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Abstract—In this paper, we present an algorithm for estimating
the state of the power grid following a cyber-physical attack. We
assume that an adversary attacks an area by: (i) disconnecting
some lines within that area (failed lines), and (ii) obstructing the
information from within the area to reach the control center.
Given the phase angles of the buses outside the attacked area
under the AC power flow model (before and after the attack), the
algorithm estimates the phase angles of the buses and detects the
failed lines inside the attacked area. The novelty of our approach
is the transformation of the line failures detection problem, which
is combinatorial in nature, to a convex optimization problem. As
a result, our algorithm can detect any number of line failures
in a running time that is independent of the number of failures
and is solely dependent on the size of the network. To the best of
our knowledge, this is the first convex relaxation for the problem
of line failures detection using phase angle measurements under
the AC power flow model. We evaluate the performance of our
algorithm in the IEEE 118- and 300-bus systems, and show that it
estimates the phase angles of the buses with less that 1% error,
and can detect the line failures with 80% accuracy for single,
double, and triple line failures.

I. INTRODUCTION

Power grids are vulnerable to cyber-physical attacks. A
cyber-physical attack may sabotage the information flow to the
control center as well as cause physical failure by remotely dis-
connecting some of the lines. The recent cyber-physical attack
on the Ukranian grid revealed the devastating consequence of
such an attack on power grids [1].

We follow the model that we introduced in [2] to study
cyber-physical attacks on power grids. Under this model, we
assume that an adversary attacks an area by: (i) disconnecting
some lines within that area (failed lines), and (ii) obstructing
the information from within the area to reach the control
center. Given the phase angles of the buses outside the attacked
area (before and after the attack), our objective is to estimate
the phase angles and detect the failed lines in the attacked
area. Unlike [2] which is based on the simplistic DC power
flow model, in this paper, we assume that the phase angles are
given under the more realistic AC power flow model.

The problem of the line failures detection is combinatorial
in nature, since the solution space is the discrete set of all
possible line failures. Despite the complexities, we present
the Convex OPtimization for Statistical State EStimation
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(COPSSES) Algorithm to estimate the phase angles of the
buses and detect the failed lines inside the attacked area. The
algorithm is based on a variation of the convex relaxation
that was introduced in [2] for information recovery under
the DC power flow model. Here, we adapt a similar idea
in the COPSSES Algorithm and show that it can estimates
the phase angles and detects the line failures accurately under
the AC power flow model. The novelty of our approach is
the transformation of the line failures detection problem to
a convex optimization problem. Therefore, the COPSSESS
Algorithm can be used to detect any number of line failures
without affecting its running time.

We evaluate the performance of the COPSSES Algorithm
in the IEEE 118- and 300-bus systems, and show that it
estimates the phase angles of the buses with less that 1%
error, and can detect the line failures with 80% accuracy for
single, double, and triple line failures. The algorithm can detect
failures beyond triple line failures. However, due to the page
limit, we only provide simulations for up to triple line failures.

The considered problem is very similar to the problem of
line failure detection using phase angle measurements [3], [4],
[5], [6]. Up to two line failures detection, under the DC power
flow model, is studied [3], [4]. Since the provided methods
in [3], [4] are greedy-based methods that need to search the
entire failure space, the running time of these methods grow
exponentially as the number of failures increases. Hence, these
methods cannot be generalized to detect higher order failures.

The problem of line failure detection in an internal system
using the information from an external system was also studied
in [6] based (again) on the DC power flow model. The
proposed algorithm works for only one and two line failures,
since it depends on the sparsity of line failures.

In a recent work [5], a linear multinomial regression model
is proposed as a classifier for a single line failure detection
using transient PMU data. Due to the time complexity of the
learning process for more than a single line failure, this method
is impractical for detecting higher order failures. To the best
of our knowledge, our work is the first to provide a method
for line failures detection under the AC power flow model that
can be used to detect any number of line failures.

The remainder of this paper is organized as follows.
Section II describes the model and provides definitions. In
Section III, we present the COPSSES algorithm. Section IV
presents numerical results, and Section V provides concluding
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Fig. 1: G is the power grid graph and H is a subgraph of G
that represents the attacked zone. An adversary attacks a zone by
disconnecting some of its lines (red dashed lines) and disallowing
the information from within the zone to reach the control center.

remarks and directions for future work.

