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Experimental Evaluation of Large Scale WiFi
Multicast Rate Control

Varun Gupta, Craig Gutterman, Yigal Bejerano, and Gil Zussman

Abstract—WiFi multicast to very large groups has gained
attention as a solution for multimedia delivery in crowded areas.
Yet, most recently proposed schemes do not provide performance
guarantees and none have been tested at scale. To address the
issue of providing high multicast throughput with performance
guarantees, we present the design and experimental evaluation
of the Multicast Dynamic Rate Adaptation (MuDRA) algorithm.
MuDRA balances fast adaptation to channel conditions and sta-
bility, which is essential for multimedia applications. MuDRA re-
lies on feedback from some nodes collected via a light-weight
protocol and dynamically adjusts the rate adaptation response
time. Our experimental evaluation of MuDRA on the ORBIT
testbed with over 150 nodes shows that MuDRA outperforms
other schemes and supports high throughput multicast flows
to hundreds of receivers while meeting quality requirements.
MuDRA can support multiple high quality video streams, where
90% of the nodes report excellent or very good video quality.

Index Terms—WiFi Multicast, Rate Adaptation, Large-Scale
Evaluation

I. INTRODUCTION

Multimedia (e.g., video) delivery is an essential service for
wireless networks and several solutions were proposed for
crowded venues [2]–[4]. Most of them are based on dense
deployments of Access Points (APs) and require consider-
able capital and operational expenditure, may suffer from
interference between APs, and may exacerbate hidden node
problems [5], [6]. Multicast offers another approach for video
delivery to large groups of users interested in venue specific
content (e.g., sports arenas, entertainment centers, and lecture
halls). However, WiFi networks provide limited multicast
support at a low rate (e.g., 6Mbps for 802.11a/g) without a
feedback mechanism that guarantees service quality. To im-
prove performance, there is a need for a multicast system that
dynamically adapts the transmission rate [7]. Yet, designing
such a system poses several challenges, as outlined below.
Multicast Rate Adaptation (RA) - Challenges: A key
challenge in designing multicast RA schemes for large groups
is to obtain accurate quality reports with low overhead. Some
systems [8]–[10] experimentally demonstrated impressive abil-
ity to deliver video to a few dozen nodes by utilizing Forward
Error Correction (FEC) codes and retransmissions. However,
most approaches do not scale to very large groups with
hundreds of nodes, due to the following:
(i) Most schemes tune the rate to satisfy the receiver with the
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Fig. 1. The Adaptive Multicast Services (AMuSe) system consisting of the
Multicast Dynamic Rate Adaptation (MuDRA) algorithm and a multicast
feedback mechanism.

worst channel condition. As shown in [11], [12] in crowded
venues, a few unpredictable outliers, referred to as abnormal
nodes, may suffer from low SNR and Packet Delivery Ratio
(PDR) even at the lowest rate and without interference. This
results from effects such as multipath and fast fading [13].
Therefore, a multicast scheme cannot provide high rate while
ensuring reliable delivery to all users.
(ii) It is impractical to continuously collect status reports from
all or most users without hindering performance. Even if feed-
back is not collected continuously, a swarm of retransmission
requests may be sent following an interference event thereby
causing additional interruptions.

To overcome these challenges, a multicast system should
conduct efficient RA based on only limited reports from
the nodes. We have been developing the Adaptive Multicast
Services (AMuSe) system for content delivery over WiFi
multicast. In our recent papers [11], [14], we focused on
efficient feedback collection mechanisms for WiFi multicast
as part of the AMuSe system. In this paper, we present
the Multicast Dynamic Rate Adaptation (MuDRA) algorithm.
MuDRA leverages the efficient multicast feedback collection of
AMuSe and dynamically adapts the multicast transmission rate
to maximize channel utilization while meeting performance
requirements. Fig. 1 shows the overall AMuSe system com-
posed of (i) MuDRA algorithm, and (ii) a feedback mechanism.
Before describing MuDRA, the overall AMuSe system design,
and our contributions in detail, we now first briefly outline the
related work relevant to the system design.

A. Related Work

Unicast RA, multicast feedback schemes, and multicast RA
have received considerable attention (see surveys in [15], [16]).
Unicast RA: We discuss unicast RA schemes, since they can
provide insight into the design of multicast RA. In Sampling-
based algorithms, ACKs after successful transmissions as well
as the relation between the rate and the success probability
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are used for RA after several consecutive successful or failed
transmissions [17]–[19]. The schemes in [20]–[22] distinguish
between losses due to poor channel conditions and colli-
sions, and update the rate based on former. Recently, [23],
[24] proposed multi-arm bandit based RA schemes with a
statistical analysis of performance. However, such schemes
cannot support multicast, since multicast packets are not
acknowledged. In Measurement-based schemes, the receiver
reports the channel quality to the sender which determines the
rate [25]–[30]. Most measurement-based schemes modify the
wireless driver on the receiver end and some require changes
to the standard, which we avoid.
Multicast Feedback Mechanisms: Solutions for improving
multicast service quality are based on collecting feedback
from the receivers and adapting the sender rate. They inte-
grate Automatic Repeat Request (ARQ) mechanisms into the
protocol [9], [31]–[37], add Forward Error Correction (FEC)
packets [8], [38]–[40], and utilize RA methods [33], [41]–
[43]. The feedback mechanisms can be classified into five
categories:
(i) Collecting Individual Feedback from all users for each
received packet [8], [32], [37], [44]–[47]. Although this offers
reliability, it does not scale for large groups. The other ap-
proaches provide scalability by compromising on the feedback
accuracy.
(ii) The Leader-Based Protocol with acknowledgements (LBP-
ACK) method [10], [33], [34], [39], [46] selects a few
receivers to provide feedback, typically the receivers with the
lowest channel quality.
(iii) Pseudo-Broadcast [9], [10], [48] converts the multicast
feed to a unicast flow and sends it to one leader. The leader
acknowledges the reception of the unicast flow while the
other receivers receive packets by listening to the channel in
promiscuous mode.
(iv) The Leader-Based Protocol with negative acknowledge-
ments (LBP-NACK) [31], [43], [49] method improves Pseudo-
Broadcast by allowing the other receivers to send NACKs for
lost packets.
The leader based approaches (ii)-(iv) cannot provide guar-
antees on the feedback accuracy [11], [37]. Moreover, most
LBP-ACK and LBP-NACK methods require changes to the
standard.
(v) Cluster-Based Feedback Mechanisms [11], [32], [37], [50]
handle the scalability issue by using the fact that adjacent
receivers experience similar service quality. They partition the
receivers into clusters and select the receiver with the weakest
channel condition at each cluster as a feedback (FB) node that
sends status reports to the sender. These methods, however,
do not guarantee reliable delivery to all receivers.

