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Abstract—Contingency analysis in power grids is one of the
most effective ways to improve grids’ resilience against failures.
The main goal of contingency analysis is to detect probable
failures in the grid that result in a critical state and deploy
preventive measures to avoid such state. Due to the large number
of possibilities, however, high order contingency analysis is
computationally expensive and not fully deployed. In order to
circumvent this issue, we analytically compute the redistribution
of power flows following a k-line failure (i.e., failures in k distinct
lines) using the DC power flow model and based on that introduce
the disturbance value of a k-line failure. We show that this value
can be efficiently computed in O(1) for any set of line failures
independently of the size of the grid and can be effectively used
to filter out noncritical contingencies. The disturbance value can
therefore significantly reduce the time complexity of contingency
analysis by revealing contingencies that are vital for more in
depth analysis and pave the way for the deployment of high
order contingency analysis in power grids.

I. INTRODUCTION

Recent large scale power grid blackouts in Turkey (2015),
India (2013), and the U.S. (2003) exposed the insufficiency of
current control and preventive measures to protect the grid
against failures. These events motivated numerous research
projects in the past decade aiming to improve grid’s resilience
and security. One of the most effective ways to improve power
grids’ resilience is to detect probable failures that result in a
critical state and deploy preventive measures to avoid such
state [2]. This process is known as the contingency analysis
in power grids.

Power grids are required to withstand a single component
failure, known as the N − 1 contingency standard. However,
one or more lines can often be out of service for various
reasons such as maintenance and construction works. This can
result in the violation of the N − 1 standard and vulnerability
of the power grid to a single failure, as was the case in Turkey
in 2015 [3]. Therefore, higher order contingency analysis is
necessary to detect critical events caused by more than a single
failure.

Due to the large number of possibilities, high order contin-
gency analysis is computationally expensive. Therefore, most
of the previous tools are effective for analyzing contingencies
caused by failures in one or two components of the grid [4],
[5], [6], [7], [8], [9], [10], [11]. In order to circumvent this
issue, in this paper, we introduce the disturbance value of a

A partial and preliminary version appeared in Proc. IEEE PES-GM’16 [1].

failure. We show that this value can be efficiently computed for
any set of line failures independently of the size of the grid and
can be effectively used to filter out less crucial contingencies.
The disturbance value can therefore significantly reduce the
time complexity of contingency analysis by revealing contin-
gencies that are vital for more in depth analysis.

First, we extend and build on the results in [12] which
focused on single line failures to analytically compute the
effect of multiple line failures on redistribution of power flows.
We call an event resulting in the failure of k distinct lines, a k-
line failure event. Similar to the most of the previous work on
contingency analysis, we use the linearized DC approximation
of the power flows, due to the complexities associated with
the AC power flow model [13]. We present an analytical
update of the pseudo-inverse of the admittance matrix after
a k-line failure event. Our approach is similar to [14], but we
use the pseudo-inverse instead of the truncated inverse of the
admittance matrix which requires selecting a node as the slack
bus. An advantage of using pseudo-inverse is that it allows
having a unified formula for all k-line failures regardless of
their location and their connectivity to the slack bus.1 Using
this result, we define and analytically compute the k-line
outage distribution matrix which generalizes the definition of
the line outage distribution factors for single line failures [2]
as in [14].

While the k-line outage distribution matrix captures all
effects of a k-line failure on flow changes, it is not efficient
to compute and store this matrix for contingency analysis in
large power grids. To overcome this challenge, we use the
matrix of equivalent reactance values originally defined and
used in [12] to efficiently compute the sum of changes in
the power flows after a k-line failure and to provide a metric
that captures the essence of flow changes after failures. In
particular, we define and analytically compute the disturbance
value of a failure (the weighted sum of squares of the flow
changes) and show that this computation can be done for a
k-line failure in O(1) as long as k is much smaller than the
total number of lines, the case in contingency analysis of the
power grids. Hence, the disturbance value of a k-line failure
can be computed independently of the size of the grid.

To show that the disturbance values provide a separation

1Another advantage of using pseudo-inverse is that our results can be tied to
the related notions of Laplacian and resistance distances in graph theory [15].
This enables further use of existing tools in graph theory for contingency
analysis in power grids as in [12].
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between failures with higher impact and lower impact, we
compute the disturbance values for all possible choices of 3-
line failures in the IEEE 118-bus and 300-bus systems. We
demonstrate that by ranking cases based on their disturbance
values and considering only cases with high disturbance value,
we are able to decrease the total number of cases needed to
be analyzed for contingency analysis by more than 90%.

To analyze all the k-line failure scenarios, one needs to
compute the disturbance values for all possible

(
m
k

)
cases

which requires O(mk) time. To alleviate this issue, we provide
an approximation for the disturbance values. We show that by
approximating the disturbance value of a k-line failure, one
can only focus on the m̃ << m lines with the highest 1-line
disturbance values and analyze only

(
m̃
k

)
cases instead of

(
m
k

)
cases. Moreover, we numerically show that the approximation
error is below 10% in most of the cases in the 118- and 300-
bus systems.