II. MODEL AND DEFINITIONS

A. Power grid model

We represent the power grid by a connected directed graph
G = (V,E) where V = {1, 2, . . . , n} and E = {e1, . . . , em}
are the set of nodes and edges corresponding to the buses
and transmission lines, respectively (direction of the edges are
arbitrary). Each edge e = (i, j) connects two nodes and is
characterized by its impedance, re + ixe. In the AC power
flow model, the status of each node i is represented by its
voltage vi = |vi|eiθi in which |vi| is the voltage magnitude,
θi is the phase angle at node i, and i denotes the imaginary
unit. In this paper, we consider the standard AC power flow
equations (for the details of the equations see [7]).

The (node-edge) incidence matrix of G is denoted by D ∈
{−1, 0, 1}|V |×|E| and defined as follows,

dij =


0 if ej is not incident to node i,
1 if ej is coming out of node i,
−1 if ej is going into node i.

Define also A = DYDT ∈ R|V |×|V |,1 in which Y :=
diag([1/xe1 , 1/xe2 , . . . , 1/xem ]) is a diagonal matrix with
diagonal entries equal to the inverse of the reactance values.
We use matrices A and D in the state estimation algorithm.

B. Basic Graph Theoretical Terms

Matching: A matching in a graph is a set of pairwise
nonadjacent edges. If M is a matching, the two ends of each
edge of M are said to be matched under M , and each vertex
incident with an edge of M is said to be covered by M .
Cycle: A cycle in a graph is a sequence of its distinct nodes
u1, u2, . . . , uk such that for all i < k, {ui, ui+1} ∈ E, and
also {uk, u1} ∈ E. A graph with no cycle is called acyclic.

C. Attack Model

We assume that an adversary attacks an area by: (i) dis-
connecting some lines within that area (failed lines), and (ii)
obstructing the information (e.g., status of the lines and phase
angle measurements) from within the area to reach the control
center. We call this area, the attacked zone.

1Matrix A is mostly used in the DC power flow equations as the admittance
matrix and is equivalent to the weighted Laplacian matrix of the graph.

We assume that either disconnecting lines within a zone
does not make G disconnected, or the control center is aware
of the supply/demand values after separation of the grid into
islands. In the latter case, without loss of generality, one can
assume that the supply/demand values before the attack were
as in after the attack by recomputing the power flows before
the attack given the new set of supply/demand values.

Fig. 1 shows an example of an attack on the zone repre-
sented by H = (VH , EH). We denote the set of failed lines in
zone H by F ⊆ EH . Upon failure, the failed lines are removed
from the graph and the flows are redistributed according to the
AC power flows. Our objective is to estimate the phase angles
and detect the failed lines inside the attacked zone using the
changes in the phase angles of the nodes outside the zone.

Detecting line failures after such an attack is crucial in
maintaining the stability of the grid, since it may result in
further line overloads and failures if the proper load shedding
mechanism is not applied. An effective load shedding requires
the exact knowledge of the topology of the grid.

Notation. We denote the complement of the zone H by
H̄ = G\H . DH ∈ {−1, 0, 1}|VH |×|EH | is the submatrix of D
with rows from VH and columns from EH . ~θH and ~θH̄ are the
vectors of phase angles of the nodes in H and H̄ , respectively.
If X,Y are two subgraphs of G, AX|Y denotes the submatrix
of A with rows from VX and columns from VY . We use the
prime symbol (′) to denote the values after an attack.

For a column vector ~y, ‖~y‖1 :=
∑n
i=1 |yi| is its l1-norm,

‖~y‖2 := (
∑n
i=1 y

2
i )1/2 is its l2-norm, and supp(~y) := {i|yi 6=

0} is the index set of its nonzero elements.

III. STATE ESTIMATION

We can formulate the state estimation problem after a cyber-
physical attack as follows: Given the attacked zone H , ~θH ,
~θH̄ , and ~θ′

H̄
, the objective is to estimate ~θ′H and detect F . To

address this problem, we use and build on the idea that we first
introduced in [2]. We proved in [2] that if the phase angles
of the nodes are given under the DC power flow equations,
there exist vectors ~x ∈ R|EH | and ~δH ∈ R|VH | satisfying
following optimization problem for ε1 = ε2 = 0, and that
supp(~x) = {i|ei ∈ F} and ~δH := ~θH − ~θ′H :

min ‖~x‖1 s.t.