Additionally, [38], [40], [51] propose to use strong FEC for
overcoming losses without specifying any feedback mecha-
nism. Others [9], [10], [37], [43] balance between the accuracy
requirements and low overhead by using a combination of
methods (e.g., Pseudo-Broadcast with infrequent reports from
the other receivers). The recently proposed IEEE 802.11aa [52]
amendment specifies protocols for multicast feedback. How-
ever, it is not designed to scale to hundreds of receivers and it
does not specify a rate adaptation mechanism. We believe that

the Block Acknowledgement based feedback mechanism pro-
posed in the 802.11aa standard could be especially attractive
and compatible for rate adaptation approach in MuDRA .
Multicast RA and Coding: In [9], [33], [41], [42], [53]
the sender uses feedback from leaders (nodes with worst
channel conditions) for RA. In [43] RA is conducted based
on reports of a single leader or all nodes depending on
channel conditions. Network coding schemes [54], [55] have
been extensively used for ensuring reliable multicast to large
number of receivers. Further, rateless coding schemes [56],
[57] have been extensively studied for wireless multicast.

Medusa [10] combines pseudo-multicast with infrequent
application layer feedback reports from all nodes. The MAC
layer feedback sets backoff parameters while application layer
feedback is used for RA and retransmissions. An anonymous
query scheme to maximize multicast throughput by inferring
the maximum transmission rate that satisfies all receivers was
proposed in [58]. Recently, in [11] we considered multicast
to a large set of nodes and provided a rudimentary RA
scheme which is not designed to achieve optimal rate, maintain
stability, or respond to interference.

B. Our Contributions

We present a multicast rate adaptation algorithm Mu-
DRA which is designed to support WiFi multicast to hun-
dreds of users in crowded venues. MuDRA can provide high
throughput while ensuring high Quality of Experience (QoE).
MuDRA benefits from a large user population, which allows
selecting a small yet sufficient number of Feedback (FB) nodes
with marginal channel conditions for monitoring the quality.
We address several design challenges related to appropriate
configuration of the feedback level.

We note that using MuDRA does not require any modifi-
cations to the IEEE 802.11 standard or the mobile devices.
MuDRA requires application layer measurements from mobile
devices for multicast rate adaptation decisions. The multicast
rate changes can be supported by most APs through changes
in the driver-level code or through API calls (e.g., Asus APs
provide simple API calls [59]). During our experiments, we
utilized API calls for the ath5k driver on the ORBIT nodes.1

We implemented MuDRA with the AMuSe system on the
ORBIT testbed [60], evaluated its performance with all the
operational IEEE 802.11 nodes (between 150 and 200), and
compared it to other multicast schemes. We use 802.11a to
maximize the number of WiFi devices available2. To the best
of our knowledge, this is the largest set of wireless devices
available to the research community. Our key contributions
are:
(i) The need for RA: We empirically demonstrate the impor-
tance of RA. Our experiments on ORBIT show that when the
multicast rate exceeds an optimal rate, termed as target-rate,

1The API calls provide a flexible way to implement the rate adaptation
algorithms on the application layer. However, the rate change operations
may suffer from small latency (approximately 20-50ms in our measurements
which is much faster than the scale of rate changes). Another alternative is
implementing the rate change algorithm in the driver, which may require AP
specific changes but result in faster rate changes.

2The ORBIT testbed supports only about 30 802.11n enabled devices
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numerous receivers suffer from low PDR and their losses can-
not be easily recovered by retransmissions due to large num-
ber of retransmisisons and associated control data required.
Error corrrection schemes such as rateless codes [61], [62]
or network coding schemes [54], [55] may recover intended
information in the presence of a large number of random
packet erasures. Nevertheless, they assume that the underlying
rate in the physical layer has been given. Therefore, the actual
throughput or delay performance of rateless or network codes
depends critically on the rate adaptation in the physical layer.
We also observed that even a controlled environment, such
as ORBIT, can suffer from significant interference. These
observations constitute the need for a stable and interference
agnostic RA algorithm that does not exceed the target-rate.
(ii) Practical method to detect the target-rate: Pseudo-
multicast schemes that rely on unicast RA [9] may occasion-
ally sample higher rates and retreat to a lower rate after a
few failures. Based on the observation above about the target
rate, schemes with such sampling mechanisms will provide
low QoE to many users. To overcome this, we developed a
method to detect when the system operates at the target-rate,
termed the target condition. Although the target condition is
sufficient but not necessary, our experiments show that it is
almost always satisfied when transmitting at the target-rate.
MuDRA makes RA decisions based on the target condition
and employs a dynamic window based mechanism to avoid
rate changes due to small interference bursts.
(iii) Extensive experiments with hundreds of receivers: Our
experiments demonstrate that MuDRA swiftly converges to the
target-rate, while meeting the Service Level Agreement (SLA)
requirements (e.g., ensuring PDR above 85% to at least 95%
of the nodes). Losses can be recovered by using appropriate
application-level FEC methods [38], [40], [51], [63], [64].

MuDRA is experimentally compared to (i) pseudo-multicast
with a unicast RA [65], (ii) fixed rate, and (iii) a rate adaptation
mechanism proposed in [11] which we refer to as the Simple
Rate Adaptation (SRA) algorithm. MuDRA achieves 2x higher
throughput than pseudo-multicast while sacrificing PDR only
at a few poorly performing nodes. While the fixed rate and
SRA schemes can obtain similar throughput as MuDRA, they
do not meet the SLA requirements. Unlike other schemes,
MuDRA preserves high throughput even in the presence of
interference. Additionally, MuDRA can handle significant node
churn. Finally, we devise a live multicast video delivery
approach for MuDRA. We show that in our experimental
settings with target rate of 24−36Mbps, MuDRA can deliver 3
or 4 high definition H.264 videos (each one of 4Mbps) where
over 90% of the nodes receive video quality that is classified
as excellent or good based on user perception.

To summarize, to the best of our knowledge, MuDRA is the
first multicast RA algorithm designed to satisfy the specific
needs of multimedia/video distribution in crowded venues.
Moreover, AMuSe in conjunction with MuDRA is the first
multicast content delivery system that has been evaluated at
scale. The rest of the paper is organized as follows. Section II
describes the ORBIT testbed and important observations. Sec-
tion III presents the model and objectives. MuDRA’s design is
described in Sections IV and V. The experimental evaluation
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Fig. 2. Experimental measurement of the number of abnormal nodes in time,
for fixed rates of 24 and 36Mbps.
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Fig. 3. The CDF of the PDR values of 170 nodes during normal operation
and during a spike at rate of 36Mbps.

is presented in Section VI before concluding in Section VII.

