Neural Network Based Wavelength Assignment in Optical Switching

Craig Gutterman1, Weiyang Mo2, Shengxiang Zhu2, Yao Li2, Daniel C. Kilper2 and Gil Zussman1

1Electrical Engineering, Columbia University
2College of Optical Sciences, University of Arizona

Aug. 21, 2017
Optical Networks

- Modern networks are **static, ‘set and forget’ approach**
 - Overprovisioned, manual configuration

- Optical devices are capable of switching and dynamic operation
 - Wavelength selective switches, modulators, tunable lasers, and filters
Dynamic Optical Networks

• Currently no real-time capacity management, wavelength reconfiguration and service provisioning in optical networks
 – Provision wavelength
 – Re-route/switch wavelength

• Service providers need to ensure reconfiguration will not affect service level agreement
 – Consider optical power dynamics: WDM channels are highly interactive
 • Disturbances grow in cascade, propagate through network
 – Current provisioning takes minutes to days per wavelength—cautious ‘adiabatic’ tuning to avoid disruptions

• Goal: Given active channel conditions, determine the placement of a new wavelength channel to minimize power excursions under real-time, rapid reconfiguration
Optical Network Components

- **Erbium-Doped Fiber Amplifier (EDFA):** Optical amplifier to boost intensity of optical signal
- **Reconfigurable Optical Add-Drop Multiplexer (ROADM):** Allows for remotely switching traffic at wavelength layer
- **Wavelength Selective Switch (WSS):** Routes signals between optical fibers on a per-wavelength basis
- **Variable Optic Attenuator (VOA):** Reduces power level of optical signal
- **Optical Channel Monitor (OCM):** Used to measure channel power
Power Excursions

- Erbium-Doped Fiber Amplifier (EDFAs)
 - Use Automatic Gain Control (AGC) to maintain constant target mean gain
 - Amplify input channel power to target gain
 - Results in deviations that perturb active channels causing excursions

![Diagram](image)

Objective: Minimize ΔG
EDFA Gain Model

\[P_{\text{out total}} = G_T P_{\text{in total}} \]
\[P_{\text{out total}} = \sum_{j=1}^{N} P_{\text{in j}} G_j \]
\[\Delta G = \frac{N G_T + G_T}{N G_T + G_{N+1}} \]

\(\lambda_1 \)
\(\lambda_2 \)

Gain Profile with \(\lambda_1 \)
Gain Profile with \(\lambda_1 \) and \(\lambda_2 \)

- \(G_T \): target mean gain
- \(G_j \): channel gain
- \(P_{\text{in total}} \): total input power
- \(P_{\text{out total}} \): total output power
- \(N \): number of active channels
- \(\Delta G \): power excursion

Target Mean Gain \(G_T \)

Channel Index

Gain (dB)
Previous Work

• Planning phase of dynamic optical network
 – [Angelou et al., 2012], [Doverspike et al., 2012], [Gringeri et al., 2013]
 – Dynamic optical design and architecture
 – No dynamic optical network algorithms for physical layer

• Analytical models
 – [Ishii et al., 2016], [Junio et al., 2012]
 – Non-real time (Junio), poor accuracy (Ishii)

• Machine learning for wavelength assignment
 – [Huang et al., 2017]
 – Only 24 channels, single hop system
 – Kernel Bayesian regression
Our Contributions

• Design an optical testbed
• Collect real world data on optical network performance
• Develop a scalable neural network to predict power excursions at the physical layer
• Evaluate the performance using optical testbed measurements
Optical Testbed and Data Collection
Optical Testbed

- **5-ROADM experiment setup**
 - Nodes separated by 4 standard Single Mode Fiber (SMF) spans
 - Each span has 2 EDFAs
 - 90 channel DWDM source
 - Measurements +/- 0.1 dB accuracy
Optical Testbed – Measurements Collection

2,100 measurement cases
- 3-5 active channels
- 40 new channels added/removed one at a time
- 40 samples/case

84,000 samples
- Training: 1,680 cases (67,200 samples)
- Validation: 210 cases (8,400 samples)
- Test: 210 cases (8,400 samples)
- Data collection: ~4 seconds/sample
2,100 measurement cases

- 3-5 active channels
- 40 new channels added/removed one at a time
- 40 samples/case

84,000 samples

- Training: 1,680 cases (67,200 samples)
- Validation: 210 cases (8,400 samples)
- Test: 210 cases (8,400 samples)
- Data collection: ~4 seconds/sample
Feed forward Neural Network

- Predict the maximum power excursion among all active channels

\[y^k = \max_{j \in \text{Active Channel}} \Delta G^k_j, \; k \in \text{Available Channel} \]

- Goal: Given initial channel conditions predict which new channel will minimize the effect of power excursion

