Maximizing Broadcast Throughput Under Ultra-Low-Power Constraints

Tingjun Chen¹, Javad Ghaderi¹, Dan Rubenstein², and Gil Zussman¹ Electrical Engineering and ²Computer Science, Columbia University

Dec. 15, 2016

Tag-to-Tag Networks

Internet-of-Things (IoT)

Small, flexible, and energetically self-reliant tags

Smart Supermarket

Supply Chain Management

- Enabling technologies:
 - Energy harvesting
 - Ultra-low-power wireless communication

New Challenges

- Tags utilize ultra-low-power wireless communication
 - Power consumption: nJ/bit
- ENHANTS.

- Tags can harvest and store energy
 - Power budget is ~10 uW

- However, energy availability limits the tags' capabilities
 - Low data rate (e.g., 3 Kbps with indoor lights), limited control information
 - No accurate clocks for synchronization
 - Heterogeneous networks: tags have different power budgets and TX/RX power

The Application and Objective

- An example application: Locating misplaced boxes in a warehouse
 - Boxes equipped with active tags perform neighbor discovery
 - Related work: [Gorlatova et al. MobiCom'09], [Liu et al. SIGCOMM'13], [Wang et al. SIGCOMM'13], [Margolies et al. ToSN'15], etc.

- 1. Obtain the maximum achievable throughput in a network of heterogeneous ultra-low-power nodes with given power budgets.
- 2. Develop an asynchronous protocol that achieves the maximum throughput in a distributed manner.

Outline

- Energy-constrained Broadcast Throughput Maximization Problem
 - **Goal**: Maximize broadcast throughput between ultra-low-power nodes
 - **Subject to:** all heterogeneous nodes maintain within their power budgets

 EconCast (Energy-constrained BroadCast) — A simple asynchronous distributed protocol that provably approaches the maximum throughput

• Performance evaluation of *EconCast* via simulations and experimentation

Related Work

- Low-power Medium Access Control (MAC) in sensor networking
 - S-MAC [Ye et al. 2002], T-MAC [Van Dam et al. 2003], WiseMAC [A El-Hoiydi et al. 2004], B-MAC [Polastre et al. 2006], RI-MAC [Sun et al. 2008], A-MAC [Dutta et al. 2010], etc.
 - Synchronous MAC: broadcast schedule. Asynchronous MAC: send long preambles
- Neighbor discovery in low-power wireless networks
 - Birthday [McGlynn et al. 2001], Disco [Dutta et al. 2008], U-Connect [Kandhalu et al. 2010], Searchlight [Bakht et al. 2012], Hello [Sun et al. 2014], Panda [Margolies et al. 2016], etc.
 - Deterministic: guaranteed worst case latency. Probabilistic: higher throughput
 - Global knowledge is known a priori; nodes are homogeneous in a network
- Q-CSMA and utility maximization
 - Utility-optimal CSMA [Lee et al. 2009], Distributed CSMA [Jiang et al. 2010], Multi-hop CSMA [Xu et al. 2010], Q-CSMA [Ni et al. 2012], etc.
 - Queues buffer "energy", not "data"

Problem Formulation

- N nodes in a heterogeneous clique network
- Each node i has a power budget ρ_i (uW), and can be in 3 states:
 - sleep (s) consumes 0 power
 - listen (l) consumes L_i (uW) power
 - transmit (x) consumes X_i (uW) power
- Severe energy constraints: power budget is much lower than listen/transmit power
- Network state: $\mathbf{w} \in \{s, l, x\}^N$
- Network state throughput: $T_{\mathbf{w}}$

Listen power: L_i Transmit power: X_i

Network state: $\mathbf{w} = [l, l, s, x]$ Throughput of state $\mathbf{w} : T_{\mathbf{w}} = 2$

Problem Formulation

- $\pi_{\mathbf{w}}$: fraction of time the network is in state \mathbf{w}
- α_i : fraction of time node i listens
- β_i : fraction of time node i transmits

•
$$\alpha_i = \sum_{\mathbf{w}: i \text{ listen}} \pi_{\mathbf{w}}$$

•
$$\beta_i = \sum_{\mathbf{w}: i \text{ transmit}} \pi_{\mathbf{w}}$$

 Energy-constrained Broadcast Throughput Maximization Problem

$$\begin{split} \max_{\mathbf{w}} : & \sum_{\mathbf{w}} T_{\mathbf{w}} \pi_{\mathbf{w}} \\ \text{s.t.: } & \alpha_i L_i + \beta_i X_i \leq \rho_i, \ \forall i \quad \longleftarrow \quad \text{Energy constraint} \\ & \sum_{\mathbf{w}} \pi_{\mathbf{w}} = 1, \ \pi_{\mathbf{w}} \geq 0, \ \forall \mathbf{w} \end{split}$$