II. TESTBED AND KEY OBSERVATIONS

We evaluate MuDRA on the ORBIT testbed [60], which
is a dynamically configurable grid of 20 × 20 (400) 802.11
nodes where the separation between nodes is 1m. It is a good
environment to evaluate MuDRA, since it provides a very
large and dense population of wireless nodes, similar to the
anticipated crowded venues.
Experiments: To avoid performance variability due to a
mismatch of WiFi hardware and software, only nodes equipped
with Atheros 5212/52133 cards with ath5k driver were se-
lected. For each experiment we activated all the operational
nodes that meet these specifications (between 150 and 250
nodes). In each experiment, the number of active nodes varied
slightly due to testbed hardware issues and is known at the
beginning of each experiment. We account for these variations
in the number of nodes and normalize our experimental results
wherever necessary. In all the experiments, one corner node
served as a single multicast AP. The other nodes were multicast
receivers. The AP used 802.11a to send a multicast UDP flow,
where each packet was 1400 bytes. Most practical applications
such as video streaming include a sequence number to keep
track of packet delivery at the clients. We embed an artificial
sequence number for each packet in the UDP payload for
measurement purposes. The AP used the lowest supported
transmission power of 1mW = 0dBm to ensure that the channel
conditions of some nodes are marginal.
Technical challenges: While analyzing the performance, we
noticed that clients disconnect from the AP at high bit-rates,
thereby causing performance degradation. We noticed that in

3We do not expect variability in hardware or software to have a major
impact on the performance, since MuDRA does not use transceiver specific
metrics such as RSSI or SNR. Instead, MuDRA relies on measuring Packet
Delivery Ratio (PDR) performance for making rate change decisions.
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TABLE I
NOTATION AND PARAMETER VALUES USED IN EXPERIMENTS.

Symbol Semantics Exp.
Val.

n Number of nodes associated with the AP. > 150
X Population threshold - Minimal fraction of nodes

that should experience high PDR.
95%

Amax The maximal number of allowed abnormal nodes. 8
L PDR threshold - Threshold between acceptable

(normal) and low (abnormal) PDR.
85%

H Threshold between high PDR and mid-PDR. 97%
K Expected number of FB nodes, K = α ·Amax. 30
R Reporting PDR threshold.
At Number of abnormal nodes at time t.
Mt Number of mid-PDR FB nodes at time t.
Wmin Minimal RA window size (multiples of reporting

intervals).
8

Wmax Maximal RA window size. 32

several WiFi driver implementations, the beacon rate is set
as the multicast rate. Increasing the bit-rate also increases the
WiFi beacon bit-rate which may not be decoded at some nodes.
A sustained loss of beacons leads to node disconnection. To
counter this, we modified the ath5k driver to send beacons at
a fixed minimum bit-rate.
Interference and Stability: We study the time variability of
the channel conditions on the ORBIT testbed by measuring
the number of nodes with low PDR (below a threshold of
85%). We call these nodes abnormal nodes (the term will
be formally defined in Section III). The number of abnormal
nodes out of 170 nodes for rates of 24 and 36Mbps is shown
in Fig. 2. We repeated these experiments several times and
observed that even at a low rate, the channel may suffer from
sporadic interference events, which cause a sharp increase
in the number of abnormal nodes. These interference spikes
caused by non-WiFi devices are beyond our control and their
duration varies in time.

Fig. 3 provides the Cumulative Distribution Function (CDF)
of the PDR values with and without sporadic interference.
The figure shows that during a spike, over 15% of the nodes
suffer from PDR around 50%. Further, the location of the
nodes affected by the spikes varies with time and does not
follow a known pattern. These experiments show that even in
a seemingly controlled environment, nodes may suffer from
sporadic continuous interference, which may cause multicast
rate fluctuations. Users are very sensitive to changes in video
quality [66], [67], and therefore, to keep a high QoE we would
like to avoid rate changes due to sporadic interference.

III. NETWORK MODEL AND OBJECTIVE

We consider a WiFi LAN with multiple APs and frequency
planning such that the transmissions of adjacent APs do not
interfere with each other. Thus, for RA we consider a single AP
with n associated users. We assume low mobility (e.g., users
watching a sports event). Although we consider a controlled
environment, the network may still suffer from sporadic inter-
ference, as shown in Section II. The main notation used in the
paper is summarized in Table I. Specifically, a PDR-Threshold
L, is defined such that a node has high QoE if its PDR is
above L. Such a node is called a normal node. Otherwise, it

is considered an abnormal node. Typically, the value of L will
not be too small or too large. The value of L is independent of
the MuDRA algorithm and depends solely on the desired QoE
requirements and the amount of error recovery provisioned. In
our experiments, we use L = 85%. Choosing a large L may
lead to lower transmission rate.

Our objective is to develop a practical and efficient rate
control system which satisfies the following requirements:
(R1) High throughput – Operate at the highest possible rate,
i.e., the target rate, while preserving SLAs.
(R2) Service Level Agreements (SLAs) – Given L (e.g.,
L = 85%), and a Population-Threshold X (e.g., X = 95%),
the selected rate should guarantee that at least X% of the
nodes experience PDR above L (i.e., are normal nodes).
Except for short transition periods, this provides an upper
bound of Amax = dn · (1−X)e on the number of permitted
abnormal nodes.
(R3) Scalability – Support hundreds of nodes.
(R4) Stability – Avoid rate changes due to sporadic channel
condition changes.
(R5) Fast Convergence – Converge fast to the target rate after
long-lasting changes (e.g., user mobility or network changes).
(R6) Standard and Technology Compliance – No change to
the IEEE 802.11 standard or operating system of the nodes.