A k-line failure alters the network topology and results in a
different flow pattern causing possible consequent line failures.
The repetition of this process results in a cascading failure. To
show that disturbance values effectively rank k-line failures,
we numerically compute the relationship between disturbance
value of all 3-line failures and the severity of the initiated
cascades in the IEEE 118- and 300-bus systems. We show
that although the disturbance value does not take into account
the capacities of the lines, it can predict the average severity
of the cascade initiated by a failure.

Finally, we numerically show the usefulness of the distur-
bance values in predicting changes under the more detailed AC
power flows after a k-line failure. In particular, we compute
the disturbance values under the AC power flows and show
that the disturbance values under the AC and DC differ only
in scaling. We also study the correlation between the voltage
changes after a k-line failure and disturbance values, and show
that k-line failures with higher disturbance values cause more
voltage changes as well.

Since the AC power flow equations are nonlinear, there
are k-line failures after which the AC power solver does not
converge to a solution. We show that almost all such failures
in the IEEE 118- and 300-bus systems have the disturbance
values that are between the top 10% of all the k-line failures
in terms of the disturbance values.

The main contributions of this paper are: (i) providing an
analytical update for the pseudo-inverse of the admittance
matrix following a k-line failure and using it to define and
compute k-line outage distribution matrices, (ii) introducing
the disturbance value of a k-line failure and demonstrating
based on simulations that it can distinguish between critical
and noncritical contingencies in the grid, and (iii) leveraging
the properties of the DC power flow equations to provide a
method to compute the disturbance value of a failure efficiently
and independently of the size of the grid.

II. RELATED WORK

Many great ideas have been developed for contingency
analysis in power grids since the advent of the modern power
transmission network. Detecting most important lines and

nodes solely based on the topology of the power grid was
studied in [16] using network centrality measures. Current
injection methods were used to analyze the effect of line
failures in [2], [5], [8], [11]. In particular, [2] introduced the
notion of line outage distribution factors that inspired many
other studies including the work presented in this paper. In [4]
and [12], multiple matrix updates were used to study the effect
of single line failures and to speed up the computation of the
power flows after line failures. [10], [17] used matrix updates
to study the effect of two line failures and used the results
to introduce an algorithm for the N − 2 contingency problem
(contingencies caused by failures in at most 2 components of
the grid). In a follow up work [18], contingency and Influence
graphs were introduced to study N − 2 contingency analysis.
More optimization-based techniques for contingency analysis
of the grids were explored in [7], [19]. In particular, [7]
focused on identifying the most probable failure modes in
static load distribution using a linear-program. In a recent
innovative paper, probabilistic algorithms were developed to
identify collections of multiple contingencies that initiate
cascading failure [20].

High order contingency analysis was studied in [6], [21],
[22]. In [21], the contingencies were ordered based on their
empirical occurrence probabilities and only contingencies with
high probability were considered. A mixed-integer model for
the N−k contingency problem was presented and used in [6].
However, this method does not scale well as k increases.
In [22], the resistance distances are used as in [12] to identify
most important lines and to prune the graph. The contingency
analysis was then performed on the reduced graph instead of
the entire graph in order to reduce the total number of con-
tingencies. However, since resistance distances are computed
independently of supply and demand values, such an approach
may miss contingencies that are caused by failures in lines
carrying large power flows.

The main advantages of using disturbance value for contin-
gency analysis, as proposed in this paper, over previous work
is that: (i) using techniques from linear algebra, the disturbance
value can be efficiently computed for any number of line
failures independently of the size of a grid, and therefore
it scales well for high order contingency analysis, (ii) due
to its simplicity, it is easy to implement, and (iii) since the
disturbance value is based on the power flows as well as
the admittance matrix, it captures both the topological and
operational properties of the system.

III. MODEL AND DEFINITIONS

A. DC Power Flow Model

We adopt the linearized (or DC) power flow model, which
is widely used as an approximation for the non-linear AC
power flow model [23], [24]. We represent the power grid
by a connected directed graph G = (V,E) where V =
{1, 2, . . . , n} and E = {e1, . . . , em} are the set of nodes
and edges corresponding to the buses and transmission lines,
respectively (the definition implies |V | = n and |E| = m).
Each edge e is a set of two nodes e = (u, v). pv is the active
power supply (pv > 0) or demand (pv < 0) at node v ∈ V
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(for a neutral node pv = 0). We assume pure reactive lines,
implying that each edge e = (u, v) ∈ E is characterized by
its reactance xe = xuv = xvu > 0.

