Neural Network Based Wavelength Assignment in Optical Switching

Craig Gutterman ${ }^{1}$, Weiyang Mo^{2}, Shengxiang $\mathrm{Zhu}{ }^{2}$, Yao Li^{2}, Daniel C. Kilper ${ }^{2}$ and Gil Zussman ${ }^{1}$
${ }^{1}$ Electrical Engineering, Columbia University
${ }^{2}$ College of Optical Sciences, University of Arizona

Aug. 21, 2017

Optical Networks

- Modern networks are static, 'set and forget' approach
- Overprovisioned, manual configuration
- Optical devices are capable of switching and dynamic operation
- Wavelength selective switches, modulators, tunable lasers, and filters

Dynamic Optical Networks

- Currently no real-time capacity management, wavelength reconfiguration and service provisioning in optical networks
- Provision wavelength
- Re-route/switch wavelength
- Service providers need to ensure reconfiguration will not affect service level agreement
- Consider optical power dynamics: WDM channels are highly interactive
- Disturbances grow in cascade, propagate through network
- Current provisioning takes minutes to days per wavelength—cautious 'adiabatic' tuning to avoid disruptions
- Goal: Given active channel conditions, determine the placement of a new wavelength channel to minimize power excursions under real-time, rapid reconfiguration

Optical Network Components

- Erbium-Doped Fiber Amplifier (EDFA): Optical amplifier to boost intensity of optical signal
- Reconfigurable Optical Add-Drop Multiplexer (ROADM): Allows for remotely switching traffic at wavelength layer
- Wavelength Selective Switch (WSS): Routes signals between optical fibers on a perwavelength basis
- Variable Optic Attenuator (VOA) : Reduces power level of optical signal
- Optical Channel Monitor (OCM): Used to measure channel power

Power Excursions

- Erbium-Doped Fiber Amplifier (EDFAs)
- Use Automatic Gain Control (AGC) to maintain constant target mean gain
- Amplify input channel power to target gain
- Results in deviations that perturb active channels causing excursions

Objective: Minimize ΔG

EDFA Gain Model

$$
\begin{aligned}
& P_{\text {total }}^{\text {out }}=G_{\mathrm{T}} P_{\text {total }}^{\mathrm{in}} \\
& P_{\mathrm{total}}^{\mathrm{out}}=\sum_{j=1}^{N} P_{j}^{\mathrm{in}} G_{j} \\
& \Delta G=\frac{N G_{\mathrm{T}}+G_{\mathrm{T}}}{N G_{\mathrm{T}}+G_{N+1}}
\end{aligned}
$$

$$
\begin{array}{cl}
G_{\mathrm{T}} & : \text { target mean gain } \\
G_{j} & : \text { channel gain } \\
P_{\text {total }}^{\text {in }} & : \text { total input power } \\
P_{\text {total }}^{\text {out }} & : \text { total output power } \\
N & : \text { number of active channels } \\
\Delta G & : \text { power excursion }
\end{array}
$$

Channel Index

Previous Work

- Planning phase of dynamic optical network
- [Angelou et al., 2012], [Doverspike et al., 2012], [Gringeri et al., 2013]
- Dynamic optical design and architecture
- No dynamic optical network algorithms for physical layer
- Analytical models
- [Ishii et al., 2016], [Junio et al., 2012]
- Non-real time (Junio), poor accuracy (Ishii)
- Machine learning for wavelength assignment
- [Huang et al., 2017]
- Only 24 channels, single hop system
- Kernel Bayesian regression

Our Contributions

- Design an optical testbed
- Collect real world data on optical network performance
- Develop a scalable neural network to predict power excursions at the physical layer
- Evaluate the performance using optical testbed measurements

Optical Testbed

- 5-ROADM experiment setup
- Nodes separated by 4 standard Single Mode Fiber (SMF) spans
- Each span has 2 EDFAs
- 90 channel DWDM source
- Measurements +/- 0.1 dB accuracy

Optical Testbed - Measurements Collection

Optical Testbed - Measurements Collection

Feed forward Neural Network

- Predict the maximum power excursion among all active channels

$$
y^{k}=\max _{j \in \text { ActiveChannel }} \Delta G_{j}^{k}, k \in \text { Available Channel }
$$

- Goal: Given initial channel conditions predict which new channel will minimize the effect of power excursion

New Channel $=k^{*}=\arg \min _{k \in \text { AvailableChannels }} \hat{y}^{k}$

$$
\begin{aligned}
& \vec{x}=\left[\vec{x}_{\text {Active }}, \vec{x}_{\text {Available }}\right] \\
& =[\underbrace{x_{1}, \cdots, x_{90}}_{\text {ActiveChannels }}, 0, \cdots, \underbrace{1}_{(90+k *)-\text { th }}, \cdots, 0] \in\{0,1\}^{180} \\
& \quad x_{i}= \begin{cases}1, & \text { if } i \in \text { ActiveChannel }, \forall i \in\{1, \cdots, 90\} \\
0, & \text { Otherwise }\end{cases} \\
& x_{i+90}= \begin{cases}1, & \text { if } i=k^{\star} \\
0, & \text { Otherwise }\end{cases}
\end{aligned}
$$

$$
=[\underbrace{x_{1}, \cdots, x_{90}}_{\text {ActiveChannels }}, 0, \cdots, \underbrace{1}_{(90+k *)-\text { th }}, \cdots, 0] \in\{0,1\}^{180} \quad \text { Input } \quad \begin{aligned}
& \text { Hidden } \\
& \text { Layer } 1
\end{aligned} \text { Lidden Liyer 2 Lidden } \begin{array}{llll}
\text { Layer 3 } & \text { Layder 4 }
\end{array} \text { Output }
$$