IV. MULTICAST RATE ADAPTATION

The overall multicast rate adaptation process of MuDRA as a
part of the AMuSe system relies on three main components,
as illustrated in Fig. 1 and discussed below. We first provide
a high level description of each component and then discuss
the details in the following subsections.
(i) Feedback (FB) Node Selection: Selects a small set of
FB nodes that provide reports for making RA decisions. We
describe the FB node selection process in Section IV-A and
calculate the reporting interval duration in Section V.4

The following two components compose the MuDRA Algo-
rithm (Algorithm 1). It collects the PDR values from the FB
nodes, updates their status (normal or abnormal), invokes the
GETRATE procedure, which calculates the desired rate, and
invokes the GETWINSIZE procedure, which determines the
window size of rate updates (to maintain stability). A summary
of notation used to describe the algorithm is shown in Table II.
(ii) Rate Decision (Procedure 1): Utilizes the limited and
infrequent FB reports to determine the highest possible rate,
termed the target-rate, while meeting the requirements in
Section III. The rate decisions (lines 5–15) rely on rate
decision rules that are described in Section IV-B.

The core of the rate adaptation algorithm relies on predicting
the number of nodes that will suffer from low PDR values
before performing a rate increase operation. A rate increase is
performed, only if such nodes are few in number. On the other
hand, if a large number of nodes violate the SLA requirements,
the rate is immediately decreased. Further, to maintain rate
stability, rate change operations are permitted, only if the
conditions for rate change are satisfied for time equal to a
window size (determined by the Stability Preserving Method).

4Unlike in unicast where each packet is acknowledged, MuDRA’s reporting
intervals are long (in the experiments we consider 2 reports per second).
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TABLE II
NOTATION USED IN MuDRA ALGORITHM.

Symbol Semantics
Ât Estimated number of abnormal nodes.
M̂t Estimated number of mid-PDR nodes.
changeT ime Time slot of last rate increase or decrease.
ratemin Minimum multicast rate supported by hardware.
ratemax Maximum multicast rate supported by hardware.
ε A fixed small constant.

Algorithm 1 MuDRA Algorithm
1: rate ← lowestRate, window ← Wmin, changeT ime ← t,

refT ime← t, t := current time
2: while (true) do
3: Get PDR reports from all FB nodes
4: Get Status of each FB node i
5: Calc Ât and M̂t

6: rate, action, changeT ime← GetRate(...)
7: window, refT ime← GetWinSize(...)
8: set multicast rate to rate
9: sleep one reporting interval

(iii) Stability Preserving Method (Procedure 2): A window
based method that maintains rate stability in the event of
sporadic interference and after an RA decision. It follows the
classical Additive Increase Multiplicative Decrease (AIMD)
approach. The duration of the time window varies according
to the network and channel characteristics (e.g., the typical
duration of interference). More details appear in Section IV-C.

A. Feedback Node Selection

MuDRA uses a simple and efficient mechanism based on
a quasi-distributed FB node selection process, termed K-
Worst [11], where the AP sets the number of FB nodes and
their reporting rates. K nodes with the worst channel condi-
tions are selected as FB nodes (the node’s channel condition is
determined by its PDR). Hence, the selection process ensures
an upper bound on the number of FB messages, regardless
of the multicast group size. This upper bound is required
for limiting the interference from FB reports, as explained
in Section V. The process works as follows: At the beginning
of each reporting interval the AP sends a message with a list
of K or less FB nodes as well as a reporting PDR threshold
R. R is used for adjusting the set of FB nodes to changes
due to mobility or variation of the channel condition, i.e.,
interference5. Upon receiving this message, each FB node
waits a short random time for avoiding collisions and then
reports its measured PDR to the AP. Every other node checks
if its PDR value is below R and in such situation it volunteers
to serve as an FB node. To avoid a swarm of volunteering
messages in the case of sporadic interference, a non FB
node verifies that its PDR values are below R for three
consecutive reporting intervals before volunteering. At the end
of a reporting interval, the AP checks the PDR values of all
the FB and volunteering nodes, it selects the K with lowest
PDR values as FB nodes and updates R. If the number of
selected FB nodes is K then for keeping the stability of the
FB list, R is set slightly below the highest PDR value of the

5when the system is activated the FB list is empty and R = L.

Procedure 1 Rate Decision
1: procedure GETRATE(rate, window, changeT ime, t)
2: action← Hold
3: if (t− changeT ime) > window then
4: canDecrease← true, canIncrease← true
5: for τ ← 0 to window do
6: if Ât−τ < Amax then
7: canDecrease← false
8: else if Ât−τ + M̂t−τ > Amax − ε then
9: canIncrease← false

10: if canDecrease and rate > ratemin then
11: rate← NextLowerRate
12: action← Decrease, changeT ime← t

13: if canIncrease and rate < ratemax then
14: rate← NextHigherRate
15: action← Increase, changeT ime← t

16: return rate, action, changeT ime

Procedure 2 Window Size Determination
1: procedure GETWINSIZE(Action,window, refT ime, t)
2: if Action = Decrease then
3: window ← min(Wmax, 2 · window), refT ime← t
4: else if Action = Increase then
5: refT ime← t
6: else if (t− refT ime) > thresholdT ime
7: and Action = Hold then
8: window ← max(Wmin, window − 1)
9: refT ime← t

10: return window, refT ime

FB nodes (e.g., 1% point below). Otherwise, R is set slightly
above the highest PDR value of the FB nodes (e.g., 0.5% point
above). The AP sends a new message and the process repeats.
We note that in a quasi static scenario, the values of R do not
have a significant impact on the feedback or the overhead of
feedback. Tuning R is a challenge only in the rare scenario
when a large number of nodes with significantly different PDR
values rapidly enter or leave the multicast system.

B. Rate Decision Rules and Procedure

In this subsection, we describe the target condition which
is an essential component of the rate selection rules. Then, we
describe the rules and the corresponding Procedure 1.
The Target Condition: At a given time, the FB reports
are available only for the current rate. To detect the target-
rate, most RA schemes occasionally sample higher rates.
However, the following experiment shows that this approach
may cause undesired disruption to many receivers. We eval-
uated the PDR distribution of 160 − 170 nodes for different
multicast transmission rates, denoted as TXAP for 3 different
experiment runs on different days. Fig. 4 shows the number
of nodes in different PDR ranges for TXAP values of 24,
36, and 48Mbps for one experiment with 168 nodes. When
TXAP is at most 36Mbps, the number of abnormal nodes
is very small (at most 5). However, when TXAP exceeds
36Mbps, the PDR of many nodes drops significantly. In this
experiment 47 nodes became abnormal nodes which is more
than Amax = 8 (for X = 95%). We observed similar results in
other experiments. Thus, in this case, the target rate is 36Mbps
which is the highest rate above which the SLA requirements
will be violated.
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Fig. 5. The percentage of nodes that remain normal after increasing the
TXAP from 36Mbps to 48Mbps vs. their PDR values at the 36Mbps for
different PDR-thresholds (L).