Given the power supply/demand vector ~p ∈ Rn×1 and the
reactance values, a power flow is a solution ~f ∈ Rm×1 and
~θ ∈ Rn×1 of:

A~θ = ~p, (1)
YDt~θ = ~f, (2)

where A ∈ R|V |×|V | is the admittance matrix of G,2 defined
as:

auv =


0 if u 6= v and {u, v} /∈ E,
−1/xuv if u 6= v and {u, v} ∈ E,
−
∑
w∈N(u) auw if u = v,

D ∈ {−1, 0, 1}n×m is the incidence matrix of G defined as,

dij =


0 if ej is not incident to node i,
1 if ej is coming out of node i,
−1 if ej is going into node i,

and Y := diag([1/xe1 , 1/xe2 , . . . , 1/xem ]) is a diagonal ma-
trix with diagonal entries equal to the inverse of the reactance
values. It is easy to see that A = DYDt.

Since A is not a full-rank matrix, we follow [12] and use the
pseudo-inverse of A, denoted by A+ to solve (1) as: ~θ = A+~p.
Once ~θ is computed, ~f , can be obtained from (2).

Notation. Throughout this paper we use bold uppercase cha-
racters to denote matrices (e.g., A), italic uppercase characters
to denote sets (e.g., V ), and italic lowercase characters and
overline arrow to denote column vectors (e.g., ~θ). For a matrix
Q, qij denotes its (i, j)th entry, Qt its transpose, and tr(Q) its
trace. We denote the submatrix of Q limited to the first k
columns by Qk and the submatrix of Q limited to the first k
rows and columns by Qk|k. For a column vector ~y, ~yt denotes
its transpose, and ~yk denotes the subvector of ~y with its first
k entries. We use k̄ to show the indices other that 1 to k (e.g.,
~fk̄ denotes the subvector of ~f with its k + 1 to m entries).

B. Failure Model

In this paper, we consider contingencies caused by the set
of line failures of size k denoted by L ⊆ E. We refer to
these failures as k-line failures. Without loss of generality,
for convenience we assume L = {e1, e2, . . . , ek}. We denote
the graph after failures by G′ = (V ′, E′), in which E′ =
E − L and V ′ = V . We also assume that removing edges in
L from G does not disconnect the graph. Notice that failures
that disconnect the grid have the highest priority, since they
most likely divide the grid into unbalanced islands in terms
of supply/demand values that may result in further failures.
Therefore, such failures should always be considered for more
in depth contingency analysis. In Section V, we show that
some of our results can be used to approximately rank k-
line failures that disconnect the grid based on their criticality
among themselves.

2The admittance matrix A is also known as the weighted Laplacian matrix
of the graph [15].

Hence, here we assume G′ is connected. Upon failures, the
power flows redistributed in G′ based on the equation A′~θ′ =
~p, in which A′ is the admittance matrix of G′. Moreover, we
define ∆~fk̄ = ~fk̄ − ~f ′

k̄
to show the flow changes on the lines

in E\L after the failure in lines in L.
It is easy to see that A′ = A − DkYk|kDtk. In Section IV,

we use this equation to compute A′+ and quantify the effect
of k-line failures.

C. Matrix of Equivalent Reactance Values

Define matrix R ∈ Rm×m as R := DtA+D. It is easy to see
that for any ∀1 ≤ i ≤ m : rii is equivalent reactance between
end buses of the line ei. Matrix R is a symmetric matrix and
is very useful in quantifying the effect of line failures. In fact,
in [12] we used this matrix to quantify the effect of single
line failure when all the reactance values are equal to 1. In
Section IV, we generalize the idea in [12] for k-line failures.

IV. FAILURE ANALYSIS

In this section, we study the effect of k-line failures on
the flow changes on the other lines. First, in the following
lemma, we generalize the results in [12] for single line failures
and provide an analytical update of the pseudo-inverse of the
admittance matrix following a k-line failure.

Lemma 1: If G′ is connected,

A′+ = A+ +A+DkY1/2
k|k [I−Y1/2

k|kDtkA+DkY1/2
k|k ]−1Y1/2

k|kDtkA+.

Proof: First, from Lemma A.1 in the Appendix, since G′

is connected, [I − Y1/2
k|kDtkA+DkY1/2

k|k ]−1 is defined. Now to
show the equality, it is easy to see that AA+ = I − 1

nJ, in
which I is the identity matrix and J is all 1 matrix (For more
details see [12, Theorem 1]). Hence, from [25, Theorem 4.8],
since A′ = A − DkYk|kDtk = A − DkY1/2

k|k (DkY1/2
k|k )t, the

pseudo inverse of A′ can be computed as,

A′+ = A+ +A+DkY1/2
k|k [I−Y1/2

k|kDtkA+DkY1/2
k|k ]−1Y1/2

k|kDtkA+.

