Performance Evaluation of WebRTC-based Video Conferencing

Delft University of Technology

- Bart Jansen
- Fernando Kuipers

Columbia University

- Timothy Goodwin
- Varun Gupta
- Gil Zussman

IFIP WG 7.3 Performance 2017
Bart Jansen

WebRTC

- Web Real Time Communications
- Audio Video and Data communication
- Standard by W3C and IETF since 2012
- Benefits
 - Plugin less
 - Peer to peer
 - Cross browser/platform
 - Easy to use (API)

Research motivations

- WebRTC is a new emerging technology
 - Easy to use
 - Adobe Flash dying out
- Fast changing protocol under active development
- Study WebRTC's performance for both simulated and real world conditions

WebRTC – Topologies

The way network nodes are arranged in a network

Peer to Peer

Server to Client

Meshed

WebRTC – Interoperability

Adoption

	2012	2013	2014	2015	2016
Desktop	2,01%	$22,\!06\%$	30,90%	$36,\!53\%$	$68,\!51\%$
Mobile and Tablet	0%	1,75%	$12,\!32\%$	28,94%	41,59%

Media codecs

COLUMBIA

- Browser compatibility
 - Support for older browsers with plugin

Congestion Control

Congestion occurs when a node carries more data than it can handle

- Google Congestion Control Algorithm
 - Dynamically adjusts send and receive rate
- Receiver: delay based
- Sender: loss based Adaptive m_i threshold RTP Arrival-time Over-use m_i filter detector Sender side signal controller **RTCP** REMB Ar Rate controller

Congestion Control

Receiver side (delay based):

$$A_r(i) = \begin{cases} \eta A_r(i-1) & \text{Increase} \\ \alpha R(i) & \text{Decrease} \\ A_r(i-1) & \text{Hold} \end{cases} \qquad \eta = 1.05$$

Sender side (packet loss based):

$$A_s(i) = \begin{cases} A_s(i-1)(1-0.5f_l(i)) & f_l(i) > 0.1\\ 1.05A_s(i-1) & f_l(i) < 0.02\\ A_s(i-1) & \text{otherwise} \end{cases}$$

$$A_s(i) = \min(A_s(i), A_r(k))$$

Experimental test setup Synthetic network conditions

- Custom video stream
- Network limiter
- Statistics via RTCStatsReport

Experimental test setup

- Avoid CPU and memory limitations
- 5 tests averaged
- Statistics:
 - Data rate (kbps)
 - Framerate (fps)
 - Resolution (width * height) (pixels)
 - Round-trip-time (ms)
- Source code available at: https://github.com/Wimnet/webrtc_performance

- Baseline experiments
- Cross traffic
- Multi-party topologies
- Video codecs
- Mobile browsers
- Real wireless networks

Network characteristics – Packet loss

- As expected
 - 5% converges to maximum data rate
 - > 10% converge to minimum data rate

Network adaptability – Bandwidth

- 77% utilization
- Follows GCC rates after minute 1: $1000 * 1.05^{17} = 2300 \text{ kbps}$
- Also after minute 3:

$$500 * 1.05^{18} = 1200 \, kbps$$

Cross traffic – Intra-protocol fairness

- Three separate calls with 2Mbps limit
- Fairness is reached with delay

Performance Evaluation Cross traffic – Inter-protocol fairness

- 2Mbps limit
- Competing TCP flows
- Fairness can be improved

Multi-party - Meshed

2,3 and 4 personalls

Results average uplink and downlink

Performance Evaluation Multi-party - SFU

Less uplink bandwidth required

Performance Evaluation Video codec comparison

- VP8 (default), VP9 and H.264
- Room for improvement:
 - H.264 needs to balance between framerate and resolution
 - VP9 needs to scale up when congestion disappears

Experimental test setup Wireless performance

- 3 nodes:
 - Local wireless node (NYC)
 - Local wired node (NYC)
 - Remote wired nodes (Oregon or Sydney)
- Varying:
 - AP transmission power (to 1mW)
 - Distance from AP (5ft 25ft)
 - MAC retry limit

Wireless network conditions

5ft vs 25ft AP distance

Sydney

Results

Near

 Higher RTTs results in more packet loss and lower quality

250

Performance Evaluation Wireless network conditions

- Limit retransmissions in AP
 - From MAC retry limit 1 (min) and 15 (max)
- Results
 - Trade off between RTT and packet loss
 - Less video freezes

Time (mm:ss)

GCC relies too heavy on packet loss

Time (mm:ss)

Summary

- Improved browser interoperability
- Thorough evaluation of WebRTC
 - Custom video stream
 - Similar results
- Improved cross traffic fairness
- Poor performance over wireless due to:
 - Bursty losses
 - Packet retransmissions

Conclusions

- Heavily reliant on packet loss
- Multi-party
 - When more than 3 people: Add SFUs
- Room for improvement
 - Mobile performance
 - Video codecs

Future Work

- Take CPU limitations into account
 - Energy consumption (battery)
 - Call characteristics when CPU is exhausted

- Simulate Google Congestion Control
- Tests with cellular connections