A key challenge is to determine if the AP operates at
the target-rate, without FB reports from higher rates. We
refer to this assessment as the target condition. Unfortunately,
the target-rate cannot be easily detected from coarse RF
measurements, such as SNR/RSSI. As shown in [68], [69]
differing receiver sensitivities as well as frequency selective
fading may result in substantial PDR gaps between nodes with
similar SNR/RSSI measurements. Receiver sensitivities differ
between different 802.11 Network Interface Cards (NICs) and
may vary based on the thermal noise, manufacturing process,
etc. Typically the noise floor in off-the-shelf commodity WiFi
hardware is not calibrated to account for these differing
sensitivities [69]. On the other hand, predicting frequency
selective fading is not possible without detailed subcarrier
information which is not widely supported in current hardware
and may lead to excessive feedback overhead [70]. However,
large scale multicast environments enable us to efficiently
predict the target condition as described next.

The above observations regarding the PDR and target rate
from Fig. 4 can be summarized as the following important
observation.
Observation I: When operating below the target-rate, almost
all the nodes have PDR close to 100%. However, when
operating at the target-rate, noticeable number of receivers
experience PDR below 97%. At 36Mbps, 17 nodes had PDR
below 97%, which is substantially more than Amax = 8.

Fig. 5 shows the average percentage of nodes that remain
normal vs. their initial PDR when increasing TXAP from
36Mbps to 48Mbps averaged for 3 different sets of experi-
ments. The total number of nodes in these experiments was
168. By calculating the percentage of abnormal nodes on the
y-axis at 48Mbps vs. the PDR values on x-axis at 36Mbps in
Fig. 5, we derive the following observation.
Observation II: There is a PDR threshold, H , such that every
node with PDR between L and H becomes abnormal after the

rate increase with very high probability. Typically, H can be a
value slightly below 100%. In our experiments on ORBIT, we
use H = 97% since 97% is the highest threshold for which this
observation holds. With a very high or very low value of H ,
we observed that the algorithm may lead to more oscillations.6

We refer to these nodes as mid-PDR nodes.
Observation II is not surprising. As reported in [68], [71],

each receiver has an SNR band of 2− 5dB, in which its PDR
drops from almost 100% to almost 0%. The SNR of mid-PDR
nodes lies in this band. Increasing the rate requires 2 − 3dB
higher SNR at the nodes. Hence, mid-PDR nodes with SNR
in the transition band before the rate increase will be below
or at the lower end of the transition band after the increase,
and therefore, become abnormal nodes.

In summary, Observations I and II imply that it is possible
to assess the target condition by monitoring the nodes close
to transitioning from normal to abnormal. Let At and Mt

denote the number of abnormal and mid-PDR nodes at time
t, respectively. We obtain the following empirical property.

Property 1 (Target Condition). Assume that at a given time
t, the following condition holds,

At ≤ Amax and At +Mt > Amax (1)

then with high likelihood, the AP transmits on the target-rate
at time t. This is sufficient but not a necessary condition.

It is challenging to analytically predict when the target
condition is satisfied with the available FB information and
without a model of the receiver sensitivity of all the nodes.
However, our experiments show that the target condition is
typically valid when operating at the target-rate.
Adjusting the Multicast Rate: The SLA requirement (R2)
and target condition (1) give us a clear criteria for changing
the rate. The FB scheme only gives us estimates of At and Mt,
denoted by Ât and M̂t respectively. For the K-Worst scheme,
if K > Amax + ε (ε is a small constant), then Ât and M̂t are
sufficient to verify if (1) is satisfied because of the following
property:

Property 2. If K ≥ Amax+ε, then, Ât = min(At, Amax+ε)
and Ât + M̂t = min(At +Mt, Amax + ε), where Ât and M̂t

are the known number of abnormal and mid-PDR known to
the AP, and ε is a small constant. In other words, given that
K is large enough, the K-worst scheme provides accurate
estimates of abnormal and mid-PDR nodes.

Proof. First consider the claim Ât = min(At, Amax + ε).
Consider the case At ≤ Amax + ε, we know that the number
of estimated abnormal nodes Ât = At since K ≥ Amax + ε
and all abnormal nodes must belong in the K FB nodes set.
Next, if At > Amax + ε then all the FB nodes chosen are
abnormal by the definition of the K-worst feedback scheme
which implies Ât = Amax + ε.

A similar argument can be made for the claim Ât + M̂t =
min(At + Mt, Amax + ε). If At + Mt ≤ Amax + ε, then
Ât+M̂t = At+Mt since the K feedback nodes will necessarily

6Further, evaluating the impact of H in different experimental conditions
is an interesting future direction.
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Fig. 6. Evolution of the multicast rate over time when the delay between rate
changes = 1s (2 reporting intervals). .

include the At abnormal and Mt mid-PDR nodes. If At +
Mt > Amax + ε, then Ât + M̂t which is upper bounded by
Amax + ε.

The objective is to choose minimum K (for minimum FB
overhead) that is sufficient to verify (1). In our experiments, we
found that for Amax = 8, K > 10 works well (Section VI-A).
We now derive the following rate changing rules:
Rule I Ât > Amax: The system violates the SLA requirement
(R2) and the rate is reduced.
Rule II Ât + M̂t ≥ Amax− ε: The system satisfies the target
condition.
Rule III Ât + M̂t < Amax − ε: The target condition does
not hold and the rate can be increased, under the stability
constraints provided in Section IV-C.
In our experiments we use ε = 2 to prevent rate oscillations.

The rate change actions in Procedure 1 are based on the
these rules. The flags canIncrease and canDecrease indicate
whether the multicast rate should be increased or decreased.
Rate change operations are permitted, only if the time elapsed
since the last rate change is larger than the window size de-
termined by the Stability Preserving Method (line 3). The for-
loop checks whether the rate should be decreased according
to Rule I (line 6) or increased according to Rule III (line 9)
for the window duration. Finally, based on the value of the
flags and the current rate, the algorithm determines the rate
change operation and updates the parameters rate and action,
accordingly (lines 10–15).

C. The Stability Preserving Method

It is desirable to change the rate as soon as Rules I or
III are satisfied to minimize QoE disruption (see (R5) in
Section III). However, as we show in Fig. 6 such a strategy
may cause severe fluctuations of the transmission rate. These
result from two main reasons: (i) the reporting mechanism
not stabilizing after the last rate change, and (ii) interference
causing numerous low PDR reports.