From Lemma 1, the changes in phase angles after k-line
failures can be computed as,

~θ′ − ~θ = (A′+ − A+)~p

= A+DkY1/2
k|k [I− Y1/2

k|kDtkA+DkY1/2
k|k ]−1Y1/2

k|kDtkA+~p

= A+DkY1/2
k|k [I− Y1/2

k|kDtkA+DkY1/2
k|k ]−1Y−1/2

k|k
~fk

= A+DkY1/2
k|k [I− Y1/2

k|kRk|kY1/2
k|k ]−1Y−1/2

k|k
~fk. (3)

Using (3), we can compute the changes in the flows as,

∆~fk̄ = Yk̄|k̄Dtk̄A+DkY1/2
k|k [I− Y1/2

k|kRk|kY1/2
k|k ]−1Y−1/2

k|k
~fk

= Yk̄|k̄Rk̄|kY1/2
k|k [I− Y1/2

k|kRk|kY1/2
k|k ]−1Y−1/2

k|k
~fk. (4)

It is important to see that Yk̄|k̄Rk̄|kY1/2
k|k [I −

Y1/2
k|kRk|kY1/2

k|k ]−1Y−1/2
k|k is independent of ~p and solely

depends on the structure properties of the network. Hence,
following a similar definition in [2] for single line failures,
we define this matrix as k-line outage distribution matrix and
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denote it by L := Yk̄|k̄Rk̄|kY1/2
k|k [I−Y1/2

k|kRk|kY1/2
k|k ]−1Y−1/2

k|k .
Hence, ∆~fk̄ = L~fk.

While k-line outage distribution matrix captures all effects
of a k-line failure on the flow changes, it is not efficient to
compute and store it for contingency analysis in large power
grids. In order to overcome this problem, we use the matrix of
equivalent reactance values to efficiently compute the sum of
changes in the power flows after k-line failures and to provide
a metric to capture the essence of the flow changes after
failures. The following lemma is the main step towards this
goal. It demonstrates that Y1/2RY1/2 is an idempotent matrix.
We use this property, to provide the results in Corollaries 1
and 2.

Lemma 2: Y1/2RY1/2 = Y−1/2D+DY1/2, and therefore
(Y1/2RY1/2)2 = Y1/2RY1/2.

Proof: We know from before that R = DtA+D and A =
DYDt = (DY1/2)(DY1/2)t. Hence,

Y1/2RY1/2 = Y1/2DtA+DY1/2 = (DY1/2)tA+(DY1/2)

= (DY1/2)t
(
(DY1/2)(DY1/2)t

)+
(DY1/2)

= (DY1/2)t
(
(DY1/2)t

)+
(DY1/2)+(DY1/2)

=
(
(DY1/2)+(DY1/2)

)t
(DY1/2)+(DY1/2).

From the properties of the pseudo-inverse,
(DY1/2)+(DY1/2) is a symmetric matrix. Moreover,
(DY1/2)+(DY1/2)(DY1/2)+ = (DY1/2)+. Therefore,

Y1/2RY1/2 = (DY1/2)+(DY1/2)(DY1/2)+(DY1/2)

= (DY1/2)+(DY1/2) = Y−1/2D+DY1/2.

From this,

(Y1/2RY1/2)2 = (Y−1/2D+DY1/2)2

= Y−1/2D+DD+DY1/2

= Y−1/2D+DY1/2 = Y1/2RY1/2.

Corollary 1: Rk|k̄∆~fk̄ = Rk|k ~fk.
Proof: To make equations cleaner in the proof, define

H := Y1/2RY1/2. From Lemma 2, H2 = H. Hence, if we use
block multiplication, then Hk|k = H2

k|k + Hk|k̄Hk̄|k. Using
this equation,

∆~fk̄ = Yk̄|k̄Rk̄|kY1/2
k|k [I− Y1/2

k|kRk|kY1/2
k|k ]−1Y−1/2

k|k
~fk

⇒Y1/2
k|kRk|k̄∆~fk̄ = Hk|k̄Hk̄|k[I−Hk|k]−1Y−1/2

k|k
~fk

⇒Y1/2
k|kRk|k̄∆~fk̄ = Hk|kY−1/2

k|k
~fk

⇒Y1/2
k|kRk|k̄∆~fk̄ = Y1/2

k|kRk|k ~fk ⇒ Rk|k̄∆~fk̄ = Rk|k ~fk.

Corollary 1 shows the use of matrix R in evaluating the effect
of k-line failures without computing the flows directly. This
equation can be used to estimate the effect of k-line failures.
Since the matrix of equivalent reactance values needs to be
computed only once, the matrix equation in Corollary 1 can
be written for any k-line failures without further computations.

To quantify the effect of k-line failures more efficiently,
in the following, we define a metric that captures the effect

of k-line failures by a single value and show that it can be
computed in O(1). Inspired by the notion of energy in resistive
networks, we define δk(1, 2, . . . , k) := ∆~f t

k̄
Y−1
k̄|k̄∆~fk̄ as the

disturbance value of a k-line failure. It is easy to see that
y−1
ii ∆fi captures the changes in the phase angle differences

between the end buses of a single line. Hence, the disturbance
value ∆~f t

k̄
Y−1
k̄|k̄∆~fk̄ =

∑m
i=k+1 y

−1
ii ∆f2

i reflects both the big
phase difference changes (which is important for the stability
of the system) and the big flow changes (which is important
for thermal safety of a line). Notice that the disturbance values
can be defined also based on the phase angle of the nodes
instead of the power flows using (2).

