Hybrid Scheduling in Heterogeneous Half- and Full-Duplex Wireless Networks

Tingjun Chen*, Jelena Diakonikolas†, Javad Ghaderi*, and Gil Zussman*

*Electrical Engineering, Columbia University
†Computer Science, Boston University

IEEE INFOCOM
Apr. 17, 2018
Full-Duplex Wireless

- Legacy half-duplex wireless systems separate transmission and reception in either:
 - Time: Time Division Duplex (TDD)
 - Frequency: Frequency Division Duplex (FDD)

- (Same channel) Full-duplex communication: simultaneous transmission and reception on the same frequency channel
Full-Duplex Wireless

• Benefits of full-duplex wireless:
 - Increased system throughput and reduced latency
 - More flexible use of the wireless spectrum and energy efficiency

• Viability is limited by self-interference
 - Transmitted signal is billions of times (10^9 or 90dB) stronger than the received signal
 - Requiring extremely powerful self-interference cancellation
The Columbia FlexICoN Project

- **Full-Duplex Wireless: From Integrated Circuits to Networks (FlexICoN)**
 - Development of full-duplex transceiver/system, algorithm design, experimental evaluation, etc.
 - Integration of full-duplex capability with the open-access ORBIT testbed

- Future integration with the **PAWR COSMOS** city-scale testbed (NSF PAWR Session on Wed. at 15:30pm in Tapa 1)
Motivation

• Gradual replacement and introduction of full-duplex (FD) devices into legacy half-duplex (HD) networks

• **Goal:** Develop **efficient** and **fair** scheduling algorithms in such **heterogeneous** half-duplex and full-duplex networks with performance guarantees
Related Work

- Full-duplex radio/system design
 - Laboratory bench-top design: [Choi et al. 2010], [Duarte & Sabharwal, 2010], [Aryafar et al. 2012], [Bharadia et al. 2013/2014], [Kim et al. 2013/2015], [Korpi et al. 2016], [Sayed et al. 2017]

- Throughput gains from full-duplex:
 - [Xie & Zhang, 2014], [Nguyen et al. 2014], [Korpi et al. 2015], [Marasevic et al. 2017/2018]

- Cellular/WiFi scheduling:

- CSMA/Scheduling in legacy half-duplex networks:
 - CSMA, Max-Weight, Greedy-Maximal, Longest-Queue-First, Q-CSMA, etc. [Kleinrock & Tobagi, 1975], [Tassiulas & Ephremides 1992], [Dimakis & Walrand, 2006], [Brzozowski et al. 2006], [Ni et al. 2012], [Birand et al. 2012], etc.

- **Heterogeneous** networks with both half- and full-duplex users were not considered
- **Fairness** between half- and full-duplex users was not considered
- Very little work provided *performance guarantees* (e.g., throughput optimality)
Model

- Time is slotted ($t = 1, 2, \ldots$)
- A single-channel, collocated, \textit{heterogeneous} network with one access point (AP) and N users:
 - The AP and N_F users are full-duplex (FD)
 - $N_H = N - N_F$ users are half-duplex (HD)
- N downlink queues at the AP and one uplink queue at each user
 - The AP has information about \textit{all downlink queues}
 - A user has information about \textit{only its uplink queue}
- Unit link capacity and perfect self-interference cancellation

- \textbf{Feasible schedules}: a single half-duplex uplink or downlink, or a pair of full-duplex uplink and downlink
- A pair of full-duplex uplink and downlink are always scheduled at the same time
Problem Formulation

- Capacity Region: Convex hull of all feasible schedules

- For a legacy half-duplex user: $\lambda_{\text{uplink}} + \lambda_{\text{downlink}} \leq 1$

- For a full-duplex user:
 \[
 \begin{align*}
 \lambda_{\text{uplink}} &\leq 1 \\
 \lambda_{\text{downlink}} &\leq 1 \\
 \max\{\lambda_{\text{uplink}}, \lambda_{\text{downlink}}\} &\leq 1
 \end{align*}
 \]

- A scheduling algorithm is **throughput-optimal** if it can keep the network queues stable for all arrival rate vectors in the interior of the capacity region

Goal: Achieve maximum throughput in networks with heterogeneous half-duplex and full-duplex users in a distributed manner, while being **fair** to all the users and having favorable delay performance

Solution: H-GMS – A Hybrid scheduling algorithm that combines centralized Greedy Maximal Scheduling (GMS) and distributed Q-CSMA
Introducing Full-Duplex Users – Everyone Gains!

- A **homogeneous** network with $N = 10$ half-duplex users vs. A **heterogeneous** network with N_H half-duplex users and N_F full-duplex users ($N_H + N_F = N = 10$)

- Consider the a static CSMA algorithm with fixed transmission probabilities p_H and p_F for half-duplex and full-duplex users. Let $p_F = \gamma p_H$ with $\gamma \in (0, 1]$

- With $p_H = 0.5$, throughput gain of the network:

- A heterogeneous network with fixed N and varying N_F
Introducing Full-Duplex Users – Everyone Gains!

- A **homogeneous** network with $N = 10$ half-duplex users vs. A **heterogeneous** network with N_H half-duplex users and N_F full-duplex users ($N_H + N_F = N = 10$)
- Consider the a static CSMA algorithm with fixed transmission probabilities p_H and p_F for half-duplex and full-duplex users. Let $p_F = \gamma p_H$ with $\gamma \in (0, 1]$.
- With $p_H = 0.5$, throughput gain of *individual users*:

![Graph showing throughput gain with increasing priority of FD users](image)

Even half-duplex users can gain!

