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Abstract

This work focuses on resource allocation for energy haivgsievices. We analytically and numerically evaluate
the performance of algorithms that determine time fair gne@ilocation in systems witpredictableand stochastic
energy inputs. To gain insight into the performance of nekemf devices, we obtain results for the simple cases
of a single node and a link. Due to the need Yery low complexityalgorithms, we focus omery simple policies
(some of which proposed in the past as heuristics) and acellytderive performance guarantees. We also evaluate
the performance via simulation, using real-world energgés that we collected for over a year, and in a testbed
of energy harvesting devices developed within the EnHANigeot.

. INTRODUCTION

Recent advances in the areas of solar, piezoelectric, agmin#th energy harvesting, and in ultra-low-power
wireless communications will soon enable the realizatiberergy harvesting wireless devices. When networked
together, they can compose rechargeable sensor netwdrkid4% networks of computational RFIDs [10], and
Energy Harvesting Active Networked Tags (EnHANTS) [9]. Suchwoeks will find applications in various areas,
and thusnetworking energy harvesting devideas lately been gaining attention. Work in this area inctudesign
of energy-harvesting aware algorithms [5], [6], [8], [1[]6], [18], development of energy harvesting devices, and
characterizations of different energy sources [8], [10} fleviews of related work see [5], [8], [9]).

Energy sources may have different characteristics. We denshe predictable profile energy mod¢b], [8],
[11], [13] in which ideal energy profiles that accurately eg@nt the future are available, and #techastic energy
model[6], [8], [12] in which the energy availability can be modélby a stochastic process. Examples of the latter
include a mobile device harvesting light energy, a floorbahet gathers energy when stepped on, and a solar
cell in a room where lights go on and off as people enter aneelem our model, we also consider linear energy
storage device (i.e., a battery) and a non-linear deviee @ capacitor).

Under both models, energy availability may have high tireability [10], [11], [18], and therefore, we aim
to, as much as possible, allocate the varying enéngg uniform way with respect to timd-or that, we use
the lexicographic maximizatiorand the network utility maximizationframeworks, which are typically applied
to achieving fair resource allocation among different reodather than among different time slots. Once the
energy spending rates are determined by these framewdnlg, dan be converted to duty cycle, sensing rate,
or communication rate.

Energy harvesting shifts the nature of energy-aware prégdomm minimizingenergy expenditure toptimizingit
over time. Therefore, the resource allocation problems igteyncomplex [8]. On the other hand, since the devices
are resource constrained, there is a needvéy low (computation and communication) complexity algorigim
While some attempts have been made to develop algorithmspicific types of networks (e.g., directed graphs
[14] and trees [5]), most previous work on implementableoatgms focused on a single node or a link [11], [12],
[15], [18]. In order to provide insight into the developmaitlow complexity algorithms for a network, we focus
in this work on a single node and a link. We analytically andheucally evaluate the performance ayfproximate
and heuristicpolicies, some of which are proposed in [5], [12], [14], [1B] particular, for asingle nodewe study
the following policies:

o Optimal (OPT) policies for both thepredictable profileand thestochasticmodels serve as a benchmark for

other policies. For the stochastic case, we uddaakov Decision Process (MDP)prove thatenergy state
discretizationcan be applied, and provide bounds on the performance de@gradiue to discretization.



TABLE |

NOMENCLATURE.
D(3) Environmental energy (J)
K Number of slots
C Energy storage capacity (J)
B(1),Bo,Bri | Energy storage state, initial, and final levels (J)
s(4) Energy spending rate (J/slot)
Qi) Effective energy harvested (J)
h Quantization resolution (J)
7(4) Data rate (bits/s)
Cix, Crx Energetic costs to transmit and to receive (J/bit)
U(") Utility function
Z Objective function value
T Node downtime

« Spend-What-You-Get SG) policy — within a time slot a node spends the expected enieqgyt for that slot,
and therefore, the complexity is very low (similar policiase proposed in [14], [15]). Fdooth models, we
provide performance guarantees.

« Constant Rate CR) policy — a node spends energy at a constant rate in all tinis, slesulting in very low
complexity (it is proposed in [5]). For thpredictable profilemodel, we provide a performance guarantee.

« Energy Storage Threshold-based{HR) policy — a set of energy storage thresholds and correspgnédies
are chosen, and the node determines the spending ratesdratieel current storage level (similar policies are
proposed in [12], [15]). We study the parameter settinggttierstochasticmodel.

o Energy Storage-Linear SL) policy — the spending rate is lmear functionof the energy storage level. We
study the parameter settings for th®chasticmodel.

For links (node-pairs) we study the following policies:

» Optimal (OPT) policies (under which nodes need to exchange their paras)dte both energy models.

« Decoupled Rate Control PRC) policies — the nodes first determinedependentlytheir spending rates, and
then jointly calculate the data rates (similar approachiesuaed in [5], [14]). We examine a few versions:

— Node-optimal DRC ORC-NOPT) — the nodes’ spending rates are determined according toptimal
single-node policyWe provide a performance guarantee for phedictable profilemodel.

— DRC-SG, DRC-CR, etc. — one of the above-described policies is used to solve thesiwgle-node
problems. These policies are evaluated numerically forptieelictable profilemodel.

