

However, the convex hull (TDFD capacity region) can still be
determined in reasonable time
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Full-Duplex Testbed Based on USRP

Prototype (emulating the RFICSI canceller):
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TX IQ Baseband Signal
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Demonstrated ~9odB overall self-interference-cancellation (SIC) across the

antenna, RF, and digital domains.




Back to the Big Picture
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