To address this, we introduce in Procedure 2 a window
based RA technique which considers the two situations and
balances fast convergence with stability. In Procedure 1, the
rate is changed only if the rate change conditions are satisfied
over a given time window, after the last rate change operation
(lines 5-9). To prevent oscillations due to short-term wireless
channel degradation, when the rate is reduced, the window
is doubled in Procedure 2 (line 3). The window size is
decreased by 1 when a duration thresholdT ime elapses from
the last rate or window size change (line 8). This allows

TABLE III
THE PERCENTAGE OF PDR LOSS AT NODES (∆PDR) AS A FUNCTION OF

THE REPORTING INTERVAL T .

T (ms) 100 200 300 400 500 700 1000
∆PDR% 4.69 1.56 0.94 0.67 0.52 0.36 0.25

recalibrating the window after an atypical long interference
episode. The window duration varies between Wmin and
Wmax FB reporting periods. In the experiments, Wmin = 8
and Wmax = 32.

D. Handling Losses

MuDRA can handle mild losses (below 15%) by adding
application level FEC [63] to the multicast streams. The PDR-
Threshold in our experiments (L = 85%) was selected to
allow nodes to handle losses in the event of short simultaneous
transmission of another node. In such a situation, the collision
probability is below 2/CWmin, where CWmin is the minimal
802.11 contention window. For 802.11a/g/n CWmin = 16,
which implies collision probability is below 12.5%. Therefore,
nodes with high PDR (near 100%) should be able to compen-
sate for the lost packets. If there is strong interference, other
means should be used. For instance, the multicast content can
be divided into high and low priority flows, augmenting the
high priority flow with stronger FEC during the interference
period, while postponing low priority flows.

V. REPORTING INTERVAL DURATION

MuDRA relies on status reports from the FB nodes. For
immediate response to changes in service quality, the status
reports should be sent as frequently as possible, (i.e., minimal
reporting interval). However, this significantly impairs the
system performance as described below.
Impact of Aggressive Reporting: Figs. 7(a)-7(c) show the
impact of different reporting intervals on MuDRA. In these
experiments, the number of FB nodes (K) is 50 and the total
number of nodes is 158. To focus on RA aspects, we set both
Wmin and Wmax to 5 reporting intervals. Fig. 7(a) shows
that when the reporting interval is too short, MuDRA does not
converge to the target rate of 24Mbps. Fig. 7(b) shows that in
the case of reporting interval of 100ms, more than 50% of the
packets are transmitted at the lowest rate of 6 Mbps. Fig. 7(c)
shows that the control overhead is significantly larger for short
reporting intervals (shorter than 200ms). The control overhead
comprises of unicast FB data sent by nodes and multicast data
sent by AP to manage K FB nodes.

These phenomena result from collisions between feedback
reports and multicast messages. In the event of a collision, FB
reports, which are unicast messages, are retransmitted, while
multicast messages are lost. Frequent reporting increases the
collision probability, resulting in PDR reduction and causes the
classification of many nodes as mid-PDR nodes, i.e., PDR <
Hhigh = 97%. Thus, due to Rule II from Section IV-B, the
rate is kept close to the minimal rate.
Appropriate Reporting Interval Duration:

Assume a greedy AP which continuously transmits multi-
cast messages. We now estimate the PDR reduction, denoted
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Fig. 7. (a) Rate adaptation performance for reporting intervals of 100ms, (b) Fraction of data sent at various rates with MuDRA for different reporting
intervals, and (c) Control overhead for various reporting intervals.

as ∆PDR, for a given reporting interval T and upper bound
K on the number of FB nodes (both normal and abnormal),
when the system operates at the low rate of 6Mbps.
Packet Transmission Duration: We denote with D and d
the transmission duration of multicast and feedback report
message at the rate of 6Mbps, respectively. Since the length
of each multicast packet is 12Kbits, its transmission duration
is 12Kbits

6Mbps = 2.0ms. Given WiFi overhead of about 30%, we
assume D = 3ms. The feedback messages are much shorter
and we assume that their transmission duration is d = 1ms.
Number of feedback reports and multicast messages:
Consider a time interval U , say a minute. The number of
feedback reports, denoted as F , is

F = U
T ·K

The number of multicast message B is given by,

B =
U − d · F

D
=
U

D
·
(

1− d ·K
T

)
Collision probably of a multicast packet (∆PDR): Let us
first calculate the number of contention window slots, denoted
by S, in which packet may be transmitted from the view point
of the AP during the time interval U . Recall that between any
two multicast transmissions, the AP waits an average of half
of the contention window size CWmin/2 = 8. This leads to

S = CWmin

2 ·B
∆PDR is the fraction of contention window slots in which

both the AP and a FB node send a message. To simplify
our estimation, we ignore collisions and retransmission of FB
messages, and assume that in any contention window slot only
one FB node may transmit.7 . Therefore,

∆PDR =
F

S
· B
S

=

[
2

CWmin

]2
· F
B

With proper assignment we get,

∆PDR =

[
2

CWmin

]2
· K ·D
T − d ·K

(2)

Equation (2) confirms that ∆PDR is reduced by increasing
the reporting interval or by using a higher bit-rate, which
reduces D. Table III provides the ∆PDR values for K = 50

7These are second order effects of already low collision probabilities. For
instance, the probability of a multicast message colliding with two feedback

messages can be shown equal to
[

2
CWmin

]3
· K·D
T−d·K

2
following an analysis

similar to shown in this section. This translates to a collision probability of
2× 10−4 for K = 50 and T = 500ms.

when T varies between 0.1 to 1 second. In our experiments
we wanted ∆PDR ≤ 0.5%, which implies using reporting
interval T ≥ 500ms.

VI. EXPERIMENTAL EVALUATION

For evaluating the performance of MuDRA on the ORBIT
testbed, we use the parameter values listed in Table I. In all
our evaluations, we consider backlogged multicast traffic. The
performance metrics are described below:
(i) Multicast rate and throughput: The time instants when the
target condition is satisfied are marked separately.
(ii) PDR at nodes: Measured at each node.
(iii) Number of abnormal and mid-PDR nodes: We monitored
all the abnormal and mid-PDR nodes (not just the FB nodes).
(iv) Control traffic: The feedback overhead (this overhead is
very low and is measured in Kbps).

We compared MuDRA to the following schemes:
(i) Fixed rate scheme: Transmit at a fixed rate of 36Mbps,
since it is expected to be the target rate.
(ii) Pseudo-multicast: Unicast transmissions to the node with
the lowest SNR/RSS. The unicast RA is the driver specific RA
algorithm Minstrel [65]. The remaining nodes are configured
in promiscuous mode.
(iii) Simple Rate Adaptation (SRA) algorithm [11]: This
scheme also relies on measuring the number of abnormal
nodes for making RA decisions. Yet, it is not designed
to achieve the target rate, maintain stability, or respond to
interference.