‖DH~x− AH|H~δH − AH|H̄~δH̄‖2 ≤ ε1 (1)

‖AH̄|H~δH + AH̄|H̄~δH̄‖2 ≤ ε2.

where ~δH̄ := ~θH̄ − ~θ′H̄ .
The novelty of this method is that it provides a convex

relaxation for the line failures detection problem which is
combinatorial in nature. Notice that for ε1 = ε2 = 0, the
optimization problem (1) is a Linear Program (LP). We proved
that under several conditions on H , the solution to (1) is
unique, therefore the relaxation is exact and the state of the
grid can be recovered by solving (1) (supp(~x) gives the failed
lines and the phase angles can be computed as ~θ′H = ~θH−~δH ).
In particular, when H is acyclic and there is a matching



Algorithm 1: Convex OPtimization for Statistical State
EStimation (COPSSES)

Input: A connected graph G, attacked zone H , ~θ, and ~θ′H̄
1: for ε1 = s1 to t1 do
2: for ε2 = s2 to t2 do
3: Compute ~x, ~δH the solution to (1) by second order cone

programming;
4: Compute ~θH − ~δH as the estimated phase angles;
5: Compute F = {ei|i ∈ supp(~x)};
6: F = [F , F ];
7: Θ′

H = [Θ′
H , ~θH − ~δH ]

8: Compute the appearance frequency of each line in F to form
an appearance frequency table PF ;

9: Compute the row mean and variance of Θ′
H as ~µH , ~σH ;

10: return PF , ~µ
′
H , ~σ

′
H ;

between the nodes in H and H̄ that covers H , the solution
to (1) is unique for any set of line failures.2

Since the DC power flows only provides an approximation
of the phase angles, it is obvious that if the phase angles of the
nodes are given under the AC power flows, the optimization
problem (1) for ε1 = ε2 = 0 is no longer feasible. One way
to overcome this challenge is to relax the exact conditions by
selecting ε1, ε2 > 0.

It is easy to see that if ε1, ε2 > 0, the optimization
problem (1) becomes a second-order cone program that can
still be efficiently solved using gradient decent methods.

The only challenge in using (1) for state estimation is
that ε1 and ε2 need to be determined. To overcome this
challenge, we present the Convex OPtimization for Statistical
State EStimation (COPSSES) Algorithm. The idea is to change
εi from si to ti and compute the solution to (1) for each setup.
If F is an array that contains all the detected line failures for
each setup, then the appearance frequency of each line in F
gives a rough probability that the line is failed. PF denotes the
appearance frequency table of the lines in F . Moreover, the
computed vector ~θH−~δH in each iteration is an estimate of the
phase angles inside the attacked zone. By computing the mean
and variance of all the estimated phase angle vectors in each
iteration, it can improve this estimation. We refer to the mean
and variance of the estimated phase angles in H as ~µ′H , ~σ

′
H .

The COPSSES Algorithm is summarized in Algorithm 1.

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of the
COPSSES Algorithm. We use the CVX [8] for solving the
optimization problem (1) and use MATPOWER [9] to compute
~θ and ~θ′ under the AC power flow model.

We use the IEEE 118- and 300-bus benchmark systems as
the test networks [10] and consider the attacked zones H1

and H2 within these networks, repectively. Fig. 2 shows the
topology of the attacked zone H1 within the 118-bus system.
Fig. 3 also shows the topology of the attacked zone H2 within
the 300-bus system. It is easy to see from Figs. 2 and 3 that
H1 and H2 are both acyclic. For both of the attacked zones

2We proved in [2] that the solution to (1) is unique under less restricted
conditions. However, due to the page limit, we focus on the simplest case.
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Fig. 2: Topology of the attacked zone in the 118-bus system with 21
nodes and 22 lines (referred to as H1).
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Fig. 3: Topology of the attacked zone in the 300-bus system with 16
nodes and 15 lines (referred to as H2).

there is also a matching between the nodes in Hi and H̄i that
covers Hi.