- Increased number of FD users
- Increased *priority* of FD users
Scheduling Algorithms

• Max-Weight Scheduling (MWS) is throughput-optimal
 - Q-CSMA can be applied

• What about the Greedy Maximal Scheduling (GMS)?
 - The returned schedule may not be Max-Weight

\[
\text{MWS} = \text{GMS}
\]

\[
\text{MWS} \neq \text{GMS}
\]
Scheduling Algorithms

- **Max-Weight Scheduling (MWS) is throughput-optimal**
 - Q-CSMA can be applied

- **What about the Greedy Maximal Scheduling (GMS)?**
 - The returned schedule may not be Max-Weight

- **Proposition**: The centralized Greedy Maximal Scheduling (GMS) algorithm is throughput-optimal in *any* collocated *heterogeneous* half-duplex and full-duplex networks
 - Proof is based on local-pooling

- **Question**: How to achieve GMS is a distributed manner?
- **Solution**: **H-GMS** — a Hybrid scheduling algorithm that combines centralized **GMS** and distributed Q-CSMA
Proposed Algorithm: H-GMS in slot t

If the previous slot is an *idle* slot:

- **Step 1: Initiation** (centralized GMS at the AP)
 - The AP selects the downlink with the longest queue
 - The AP draws an *initiator link* from all the uplinks and the selected downlink according to an access probability distribution α
Proposed Algorithm: H-GMS in slot t

If the previous slot is an *idle* slot:

Step 2: Coordination (distributed Q-CSMA)
- If link l is selected as the initiator link, it is activated w.p. $p(Q(t))$

Transmission probability and weight functions $f(Q(t))$

$$p(Q(t)) = \frac{\exp(f(Q(t)))}{1 + \exp(f(Q(t)))}$$
Proposed Algorithm: H-GMS in slot t

If the previous slot is an *idle* slot:

- **Step 2: Coordination** (distributed Q-CSMA)
 - If link l is selected as the initiator link, it is activated w.p. $p(Q(t))$
 - If the initiator link is a full-duplex uplink (downlink), the corresponding downlink (uplink) will also be activated

Transmission probability and weight functions $f(Q(t))$

$$p(Q(t)) = \frac{\exp(f(Q(t)))}{1 + \exp(f(Q(t)))}$$
Proposed Algorithm: H-GMS in slot t

If the previous slot is an *idle* slot:

- **Step 3: Transmission**
 - One packet is transmitted on each activated link
Proposed Algorithm: H-GMS in slot t

If the previous slot is a *busy* slot:

- The AP keeps the same initiator link and repeats steps 2 & 3
Main Results

- **Theorem**: For any arrival rate vector inside the capacity region, the system Markov chain \((X(t), Q(t))\) is positive recurrent under the H-GMS algorithm. The weight function \(f\) can be any nonnegative increasing function such that \(\lim_{x \to \infty} f(x) / \log(x) < 1\) or \(\lim_{x \to \infty} f(x) / \log(x) > 1\).
 - Proof is based on fluid limit analysis

- Variants of **H-GMS**:
 - **H-GMS** (or **H-GMS-L**)
 - **H-GMS-R**: the AP selects a downlink queue uniformly at Random, \(\alpha\) is uniformly distributed
 - **H-GMS-E**: the AP selects the downlink with the longest queue, \(\alpha\) is proportional to the Estimated uplink queues

![Diagram of H-GMS variants](image)
Performance Evaluation – Queue Length

- Simulations with $N = 10$ users with $N_F = N_H = 5$ in a heterogeneous network
- Equal arrival rate on all the uplinks and downlinks with total arrival rate $\rho \in (0, 1]$
- Average queue length (packet) for every link

The largely reduced queue length resulted from (i) utilizing the centralized downlink queue information at the AP, and (ii) the introduction of full-duplex users
Performance Evaluation – Fairness

• Simulations with $N = 10$ users with $N_F = N_H = 5$ in a heterogeneous network
• Equal arrival rate on all the uplinks and downlinks with total arrival rate $\rho \in (0, 1]$
• *Fairness* between full-duplex and half-duplex users (i.e., ratio between their queue lengths)

H-GMS-L and H-GMS-E improve fairness by selecting the initiator link differently
Performance Evaluation – Effect of N_F

- Simulations with $N = 10$ users with $N_F = N_H = 5$ in a heterogeneous network
- Equal arrival rate on all the uplinks and downlinks with total arrival rate $\rho \in (0, 1]$
- **Fairness** under different values of N_F

![Diagram showing fairness under medium and high traffic intensities](image)
Summary

- Scheduling in heterogeneous half-duplex and full-duplex wireless networks
- All the users can gain (even for half-duplex users!) in terms of throughput when introducing full-duplex users into legacy half-duplex networks

- **H-GMS** – a hybrid scheduling algorithm combining centralized GMS and distributed Q-CSMA, and is proven to be throughput-optimal

- Performance evaluation of H-GMS

- Future directions:
 - Delay analysis of H-GMS
 - Experimental evaluation using existing/customized full-duplex testbeds

- Please come to our full-duplex demo *tomorrow at 9:30am* if you are interested!
Thank you!

tingjun@ee.columbia.edu
http://www.ee.columbia.edu/~tc2668

Tingjun Chen, Jelena Diakonikolas, Javad Ghaderi, and Gil Zussman, “Hybrid Scheduling in Heterogeneous Half- and Full-Duplex Wireless Networks”.

Columbia University
Wireless & Mobile Networking Lab