A. Performance Comparison

We evaluated the performance of MuDRA in several ex-
periments on different days with 160 − 170 nodes with the
total number of feedback nodes, K = 50 and reporting
interval duration of 500ms. To demonstrate the convergence
and stability of MuDRA algorithm, one instance of such an
experiment over 300s with 162 nodes is shown in Fig. 8.
Fig. 8(a) shows the mid-PDR and abnormal nodes for the
duration of one experiment run. Fig. 8(b) shows the rate
determined by MuDRA. The AP converges to the target rate
after the initial interference spike in abnormal nodes at 15s.
The AP successfully ignored the interference spikes at time
instants of 210, 240, and 280s to maintain a stable rate.
The target-condition is satisfied except during the spikes. The
overall control overhead as seen in Fig. 8(c) is approximately
40Kbps. The population of abnormal nodes stays around 2−3
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Fig. 8. A typical sample of MuDRA’s operation over 300s with 162 nodes: (a) Mid-PDR and abnormal nodes, (b) Multicast rate and throughput measured
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Fig. 9. (a) Rate and throughput for the pseudo-multicast scheme, (b) CDF of PDR distributions of 162 nodes for fixed rate, MuDRA, Pseudo-Multicast, and
SRA schemes, and (c) Multicast throughput vs. the number of feedback nodes (K).

TABLE IV
AVERAGE THROUGHPUT (MBPS) OF PSEUDO-MULTICAST, MuDRA, AND
SRA SCHEMES WITH AND WITHOUT ON-AND-OFF (ON AND OFF PERIODS
20S EACH) UNICAST BACKGROUND TRAFFIC BETWEEN TWO RANDOMLY

CHOSEN NODES ON THE GRID.

No Background traffic Background traffic
Fixed rate = 36Mbps 20.42 13.38
Pseudo-Multicast 9.13 5.36
MuDRA 18.75 11.67
SRA 19.30 4.55

for most of the time which implies that more than 160 nodes
(> 98%) have a PDR > 85%. The actual throughput is
stable at around 20Mbps which after accounting for 15% FEC
correction implies a goodput of 17Mbps.

Fig. 9(a) shows a sample of the throughput and rate per-
formance of the pseudo-multicast scheme. The throughput
achieved is close to 9Mbps. We observe that pseudo-multicast
frequently samples higher rates (up to 54Mbps) leading to
packet losses.

The average throughput for different schemes over 5 exper-
iments of 300s each (conducted on different days) with 162
nodes is shown in Table IV. In this section, we only focus on
the left-hand side of the able with no additional background
traffic. MuDRA achieves 2x throughput than pseudo-multicast
scheme. The fixed rate scheme yields approximately 10%
higher throughput than MuDRA. SRA has similar throughput
as MuDRA.

Fig. 9(b) shows the distribution of average PDR of 162
nodes for the same 5 experiments. In the pseudo-multicast
scheme, more than 95% of nodes obtain a PDR close to 100%
(we did not consider any retransmissions to nodes listening in
promiscuous mode). MuDRA meets the QoS requirements of
95% nodes with at least 85% PDR. On the other hand, in SRA

and the fixed rate schemes 45% and 70% of the nodes have
PDR less than 85%, respectively.

In pseudo-multicast, more reliable transmissions take place
at the cost of reduced throughput, since the AP communicates
with the node with the poorest channel quality in unicast. The
significant difference in QoS performance of the fixed rate
and SRA schemes is because the target rate can change due
to interference etc. In such a situation, MuDRA can achieve the
new target rate while the fixed rate and SRA schemes lead to
significant losses (we observed that exceeding the target rate
even 10% of time may cause up to 20% losses and less than
5% throughput gain).
Changing number of FB nodes: We varied the number of
FB nodes (K) between 1− 100 for MuDRA. Fig. 9(c) shows
the throughput as K changes. For K = 1, MuDRA tunes to
the node with the worst channel quality, and consequently, the
throughput is very low. On the other hand, increasing K from
30 to 90 adds similar amount of FB overhead as decreasing
the report interval from 500ms to 200ms in Section V. Thus,
the throughput decreases for a large number of FB nodes. The
throughput for K between 10− 50 does not vary significantly
which is aligned with our discussion in Section IV that
MuDRA needs only K > Amax + ε for small ε to evaluate the
target rate conditions.
Impact of topology changes: To demonstrate that changes in
the network may lead MuDRA to converge to a different rate,
we devised a strategy to emulate network topology changes
on the grid. During an experiment, a number of FB nodes are
turned off at a given time. Since FB nodes have the lowest
PDRs, it may lead to changes in the target rate as a large
number of nodes with low PDR disappear from the network.
Fig. 10 shows the scenario when 30 FB nodes are turned off
after 150s during the experiment. The rate converges quickly
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Fig. 10. Emulating topology change by turning off FB nodes after 150s
results in changing optimal rate for MuDRA.

and without oscillations to a new target rate of 54Mbps.

B. Impact of High Node Churn

We evaluate the performance of MuDRA when emulating
severe network changing conditions. In the experiments, each
node leaves or joins the network with probability p every 6s.
Thus, p = 0.1 implies that a node changes its state with
probability of approximately 50% at least once in a minute.
Initially, 50% of the nodes are randomly selected to be in the
network.

We conducted 3 experiments consisting of 155 nodes (ini-
tially, 77 nodes are in on state). Fig. 11(a) shows the impact
of p on the distribution of time duration that the nodes remain
as FB nodes. Higher values of p imply higher churn and lead
to shorter periods for which nodes serve as FB nodes. The
average number of changes in FB nodes per second is 2, 5,
and 10 for p equal to 0, 0.2, and 0.9, respectively.8 Even
with these changes, the average control overhead is very low
(35Kbps) and is not affected by the degree of churn. Fig. 11(b)
shows one instance of the RA process with p = 0.2. We
see that MuDRA can adapt to the changing target rate at
times 10, 30, and 255s. Fig. 11(c) shows the percentage of
data sent at different rates for several values of p averaged
over 3 different experiment runs. MuDRA achieves a similar
rate distribution for all values of p. Our experiments show
that MuDRA can achieve the target rate, maintain stability,
and adds low overhead, even under severe network changing
conditions. It should be noted that the control overhead for
the pseudo-multicast and fixed rate schemes is fixed and
independent of the node churn.