In the following lemma, we provide the key step in com-
puting the disturbance value of a failure analytically and
efficiently in Corollary 2.

For convenience in equations, define B :=

[I − Y1/2
k|kRk|kY1/2

k|k ]−1 and Φ := Y1/2

k̄|k̄Rk̄|kY1/2
k|k [I −

Y1/2
k|kRk|kY1/2

k|k ]−1. From (4), we know Y−1/2

k̄|k̄ ∆~fk̄ =

ΦY−1/2
k|k

~fk.
Lemma 3: ΦtΦ = −I + B.

Proof: To make equations cleaner in the proof, define
H := Y1/2RY1/2. From Lemma 2, H2 = H. Hence, if we use
block multiplication, then Hk|k = H2

k|k + Hk|k̄Hk̄|k. Thus,

Hk|k = H2
k|k + Hk|k̄Hk̄|k ⇒ Hk|k[I−Hk|k] = Hk|k̄Hk̄|k

⇒ Hk|k = Hk|k̄Hk̄|k[I−Hk|k]−1.

It is easy to see that Φ = Hk̄|k[I − Hk|k]−1. Hence, using
equation above,

ΦtΦ = [I−Hk|k]−1Hk|k̄Hk̄|k[I−Hk|k]−1

= [I−Hk|k]−1Hk|k

= [I−Hk|k]−1Hk|k − [I−Hk|k]−1 + [I−Hk|k]−1

= −[I−Hk|k]−1[−Hk|k + I] + [I−Hk|k]−1

= −I + [I−Hk|k]−1 = −I + B.

Corollary 2: ∆~f t
k̄
Y−1
k̄|k̄∆~fk̄ = ~f tkY−1/2

k|k [−I + B]Y−1/2
k|k

~fk.
Corollary 2 provides a very important tool for contingency
analysis in the power grids. It shows that the disturbance value
of a k-line failure can be computed in O(k3) time which is
independent of the size of the network and only depends on
the size of the initial failures. Since most of the times in
contingency analysis k << m, O(k3) ≈ O(1). Corollary 2
can be used for fast ranking of the contingencies based on the
disturbance values and pruning most of the cases based on
this value. This can significantly reduce the time complexity
of the contingency analysis for large k.

Moreover, notice that following Lemma A.1, matrix B
is well defined if, and only if, the k-line failure does not
disconnect the grid. Therefore, Corollary 2 can also indicate
in O(1) whether a k-line failure disconnects the grid.

We computed the disturbance values for all possible choices
of 3-line failures in the IEEE 118-bus and 300-bus systems.
Since, the IEEE 118-bus system has 186 lines, it is easy
to see that there are

(
186
3

)
= 1, 055, 240 possible choices

for the initial set of failures. Using Corollary 2, we could
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Fig. 1: The cumulative distribution function of the disturbance values
for all 3-line failures in the IEEE 118- and 300-bus systems that do
not disconnect the grid.

compute the disturbance values for all set of failures (and
detect cases that disconnect the grid) in less than a minute. Out
of those, 159, 591 of them make the graph disconnected. The
cumulative distribution function of the disturbance values for
the rest of 895,649 cases are shown in Fig. 1. As can be seen,
most of the cases do not result in a high (more than 5,000)
disturbance value. Only 10% of the cases have a significant
disturbance value. The figure suggests that disturbance values
can provide a separation between the failures with higher
impact and lower impact.

Fig. 1 also shows the cumulative distribution function of the
disturbance values for all possible 3-line failures in IEEE 300-
bus system that do not disconnect the grid (5,473,725 cases).
As can be seen, again most of the cases do not result in a high
disturbance value and only less than 10% of the total cases
have a significant disturbance value (more than 35,000).3

The numerical results support our previous statement that
the disturbance values can significantly reduce the total num-
ber of cases that are needed to be considered in the contin-
gency analysis of the grids. Moreover, since Corollary 2 provi-
des a very fast way of computing the disturbance values, it can
significantly decrease the time complexity of the contingency
analysis in power grids.

V. APPROXIMATING THE DISTURBANCE VALUES

In the previous section, we demonstrated that using Corol-
lary 2, the disturbance value of a k-line failure can be com-
puted efficiently in O(1). However, to analyze all the k-line
failure scenarios, one needs to compute the disturbance values
for all possible

(
m
k

)
cases which requires O(mk) time. To

alleviate this issue, in this section we provide an approximation
for the disturbance values that allows one to focus on the lines
with high 1-line disturbance values instead of all the lines.