To compute the error in the estimated phase angles, we
compute ‖~µ′Hi

− ~θ′Hi
‖2/‖~θ′Hi

‖2 × 100. Recall that ~µ′Hi
is the

vector of average estimated phase angles of the nodes in the
attacked zone obtained by the COPSSES Algorithm and ~θ′Hi

is the vector of the actual phase angles of the nodes.
To quantify the performance of the COPSSES Algorithm in

detecting the failed lines, we can use the appearance frequency
table PF to detect the most likely failed lines using a threshold
value t. The idea is that if a line is detected as failed in at
least (t× 100)% of the settings, then we consider that line as
a line that is most likely failed. If t = 0.5, then the solution
is similar to the maximum likelihood set of failures based on
PF . We consider t = 0.2, 0.5, 0.8.

In this section, in the COPSSES Algorithm, we use s1 =
3, t1 = 7, s2 = 1, and s2 = 20. Therefore, the COPSSES
Algorithm estimates the state under 100 different settings for
ε1 and ε2. Notice that increasing the intervals [si, ti] increases
the accuracy at the expense of the running time.

A. Single line failures

In this subsection, we consider all possible single line failure
scenarios in zones H1 and H2 as the failed lines.

1) 118-bus System: For all single line failure scenarios,
the error in the estimated phase angles using the COPSSES
Algorithm is below 1%.

To show the results for the detected line failures, we use a
heatmap matrix as in Fig. 4. As can be seen, in most of the
cases, the correct line is detected as the most probable failed
line by the COPSSES Algorithm. For example:

- For i = 1, in 95% of the settings, line 1 is detected as
the only failed line. In 5% of the settings, however, no
failure is detected.

- For i = 15, in 100% of the settings, line 15 is detected
as the failed line. However, in 3, 12, 16, 20, 20, 23, and
20% of the times, lines 12, 14, 16, 17, 18, 19, and 20 are
also detected as the failed lines.

Fig. 5 also shows the number of false negatives and positives
if we use the appearance frequency table PF and a threshold



Detected Lines

F
ai

le
d 

Li
ne

 

 

1 2 3 4 5 6 7 8 9 10111213141516171819202122

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

0

10

20

30

40

50

60

70

80

90

100

Fig. 4: Detected line failures after all single line failures in zone H1

within the IEEE 118-bus system. The color intensity of each (i, j)
square shows the number of times line j is detected as failed when
only line i is actually failed.
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Fig. 5: The CDF of the number of false negatives and positives in
detecting single line failures in H1 within the 118-bus system using
the COPSSES Algorithm and a threshold value t.

value t to detect the most likely failed lines. As can be seen,
for t = 0.5, for almost 80% of the cases there are no false
negatives or false positives. For t = 0.2, for almost 95% of
the cases, there are no false negatives while for almost 80%
of the cases there are no false positives either.

2) 300-bus System: In this case, the phase angle estimation
is also very accurate. For all single line failure scenarios,
the error in the estimated phase angles using the COPSSES
Algorithm is below 2%.

Fig. 6 shows the heatmap matrix of the failed line and
detected failed lines. As can be seen, in this case also the
actual failed line is detected as the most probable failed line
by the COPSSES Algorithm, most of the time. For example:

- For i = 5, in 95% of the settings, line 5 is detected as
the only failed line. In 5% of the settings, however, the
optimization problem (1) is infeasible.

- For i = 7, in 75% of the settings, line 7 is detected as the
failed line. However, in 40 and 13% of the settings, lines
3 and 5 are also detected as the failed lines, respectively.
In 25% of the settings, (1) is infeasible.

As in the 118-bus system case, Fig. 7 shows the number of
false negatives and positives using the appearance frequency
table PF and a threshold value t. As can be seen, for t = 0.2
and t = 0.5, the number of false positive and negatives is zero
for most of the cases.

B. Double line failures

In this subsection, we consider all double line failure
scenarios in zones H1 and H2 as the failed lines.