C. Impact of External Interference

We envision that MuDRA will be deployed in environments
where the wireless infrastructure is centrally controlled. How-
ever, in-channel interference can arise from mobile nodes and
other wireless transmissions. In addition to the uncontrolled
interference spikes on ORBIT, we evaluate the impact of
interference from a nearby node which transmits at the same
channel as the multicast AP. We consider a scenario with two

8The number of these changes were be calculated by comparing the identity
of FB nodes in consecutive slots and is close to the expected values that can
be derived analytically.

nodes near the center of the grid that exchange unicast traffic
at a fixed rate of 6Mbps in a periodic on/off pattern with
on and off periods 20s each9. The transmission power of the
interfering nodes is 0dBm which is equal to the transmission
power of the multicast AP. The low transmission bitrate
ensures maximum interference with multicast packets. Further,
the on and off patterns help us evaluate the performance in the
worst case scenario of continuous interference and study the
dynamics of changing interference.

Fig. 12(a) shows the mid-PDR and abnormal nodes and
Fig. 12(b) shows the rate and throughput for a single experi-
ment with 155 nodes with background traffic. The number of
mid-PDR nodes increases during the interference periods, due
to losses from collisions. MuDRA converges to the target rate
of 24Mbps. Notice during interference periods, MuDRA satis-
fied the target-condition and that using the stability preserving
method, MuDRA manages to preserve a stable rate. The
average throughput of different schemes with on/off unicast
background traffic for 3 experiments of 300s each is in the
right-most column of Table IV. Pseudo-multicast achieves half
while SRA has a third of the throughput of MuDRA in presence
of background traffic. The fixed rate scheme achieves similar
throughput as MuDRA.

The PDR distribution of nodes is in Fig. 12(c). MuDRA sat-
isfies QoS requirements while maintaining high throughput.
Pseudo-multicast scheme has 90% nodes with PDR more than
90% since it makes backoff decisions from unicast ACKs.
SRA yields 55% nodes with PDR less than 85% as it transmits
at low rates. The fixed rate scheme yields 30% nodes with PDR
less than 85%. The fixed rate scheme performs better than
SRA since it maintains a higher rate. We also investigate the
combined impact of both interference and node churn, where
every 6s, the probability of a node switching on/off is p = 0.2.
Fig. 13 shows the rate and throughput for this case. Similar to
results in Section VI-B, the performance of the system is not
affected by node churn.

D. Video multicast

We demonstrate the feasibility of using MuDRA for stream-
ing video. The video is segmented with segment durations
equal to the period of rate changes (1s) and each segment is
encoded at several rates in H.264 format. For each time period,
the key (I) frames are transmitted reliably at the lowest rate
6Mbps (note that transmitting the key frames can be achieved
with 100% reliability even at 12Mbps on the testbed). The
non-key (B and P) frames are transmitted at the rate set by
MuDRA.

Let the multicast rate for current time period be R, the
expected data throughput at this rate be D̂R, and the estimated
throughput at the minimum rate be D̂min. Let fk be the
fraction of key frame data and fnk be the fraction of non-
key frame data. The video server has to determine the video
rate VR at each time t. Let the fraction of transmission time

9The placement of the sender and receiver did not lead to any significant
differences in performance of multiast traffic.
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Fig. 11. Performance of MuDRA with high node churn: (a) Distribution of time durations for which a node is a FB node for different values of probability
p of node switching its state on/off every 6s, (b) Multicast rate and throughput measured at the AP with p = 0.2, (c) Percentage of data sent at various rates
for different values of p.
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Fig. 12. Performance of MuDRA with 155 nodes where an interfering AP transmits on/off traffic: (a) Mid-PDR and abnormal FB nodes, (b) Multicast rate
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160 nodes for different multicast schemes.

for key frames Tk = VR·fk
D̂min

and fraction of transmission time
for non-key frames Tnk = VR·fnk

D̂R
. We know that

tk + tnk = 1

The video rate can be calculated by solving linear equations

VR = D̂min·D̂R

D̂min·fnk+D̂R·fk
. In environments where estimates of

throughput are inaccurate due to interference, techniques such
as in [72] can be utilized.
Experimental Results: We use raw videos from an online
dataset [73] and encode the videos with H.264 standard. In
our data sets, fk is 15 − 20%. For MuDRA with throughput
19Mbps and FEC correction of 15%, we can support a video
rate of 13 − 15 Mbps, which is sufficient for 3 or 4 HD
streams (each 4Mbps) on mobile devices. For each node, we
generated the video streams offline by mapping the video
frames to the detailed packet traces collected on ORBIT from
an RA experiment. For a fair comparison, the I frames were
transmitted at 6Mbps for all schemes even though MuDRA can
dynamically adjust the transmission rate to be much higher
even for reliable transmissions. In our experiments, we only
considered a single video stream of rate VR. We measured the
PSNR of the video at each node and classified the PSNR in
5 categories based on visual perception10.

Fig. 14 shows the video quality and PSNR ranges at the
nodes for 3 experiments each of 300s and with 150 − 160
nodes. With MuDRA, more than 90% of the nodes achieve
excellent or good quality, 5% achieve fair quality, and less
than 5% get poor or bad quality. While the pseudo-multicast
scheme results in almost all nodes obtaining excellent quality,
the video throughput for this scheme is significantly lower
(8Mbps). SRA and the fixed rate schemes have more than 50%
nodes with poor or bad video quality. The higher thorughput
from MuDRA can allow streaming of several concurrent video
streams or streams encoded at higher rates while ensuring QoS
requirements.

10PSNR quantifies the distortion of the received as compared to the original
transmitted video.



12

VII. CONCLUSION AND FUTURE WORK

We designed a novel multicast rate adaptation algorithm
(MuDRA) that provides high throughput while satisfying SLA
requirements. MuDRA’s performance on the ORBIT testbed
with hundreds of nodes shows that it can reliably support
applications such as large scale multimedia content delivery. In
future work, we will refine MuDRA by distinguishing between
losses due to channel conditions and collisions. Moreoever, we
will also consider rate adaptation experiments in wild using
a testbed of diverse set of Android mobile devices as well as
evaluating performance with 802.11n/ac/aa standards. More-
over, we will develop methods that not only adapt the multicast
rate but also the video coding rates based on the feedback from
the nodes. We will evaluate the methods not only in the ORBIT
testbed but also in a testbed of mobile devices where video
streams will be sent to the nodes. Finally, we will consider the
design of similar feedback and rate adaptation schemes that
are tailored for the special characteristics of LTE eMBMS.
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