3Notice that the threshold level for “high disturbance value” depends on
the level of safety that a system operator likes to maintain. As can be seen in
Fig. 1, more than 80% of the cases result in a very small disturbance value.
Hence, 1% to 20% of the cases with the highest disturbance values can be
selected for deeper analysis depending on the level of safety.

(a) IEEE 118-bus

(b) IEEE 300-bus

Fig. 2: Heatmap for the absolute value of the entries of matrix R
for the IEEE 118- and 300-bus systems. Darker points have higher
values.

The idea of our approximation lies in the structure of the
matrix R. As shown in Fig. 2, most of the entries of matrix R
in the IEEE 118- and 300-bus systems have very small values
compare to its diagonal entries. Hence, we can approximate
R by its diagonal entries as R ≈ diag(R) := R̃. Using this
approximation and Corollary 2, the disturbance values can be
computed as:

∆~f tk̄Y−1
k̄|k̄∆~fk̄ = ~f tkY−1/2

k|k [−I + [I− Y1/2
k|kRk|kY1/2

k|k ]−1]Y−1/2
k|k

~fk

≈ ~f tkY−1/2
k|k [−I + [I− Y1/2

k|k R̃k|kY1/2
k|k ]−1]Y−1/2

k|k
~fk

=

k∑
i=1

fiy
−1/2
ii (−1 +

1

(1− y1/2
ii riiy

1/2
ii )

)y
−1/2
ii fi

=

k∑
i=1

f2
i

rii
(1− yiirii)

.

In another words, we approximate the disturbance value of a
k-line failure as the sum of the disturbance values of the k
single line failures:

δk(1, 2, . . . , k) ≈
k∑
i=1

δ1(i). (5)
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The advantage of this approximation is that to detect k-line
failures with high disturbance values, one can focus only on
the m̃ << m lines with the highest 1-line disturbance values.
So instead of analyzing

(
m
k

)
cases, one can analyze only

(
m̃
k

)
cases.

Another advantage of using the approximation (5) for
disturbance values is that it can used to quantify the effect
of k-line failures that disconnect the grid as well. Although
failures that disconnect the grid may have more devastating
effect because of the imbalance they may cause between
supply and demand, we believe that this approximation can be
used to rank these failures among themselves. Validating the
usefulness of approximation (5) for the failures that disconnect
the grid is part of the future work.

To quantify the quality of the approximation (5), we define
the approximation error percentage (ε):

ε =

∣∣∣δk(i1, i2, . . . , ik)−
∑k
j=1 δ1(ij)

∣∣∣
δk(i1, i2, . . . , ik)

× 100.

Fig. 3 shows the approximation error in the IEEE 118-
and 300-bus systems. As can be seen, in both systems, for
most of the cases the error is less than 10%. In particular,
the approximation error in the important cases (the ones
with high disturbance value) is very low (see orange lines in
Fig. 3). Moreover, the correlation between the approximation
and actual disturbance values is about 0.98 in both the IEEE
118- and 300-bus systems.

VI. CASCADING FAILURES

A k-line failure alters the network topology and results in a
different flow pattern causing possible consequent line failures.
The repetition of this process results in a cascading failure. To
show that disturbance values effectively rank k-line failures,
we numerically compute the relationship between disturbance
value of all 3-line failures and the severity of the initiated
cascades in the IEEE 118- and 300-bus systems.

We follow [12], [26] models for cascading failures due to
line overloads in power grids with deterministic outage rule:
namely, a line {i, j} fails when the magnitude |fij | of the flow
on that line exceeds its capacity cij . The line flow capacities
are estimated as cij = (1 + α) max{|fij |, f}, where f is the
median of the initial magnitude of line flows and α = 0.2 is
the lines’ factor of safety.

When a line fails, it is removed from the network. As a
result of this removal, the network topology is changed, and
the network can be divided into one or more connected compo-
nents. We assume that each connected component can operate
autonomously. Therefore, within each connected component
with non-zero supply and demand, the amounts of the supply
and demand are balanced by either scaling down all the supply
values (if supply is greater than demand in the connected
component) or scaling down all the demand values (if demand
is greater than supply in the connected component) within
the connected component. If there is either no supply or no
demand node within a connected component, all demands or
supplies become zero.

(a) IEEE 118-bus

(b) IEEE 300-bus

Fig. 3: Approximation error percentage of the approximate distur-
bance values for all the 3-line failures than do not disconnect the
grid in the IEEE 118- and 300-bus systems.

After supply and demand balancing in each component, the
power flow equations are solved to compute new flows on
the lines. Using the deterministic outage rule, the new set of
line failures are then found in all the components, and the
cascade continues with the removal of those lines. If there are
no overloaded lines in any of the components, the cascade
ends.

To measure the severity of a cascade, we compute yield (the
ratio between the demand supplied at the end of a cascade and
the original demand) and total number of line failures at the
end of the cascade.