Listen power: L_i Transmit power: X_i

Network state: $\mathbf{w} = [l, l, s, x]$ Throughput of state $\mathbf{w} : T_{\mathbf{w}} = 2$

A Simple Example

• 4 nodes in a clique with equal listen/transmit power: $L_i = X_i = 100$ uW, $\forall i$

Homogeneous

Hatarogeneous

• Optimal centralized solution:

	Homogeneous			Heterogeneous				
	1	2	3	4	1	2	3	4
Power budget $ ho_i$ (uW)	10	10	10	10	50	10	5	1
Awake time (%)	10	10	10	10	50	10	5.0	1.0
OPT listen fraction α_i (%)	7.5	7.5	7.5	7.5	7.4	4.6	3.1	0.9
OPT transmit fraction eta_i (%)	2.5	2.5	2.5	2.5	42.6	5.4	1.9	0.1

The change of other nodes' properties changes the "behavior" of node 2

Goal: Achieve the maximum throughput in a distributed manner

Solution: EconCast – an asynchronous distributed protocol

EconCast: Design

- Transition between sleep, listen, and transmit states
- The duration in each state is exponentially distributed
- Perform carrier-sensing when waking up

EconCast: Design

- Transition between sleep, listen, and transmit states
- The duration in each state is exponentially distributed
- Perform carrier-sensing when waking up

EconCast: Design

• Transition rates are adjusted over time t based on energy availability and estimate of number of active listeners

EconCast: Analysis

Theorem 1: Let $\sigma \to 0$ and under perfect knowledge of the number of active listeners (i.e., $\hat{c}(t) = c(t)$), the average throughput of **EconCast** converges to the maximal achievable throughput.

Proof: Based on the Markov Chain Monte Carlo approach.

Simulation Evaluation – Throughput

- 5 nodes, clique topology, homogeneous nodes, vary X/L
- $\rho = 10$ uW, L + X = 1000 uW
- Ratio between throughput achieved by *EconCast* and the maximum throughput
- Also compare to
 - Panda [INFOCOM'16]
 - Searchlight [MobiCom'12]
 - Birthday [MobiHoc'01]

TI Radio	Listen power $\it L$ (mW)	Transmit power X (mW)	Ratio X/L
CC2541	59 – 67	55 – 60	0.8 - 1.0
CC2500	65	59 – 75	0.9 - 1.2
CC2640	19	21 – 30	1.1 – 1.6

- Throughput drops with increased σ
- At L=X, **EconCast** outperforms Panda by 6x ($\sigma=0.5$) and 17x ($\sigma=0.25$)

Simulation Evaluation – Effect of σ

- CDF of latency (i.e., time between successful transmissions)
- Latency drops with increased σ
- The 99th percentile latency is better than that of Searchlight

Experimental Evaluation

- TI eZ430-RF2500-SEH energy harvesting nodes
- Listen power: 67.08 mW, Transmit power: 56.29 mW
- Power budget: 1 mW, 5 mW
- Homogeneous nodes placed in proximity, $N=5, 10; \sigma=0.25, 0.5$

Light Control System + Solar Cells

Experimental Evaluation

- TI eZ430-RF2500-SEH energy harvesting nodes
- Listen power: 67.08 mW, Transmit power: 56.29 mW
- Power budget: 1 mW, 5 mW
- Homogeneous nodes placed in proximity, N=5, 10; $\sigma=0.25$, 0.5

- The experimental throughput is 67% 81% of the analytical throughput
- The experimental power consumption is within $\frac{3\%}{7\%}$ of the power budget
- In experiments, *EconCast* outperforms Panda by 8x 11x with $\sigma = 0.25$

Summary

- Broadcast throughput maximization among a set of heterogeneous energyconstrained ultra-low-power nodes
- EconCast a simple asynchronous distributed protocol
- Prove that *EconCast* converges to the maximum achievable throughput
- Performance evaluation via simulations and experimentation
- Future directions:
 - Larger-scale network evaluation
 - Tradeoffs between throughput and latency
 - Integration with tracking applications

Thank you!

tingjun@ee.columbia.edu www.columbia.edu/~tc2668/

Tingjun Chen, Javad Ghaderi, Dan Rubenstin, and Gil Zussman, "Maximizing Broadcast Throughput Under Ultra-Low-Power Constraints".

