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Optical Networks

•  Modern networks are static, ‘set and forget’ approach
–  Overprovisioned, manual configuration

•  Optical devices are capable of switching and dynamic operation
–  Wavelength selective switches, modulators, tunable lasers, and filters



Dynamic Optical Networks
•  Currently no real-time capacity management, wavelength 

reconfiguration and service provisioning in optical networks
–  Provision wavelength
–  Re-route/switch wavelength

•  Service providers need to ensure reconfiguration will not affect 
service level agreement
–  Consider optical power dynamics: WDM channels are highly interactive 

•  Disturbances grow in cascade, propagate through network

–  Current provisioning takes minutes to days per wavelength—cautious 
‘adiabatic’ tuning to avoid disruptions 

•  Goal: Given active channel conditions, determine the placement 
of a new wavelength channel to minimize power excursions 
under real-time, rapid reconfiguration



Optical Network Components

•  Erbium-Doped Fiber Amplifier (EDFA): Optical amplifier to boost intensity of optical 
signal

•  Reconfigurable Optical Add-Drop Multiplexer (ROADM): Allows for remotely switching 
traffic at wavelength layer

•  Wavelength Selective Switch (WSS): Routes signals between optical fibers on a per-
wavelength basis

•  Variable Optic Attenuator (VOA) : Reduces power level of optical signal 

•  Optical Channel Monitor (OCM): Used to measure channel power
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Power Excursions
•  Erbium-Doped Fiber Amplifier (EDFAs) 

–  Use Automatic Gain Control (AGC) to maintain constant target mean gain 

–  Amplify input channel power to target gain

–  Results in deviations that perturb active channels causing excursions
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EDFA Gain Model
: target mean gain 

: channel gain

: total input power

: total output power

: number of active channels

: power excursion
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•  Planning phase of dynamic optical network
–  [Angelou et al., 2012], [Doverspike et al., 2012], [Gringeri et al., 2013]

–  Dynamic optical design and architecture

–  No dynamic optical network algorithms for physical layer 

•  Analytical models
–  [Ishii et al., 2016], [Junio et al., 2012] 

–  Non-real time (Junio), poor accuracy (Ishii)

•  Machine learning for wavelength assignment
–  [Huang et al., 2017]

–  Only 24 channels, single hop system

–  Kernel Bayesian regression

Previous Work



•  Design an optical testbed
•  Collect real world data on optical network performance

•  Develop a scalable neural network to predict power excursions 
at the physical layer 

•  Evaluate the performance using optical testbed measurements

Our Contributions



Optical Testbed and Data Collection 



•  5-ROADM experiment setup
–  Nodes separated by 4 standard Single Mode Fiber (SMF) spans
–  Each span has 2 EDFAs

–  90 channel DWDM source

–  Measurements +/- 0.1 dB accuracy

Optical Testbed
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Optical Testbed – Measurements Collection
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2,100 measurement cases
•  3-5 active channels

•  40 new channels added/removed 
one at a time 

•  40 samples/case

84,000 samples
•  Training: 1,680 cases (67,200 samples)
•  Validation: 210 cases (8,400 samples)
•  Test: 210 cases (8,400 samples)
•  Data collection: ~4 seconds/sample 
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•  Goal: Given initial channel conditions predict which new 
channel will minimize the effect of power excursion

Feed forward Neural Network
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•  Predict the maximum power excursion among all active channels



•  Test neural network parameters
–  Activation functions

–  Number of layers

–  Number of neurons per layer

•  Optimal Performance
–  4 Hidden Layers: 180, 120, 30, 15 neurons

–  Tanh activation for hidden layers

–  Linear activation for the output layer

Feed forward Neural Network
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•  Design an optical testbed
•  Collect real world data on optical network performance

•  Develop a scalable neural network to predict power excursions 
at the physical layer 

•  Evaluate the performance using optical testbed measurements
–  Prediction

–  Recommendation

–  Classification

Outline



Prediction Results
•  Training: 67,200 samples

•  Test Points: n = 8,400 samples

•  Excursion:
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•  For Neural Network (NN) comparison Ridge Regression (RR) is trained and 
parameters tuned on the same data set

yl = max
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j , k 2 Available Channel, 8l 2 {1, ...n}



Prediction Performance Evaluation
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•  Test data Root Mean Square Error (RMSE):

•  Test data Mean Absolute Error (MAE):
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•  Training: 67,200 samples

•  Test Points: n = 8,400 samples
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 -Recommendation Accuracy
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•  Training: 67,200 samples
•  Test Cases: 210
•  Test Points: n = 8,400 samples

 (d
B)

F(
 ) 

(%
)

 (dB)Case Number

✏

✏

✏ ✏

Recommendation Error = ✏ = |yk̂
⇤
� yk

⇤
|



•  Classification: predict if 
excursion below threshold
1 : Below Threshold

0 : Above Threshold 

•  Set threshold of excursion to ���
0.5 dB

Classification Accuracy
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•  Priority for reliable optical 
system operation:
1.  Minimize false positives:       

Violates SLA

2.  Minimize false negatives: 
Wastes open bandwidth

Classification: Precision at Recall Rate (PSRR)
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•  Fabricated a 90-channel multi-hop ROADM  optical testbed for data 
collection

•  Developed a neural network to predict optical power excursions
•  Demonstrated very good performance

–  Prediction: Average prediction error on each channel below 0.1 dB
–  Recommendation: Pick best channel (out of 40), over 70% of the time
–  Classification: Predict maximum excursion to be less than 0.5 dB threshold 

with a precision of over 99% while obtaining a true positive rate greater than 
55%

•  Future Work:
–  Machine learning solution for ring and mesh networks
–  Implementation in Optical Software Defined Networks (OSDN)

 

Summary
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