Fig. 4 depicts the relationship between the disturbance
values and the average severity of cascades initiated by all
the 3-line failures than do not disconnect the grid in the IEEE
118- and 300-bus systems. As can been seen in Fig. 4a, in both
systems, the average yield decreases as the disturbance value
increases. Moreover, Fig. 4b shows that the average number
of line failures at the end of the cascade increases on average,
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(a) Yield

(b) Number of Line Failures

Fig. 4: The relationship between the disturbance values and the
average severity of cascades initiated by all the 3-line failures than
do not disconnect the grid in the IEEE 118- and 300-bus systems.

as the disturbance value increases.
The results in this section suggest that although the distur-

bance value does not take into account the capacities of the
lines, it can predict the average severity of the cascade initiated
by a failure.

VII. DISTURBANCE VALUES UNDER THE AC POWER
FLOW MODEL

In this section, we numerically show the usefulness of the
disturbance values in predicting the changes under the more
detailed AC power flows after a k-line failure. The details of
the AC power flow equations are provided in Appendix B.
To solve the AC power flows, we used the MATPOWER AC
power flow solver [27].

We first computed the disturbance values under the AC
power flows. To do so, we used the phase angles of the nodes
computed before and after a k-line failure under the AC model
(recall that the disturbance values can be defined also based

(a) IEEE 118-bus

(b) IEEE 300-bus

Fig. 5: Scatter plot of the disturbance values under the AC and DC
power flows for all the 3-line failures that do not disconnect the grid
in the IEEE 118- and 300-bus systems.

on the phase angle). Fig. 5 shows the relationship between the
disturbance values computed under DC (using corollary 2) and
AC power flows. As can be seen, the disturbance values under
the AC and DC are only different in scale. The correlation
between these two values is 0.99 and 0.93 in the IEEE
118- and 300-bus systems, respectively. Hence, detecting the
important cases based on the disturbance values in the DC is
almost similar to the AC model.

Second, we studied the correlation between the voltage
changes after a k-line failure and disturbance values. For this
purpose, we computed the mean sum squared of the voltage
changes after all 3-line failures that do not disconnect the
grid in the IEEE 118- and 300-bus systems. As can be seen
in Fig. 6, on average, 3-line failures with higher disturbance
values cause more voltage changes as well. This demonstrates
that the disturbance values which can be computed very effi-
ciently using corollary 2, can also predict the disturbances in
the node voltages whose computation is of higher complexity.
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(a) IEEE 118-bus

(b) IEEE 300-bus

Fig. 6: Mean sum squared of the voltage changes for the 3-line
failures that do not disconnect the grid with the disturbance value
less than a certain value in the IEEE 118- and 300-bus systems.

Finally, since the AC power flow equations are nonlinear
(see Appendix B), there are 3-line failures after which the AC
power solver does not converge to a solution. The CDF of
the disturbance values for these 3-line failures is depicted in
Fig. 7. As can be seen, for all such failures in the IEEE 118-
bus system the disturbance values are above 5000, meaning
that they are between the top 10% of all the 3-line failures in
terms of the disturbance values (see Fig. 1).

The same is true in the IEEE 300-bus system. Most of the
3-line failures that result in the divergence of the AC power
flow solver, are between the top 10-20% cases in terms of the
disturbance values.

Overall, the results in this section demonstrate that the
disturbance values can be useful for predicting the changes
under the AC power flow model. Since following corollary 2
the disturbance values can be computed much faster compared
to the computation of steady state changes under the AC power
flows (which requires solving a nonlinear set of equations

Fig. 7: The CDF of the disturbance values for the 3-line failures that
do not disconnect the grid but produce enough instability such that
the AC power solver does not converge to a solution.

several times), this significantly reduces the computational
complexity associated with the contingency analysis in the
grid.

VIII. CONCLUSION

The results in this paper provide efficient tools for quanti-
fying the effect of k-line failures. The most unique aspect of
our approach is the use of the matrix of equivalent reactance
values to efficiently capture the effect of k-line failures. We
defined the disturbance value of a failure and show that this
metric can be computed for any set of failures in O(1).
Moreover, based on the approximation of the disturbance
values, the total number of cases that need to be considered can
be significantly reduced as well. Our numerical results showed
that disturbance values provide a clear separation between the
failures with higher impact and lower impact under both the
AC and DC power flows.

Despite providing a fast and useful measure for quantifying
the severity of a k-line failure, the disturbance value does not
capture the thermal capacity of the lines as well as further
instabilities caused by separation of the grid into several
islands. Hence, the disturbance values alone cannot be used to
detect important contingencies. Since thorough contingency
analysis for all high order scenarios is intractable, however,
disturbance values can be used to reduce the total number of
cases needed to be analyzed in contingency analysis and can
significantly reduce the computational complexity associated
with this analysis. In our future work, we plan to incorporate
line capacities in definition of the disturbance value and also
study the correlation between disturbance values and other
important dynamics of the power grids (e.g., transient stability
issues).
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APPENDIX A

The following lemma is the generalization of [12, Lemma
1] and similar to the idea used in [14, Theorem 2] to detect the
connected components after multiple line failures. Our proof is
different from the proof of a similar Theorem in [14, Theorem
2].