Feed forward Neural Network

- Test neural network parameters
- Activation functions
- Number of layers
- Number of neurons per layer
- Optimal Performance
- 4 Hidden Layers: 180, 120, 30, 15 neurons
- Tanh activation for hidden layers
- Linear activation for the output layer

Input	Hidden	Hidden	Hidden	Hidden	Output
	Layer 1	Layer 2	Layer 3	Layer 4	

$x_{i}= \begin{cases}1, & \text { if } i \in \text { ActiveChannel, } \forall i \in\{1, \cdots, 90\} \\ 0, & \text { Otherwise }\end{cases}$
$x_{i+90}= \begin{cases}1, & \text { if } i=k^{\star} \\ 0, & \text { Otherwise }\end{cases}$

Outline

- Design an optical testbed
- Collect real world data on optical network performance
- Develop a scalable neural network to predict power excursions at the physical layer
- Evaluate the performance using optical testbed measurements
- Prediction
- Recommendation
- Classification

Prediction Results

- Training: 67,200 samples
- Test Points: $n=8,400$ samples
- Excursion:
$y_{l}=\max _{j \in \text { ActiveChannel }} \Delta G_{j}^{k}, k \in$ Available Channel, $\forall l \in\{1, \ldots n\}$
- For Neural Network (NN) comparison Ridge Regression (RR) is trained and parameters tuned on the same data set

Prediction Performance Evaluation

- Training: 67,200 samples
- Test Points: $n=8,400$ samples
- Excursion:
$y_{l}=\max _{j \in \text { ActiveChannel }} \Delta G_{j}^{k}, k \in$ Available Channel, $\forall l \in\{1, \ldots n\}$
- Test data Root Mean Square Error (RMSE):

$$
R M S E_{\text {Test }}=\sqrt{\frac{1}{n} \sum_{l=1}^{n}\left(y_{l}-\hat{y}_{l}\right)^{2}}
$$

- Test data Mean Absolute Error (MAE):

$$
M A E_{\text {Test }}=\frac{1}{n} \sum_{l=1}^{n}\left|y_{l}-\hat{y}_{l}\right|
$$

ϵ-Recommendation Accuracy

- Training: 67,200 samples
- Test Cases: 210
- Test Points: $n=8,400$ samples

Recommendation Error $=\epsilon=\left|y^{\hat{k}^{*}}-y^{k^{*}}\right|$

Classification Accuracy

- Classification: predict if excursion below threshold

1 : Below Threshold
0 : Above Threshold

- Set threshold of excursion to 0.5 dB

True Positive Rate (TPR) or Recall $=$ $\frac{\text { TruePositive }}{\text { TruePositive }+ \text { FalseNegative }}$

False Positive Rate $(\mathrm{FPR})=$ FalsePositive
$\overline{\text { FalsePositive }+ \text { TrueNegative }}$

Classification: Precision at Recall Rate (PSRR)

- Priority for reliable optical system operation:

1. Minimize false positives: Violates SLA
2. Minimize false negatives: Wastes open bandwidth

True Positive Rate (TPR) or Recall $=$

$$
\frac{\text { TruePositive }}{\text { TruePositive }+ \text { FalseNegative }}
$$

Precision $(\mathrm{PPV})=$ TruePositive

TruePositive + FalsePositive

Summary

- Fabricated a 90-channel multi-hop ROADM optical testbed for data collection
- Developed a neural network to predict optical power excursions
- Demonstrated very good performance
- Prediction: Average prediction error on each channel below 0.1 dB
- Recommendation: Pick best channel (out of 40), over 70\% of the time
- Classification: Predict maximum excursion to be less than 0.5 dB threshold with a precision of over $\mathbf{9 9 \%}$ while obtaining a true positive rate greater than 55\%
- Future Work:
- Machine learning solution for ring and mesh networks
- Implementation in Optical Software Defined Networks (OSDN)

Thank you!

clg2168@columbia.edu

Craig Gutterman ${ }^{1}$, Weiyang Mo^{2}, Shengxiang $\mathrm{Zhu}{ }^{2}$, Yao Li^{2}, Daniel C. Kilper ${ }^{2}$ and Gil Zussman ${ }^{1}$

Neural Network Based Wavelength Assignment in Optical Switching

THE UNIVERSITY OF ARIZONA
College of
Optical Sciences