Detected Lines

F
ai

le
d 

Li
ne

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
0

10

20

30

40

50

60

70

80

90

100

Fig. 6: Detected line failures after all single line failures in zone H2

within the IEEE 300-bus system. The color intensity of each (i, j)
square shows the number of times line j is detected as failed when
only line i is actually failed.
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Fig. 7: The CDF of the number of false negatives and positives in
detecting single line failures in H2 within the 300-bus system using
the COPSSES Algorithm and a threshold value t.

1) 118-bus System: In this case, as in the single line failure,
the phase angle estimation is very accurate. For all double line
failure scenarios, the error in the estimated phase angles using
the COPSSES Algorithm is below 2%.

Since there are many double line failure cases, we cannot
show the failed lines detection results as a matrix heatmap.
However, as in the previous subsection, we can show the num-
ber of false negatives and positives if we use the appearance
frequency table PF and a threshold value t to detect the most
likely failed lines. As can be seen in Fig. 8, for t = 0.2
for more than 80% of the cases there is no false negative.
Moreover, for more than 80% of the cases there is less than
a single false positive line detection.

2) 300-bus System: In this case, as in the single line failure
scenario and the 118-bus system, the phase angle estimation
is very accurate. For all double line failure scenarios, the error
in the estimated phase angles is below 2%.

To show the performance of the COPSSES Algorithm in
detecting failures, as in the 118-bus case, we compute the
number of false negative and positive failure detections using
PF and a threshold value t. As can be seen in Fig. 9, in this
case also for t = 0.2, the detection is relatively accurate. In
almost 70% of the cases, there are no false negatives while in
80% of the cases, there is no false positives either.

C. Triple line failures and beyond

Here, due to the page limit, we only consider up to 3
line failures in our numerical results. However, the COPSSES
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Fig. 8: The CDF of the number of false negatives and positives in
detecting double line failures in H1 within the 118-bus system using
the COPSSES Algorithm and a threshold value t.
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Fig. 9: The CDF of the number of false negatives and positives in
detecting double line failures in H2 within the 300-bus system using
the COPSSES Algorithm and a threshold value t.

Algorithm can be used to estimate the state in the attacked
zone for any number of line failures.

In this subsection, we consider 100 randomly sampled triple
line failures from all possible triple line failures in H1 and H2

as the failed lines.
1) 118-bus System: The phase angle estimation is nearly

perfect for the triple line failure scenarios as in the previous
cases. The error for the estimated phase angles is less that 1%
for all the sampled triple line failure cases.

Fig. 10 shows the number of false negatives and positives,
if we use the appearance frequency table PF and a threshold
value t to detect the most likely failed lines. As can be seen,
for t = 0.2, in 80% of the times there is no false negatives
while in 80% of the times there is at most 1 false positive.

2) 300-bus System: The phase angle estimation of the
COPSSES Algorithm is surprisingly perfect for the triple line
failures scenarios in the H2. The error for the estimated phase
angles is 0% for all the sampled triple line failure cases.

As in the previous cases, to evaluate the performance of the
COPSSES Algorithm in detecting failures, we compute the
number of false positives and negatives by selecting different
threshold values t. As can be seen in Fig. 11, for t = 0.2, the
Algorithm performs relatively well. In 70% of the cases, there
is no false negatives while for more than 80% of the cases,
there is no false positives either.

V. CONCLUSION

We provided an algorithm to estimate the state of the grid
following a cyber-physical attack under the AC power flow
model. We studied its performance under different scenarios
(single, double, and triple line failures) in IEEE 118- and
300-bus systems and showed that it can estimate the phase
angles almost perfectly (with less that 1% error) in these
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Fig. 10: The CDF of the number of false negatives and positives
in detecting triple line failures in H1 within the 118-bus system
using the COPSSES Algorithm and a threshold value t. 100 randomly
sampled triple line failures are considered.
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Fig. 11: The CDF of the number of false negatives and positives
in detecting triple line failures in H2 within the 300-bus system
using the COPSSES Algorithm and a threshold value t. 100 randomly
sampled triple line failures are considered.

scenarios. Moreover, we showed that our algorithm can detect
line failures with less that 20% chance of producing false
positives and negatives.

We believe that the COPSSES Algorithm can accurately
estimate the state for less constrained attacked zones as well.
Moreover, our method can be used in different context such
as false data detection. Exploring these directions is part of
our future work.
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