Lemma A.1: Matrix I− Y1/2
k|kDtkA+DkY1/2

k|k is invertible if,
and only if G′ is connected.

Proof: First, it is easy to see that I−Y1/2
k|kDtkA+DkY1/2

k|k
is invertible if, and only if I−Yk|kDtkA+Dk is invertible. Now
assume, G′ is disconnected. Without loss of generality, assume
C = {e1, e2, . . . , er} is a minimal subset of {e1, e2, . . . , ek}
such that G\C is disconnected. Since, C is a minimal subset,
G\C has only two connected components G1 and G2 and
each ei ∈ C has one end in G1 and the other end in G2.
Again with out loss of generality, assume that all the edges in
C are directed from G1 to G2. We prove that vector ~v ∈ Rk
defined as vi = yii for i ≤ r and vi = 0 for i > r is an
eigenvector of Yk|kDtkA+Dk associated with the eigenvalue
1. Notice, that if ~p = Dk~v, then θi = 1 for i ∈ G1 and θi = 0
for i ∈ G2 gives a solution to DC power flow problem in G.
It is easy to see that in this setting ~fk = ~v. On the other hand,
~fk = Yk|kDtkA+~p, and since ~fk = ~v and ~p = Dk~v, therefore
Yk|kDtkA+Dk~v = ~v. Hence, Yk|kDtkA+Dk has eigenvalue 1
and I− Yk|kDtkA+Dk is not invertible.

Now assume, I−Yk|kDtkA+Dk is not invertible. Then, I−
Yk|kDtkA+Dk has an eigenvalue 0 and Yk|kDtkA+Dk has an
eigenvalue 1. Assume ~v is the eigenvector associated with the
eigenvalue 1 of Yk|kDtkA+Dk. It is again easy to see that
if ~p = Dk~v, then ~fk = ~v is the solution to the power flow
problem in G. From the flow conservation equations, it is also
easy to verify that ~fk̄ = 0. Now, by contradiction assume G′ is
connected. Then, there should be a path in G′ from a node i to
node j such that θi 6= θj . Therefore, there should be an edge
e = (w, z) in this path such that θw 6= θz and thus fe 6= 0.
However, since e ∈ G′ and ~fk̄ = 0 we know that fe = 0
which is a contradiction. Therefore, G′ is not connected.

From the proof it is easy to see that if ~v is an eigenvector
associated with the eigenvalue 1 of Yk|kDtkA+Dk, then nodes
with the same phase angle values in the solution of the power
flow problem in G with ~p = Dk~v form a connected component
in G′.

APPENDIX B
AC POWER FLOWS

In the AC power flows, the status of each node i is
represented by its voltage vi = |vi|eiθi in which |vi| is the
voltage magnitude, θi is the phase angle at node i, and i
denotes the imaginary unit.

The nonlinear and nonconvex AC power flow problem is
the problem of computing the voltage magnitudes and phase
angles at each bus in steady-state conditions [28]. In the

https://www.entsoe.eu/Documents/SOC%20documents/Regional_Groups_Continental_Europe/20150921_Black_Out_Report_v10_w.pdf
https://www.entsoe.eu/Documents/SOC%20documents/Regional_Groups_Continental_Europe/20150921_Black_Out_Report_v10_w.pdf
https://www.entsoe.eu/Documents/SOC%20documents/Regional_Groups_Continental_Europe/20150921_Black_Out_Report_v10_w.pdf
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steady-state, the injected apparent power si at node i equals
to

si =

n∑
k=1
k 6=i

sik =

n∑
k=1
k 6=i

vi(gik + ibik)∗(v∗i − v∗k)

where ∗ denotes the complex conjugation, and gik + ibik is
the equivalent admittance of the lines from node i to k.

Using the definition of the apparent power sik = pik + iqik
leads to the equations for the active power pi and the reactive
power qi at each node i:

pi = −
∑n
k=1 |vi||vk|(gik cos θik + bik sin θik)

qi = −
∑n
k=1 |vi||vk|(gik sin θik − bik cos θik)

where θik = θi − θk, and gii + ibii = −
∑
j∈N(i)(gij + ibij).

In the AC power flow problem, each node i is categorized
into one of the following three types:

1) Slack node: The node for which the voltage is typically
1.0. For convenience, it is indexed as node 1. The active
power p1 and the reactive power q1 need to be computed.

2) Load node: The active power pi and the reactive power
qi at these nodes are known and the voltage vi needs to
be computed.

3) Voltage controlled node: The active power pi and the
voltage magnitude |vi| at these nodes are known and
the reactive power qi and the phase angle θi need to be
computed.
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