New Channel \(= k^* = \arg \min_{k \in \text{Available Channels}} \hat{y}^k \)

\[\bar{x} = [\bar{x}_{\text{Active}}, \bar{x}_{\text{Available}}] \]

\[= [x_1, \ldots, x_{90}, 0, \ldots, 1, \ldots, 0] \in \{0, 1\}^{180} \]

\[x_i = \begin{cases} 1, & \text{if } i \in \text{Active Channel}, \; \forall i \in \{1, \ldots, 90\} \\ 0, & \text{Otherwise} \end{cases} \]

\[x_{i+90} = \begin{cases} 1, & \text{if } i = k^* \\ 0, & \text{Otherwise} \end{cases} \]
Feed forward Neural Network

- Test neural network parameters
 - Activation functions
 - Number of layers
 - Number of neurons per layer

- Optimal Performance
 - 4 Hidden Layers: 180, 120, 30, 15 neurons
 - Tanh activation for hidden layers
 - Linear activation for the output layer

\[
x_i = \begin{cases}
1, & \text{if } i \in \text{ActiveChannel}, \forall i \in \{1, \cdots, 90\} \\
0, & \text{Otherwise}
\end{cases}
\]

\[
x_{i+90} = \begin{cases}
1, & \text{if } i = k^* \\
0, & \text{Otherwise}
\end{cases}
\]
Outline

• Design an optical testbed
• Collect real world data on optical network performance
• Develop a scalable neural network to predict power excursions at the physical layer

• Evaluate the performance using optical testbed measurements
 – Prediction
 – Recommendation
 – Classification
Prediction Results

- Training: 67,200 samples
- Test Points: \(n = 8,400 \) samples
- Excursion:

\[
y_l = \max_{j \in \text{Active Channel}} \Delta G_j^k, \quad k \in \text{Available Channel}, \quad \forall l \in \{1, \ldots, n\}
\]

- For Neural Network (NN) comparison Ridge Regression (RR) is trained and parameters tuned on the same data set
Prediction Performance Evaluation

- Training: 67,200 samples
- Test Points: $n = 8,400$ samples
- Excursion:
 \[y_l = \max_{j \in \text{Active Channel}} \Delta G^k_j, \ k \in \text{Available Channel}, \ \forall l \in \{1, \ldots n\} \]
- Test data Root Mean Square Error (RMSE):
 \[RMSE_{Test} = \sqrt{\frac{1}{n} \sum_{l=1}^{n} (y_l - \hat{y}_l)^2} \]
- Test data Mean Absolute Error (MAE):
 \[MAE_{Test} = \frac{1}{n} \sum_{l=1}^{n} |y_l - \hat{y}_l| \]
ε-Recommendation Accuracy

- Training: 67,200 samples
- Test Cases: 210
- Test Points: $n = 8,400$ samples

Recommendation Error

$$
\text{Recommendation Error} = \epsilon = |y^{\hat{k}}_* - y^{k_*}|
$$

- **Training:** 67,200 samples
- **Test Cases:** 210
- **Test Points:** $n = 8,400$ samples

- **Neural Network**
- **Ridge Regression**

- **Case Number**
- **ε (dB)**
- **F(ε) (%)**

- **Neural Network**
- **Ridge Regression**

- **90 Channel DWDM Source**
 - λ = 20
 - λ = 22
 - λ = 67
Classification Accuracy

- Classification: predict if excursion below threshold
 1 : Below Threshold
 0 : Above Threshold
- Set threshold of excursion to 0.5 dB

True Positive Rate (TPR) or Recall = \(\frac{TruePositive}{TruePositive + FalseNegative} \)

False Positive Rate (FPR) = \(\frac{FalsePositive}{FalsePositive + TrueNegative} \)
Classification: Precision at Recall Rate (PSRR)

• Priority for reliable optical system operation:
 1. Minimize false positives: Violates SLA
 2. Minimize false negatives: Wastes open bandwidth

True Positive Rate (TPR) or Recall =
\[
\frac{TruePositive}{TruePositive + FalseNegative}
\]

Precision (PPV) =
\[
\frac{TruePositive}{TruePositive + FalsePositive}
\]
Summary

• Fabricated a 90-channel multi-hop ROADM optical testbed for data collection

• Developed a neural network to predict optical power excursions

• Demonstrated very good performance
 – Prediction: Average prediction error on each channel below 0.1 dB
 – Recommendation: Pick best channel (out of 40), over 70% of the time
 – Classification: Predict maximum excursion to be less than 0.5 dB threshold with a precision of over 99% while obtaining a true positive rate greater than 55%

• Future Work:
 – Machine learning solution for ring and mesh networks
 – Implementation in Optical Software Defined Networks (OSDN)
Thank you!

clg2168@columbia.edu

Craig Gutterman1, Weiyang Mo2, Shengxiang Zhu2, Yao Li2, Daniel C. Kilper2 and Gil Zussman1

Neural Network Based Wavelength Assignment in Optical Switching