Within the Energy Harvesting Active Networked Tags (EnHANGm®)ject [9] we have been developing energy
harvesting devices and characterizing the availabilityndbor ambient light energy. To evaluate the performance
of the algorithms, we use simulations based on traces thatollected for over a year [8] as well as experiments
with the EnHANTSs prototypes [7]. In many of the considered salee simple policies perform very well.

Il. MODEL AND PRELIMINARIES

We focus ondiscrete-timemodels, where the time axis is separated iAtaslots, and a decision is made at the
beginning of a slot (i = {0, 1, ..., K — 1}). We denote the energy storage capacity’bgnd the amount of energy
stored byB(i) (0 < B(i) < C). We denote the initial and the final energy levels By and Bx. The energy
spending rate is denoted Byi). The amount of energy a device has access to is denotdd(by which can be
a given value or a random variable. Th#ectiveamount of energy a device can harvest from the environment is
denoted byQ(i). In general,Q(i) may depend both on the available eneigyi) and on the current energy level:
Q(i) = q(D(i), B(i)) and hence can be non-linear In(i) (e.g., thenon-linear energy storage modapplies to
a capacitor). For dinear energy storage modelevice (such as &attery), ¢(D(i), B(i)) = D(i) and in general
Q(i) < D(1) [8]. The ‘storage evolution’ for the models we consider careRpressed as:

B(i) = min{B(i — 1) + Q(i — 1) — s(i — 1),C} (1)

Note that for the stochastic energy model, we consifiemtizingthe above energy-related parameters, and denote
the quantization resolution by.



We consider asingle nodeand anode pair (link) We denote the endpoints of a link hyand v, the effective
amount of energy each node can harvesthyi) and@,(:), and their data rates hy, (i) andr,(i). For asingle
nodewe optimize the energy spending rate vecitr), which provide inputs for determininduty cycle sensing
rate, or communication rateFor alink, we optimize either the spending rateg:) ands, (i) or the communication
ratesr, (i) andr,(i). We denote the costs to transmit and receive bitsynd . The constraints relating node
energy spending rates and data rates on a link foristwe:

Cthu(i) + CrxTy (Z) < Su(i)a CixT'y (1) + Crxru(i) < Sv(i)- (2)

We focus on time-uniform (time-fair) allocation of resoes¢ and use thiexicographic maximizatioandnetwork
utility maximizationframeworks. In the former, wikexicographically maximizan energy spending rate vector (for
a stand-alone node), or a data rates vector (for a link). énlalter, we maximize the overall utility, where the
utility function for each individual assignment @ncaveand non-decreasingFor deriving numerical results we
useU(-) = log(-) or U(-) = log(1+(-)). We denote the total objective function value Byi.e.,Z = >, U(-)), and
use subscripts to indicate the policy under whi¢hvas obtained (e.gZopr for the OPT policy andZ¢ R for the
CRpolicy). As another performance measure, we consideddventimeof a node and a link. Namely, the fraction
of slots the node or the link do not spend energy. We denoteldhetime of a node by’ = [{i|s(i) = 0}|/ K
and of a link byT* = |{i|r,(i) = 0,7,(i) = 0}| /K.

[Il. PREDICTABLE PROFILEENERGY MODEL
In this section we analyze various policies fosiagle nodemodel and discuss link model Section V provides
numerical results demonstrating the performance of thieipslbased on real-world energy traces.
A. Single Node

The optimal solution for a single node can be obtained by sglthe following problem [8].
Time Fair Utility Maximization (TFU) Problem :

K-1
max {ZéZU } (3)

()

s.t.: s(i) < B(i) Vi (4)
Bi)<BGi—-1)+Q(i—1)—s(i—1)Vi>1 (5)
B(0) = Bo; B(K) > Bi; B(i) <C Vi (6)
B(i),s(i) >0 Vi (7)

We now provide bounds on the optimal solution as well as ameqipation ratio for theCR policy. Observation
1 applies to botHinear and non-linear energy storage models, while Observations 2 and 3 applyddirtbar
energy storage model.

Observation 1:Zopt < K - U ((Bo — Bx+ XK D )) /K).

Proof: Denote the total energy a node has available to itdpwhere A = By — Bg + >, Q(i). When the
energy storage is sufficiently large, the optimal allocai®i(i) = A/K V ¢ [8]. The corresponding’ value is
Z=3,U(s(i)) = K -U(A/K). When the energy storage is smaller, the total energy a nasi@vailable to it is
also A (or less), and it is allocated less uniformly. Thus, due tocewity of U, the Z value for smaller storage
conditions will be smaller, and therefore the above-stéfed the upper bound. [ ]

Observation 2:The total energy allocated by the optimal solutiordis min(Q(4), C') + By — Bx. The optimal
solution will allocate all available energy @& > max(Q(7)).

Proof: Denote the total energy a node could potentially allocatedpywhere A = By — By + ), Q(i).
Note, however, that when the energy storage is finite, the molil@ot necessarily be able to capture all available
energy. Ass(i) < B(i) (constraint (4)),B(i) — s(i) > 0. Hence, due to the storage evolution equati®i + 1) =
min(B(i)+Q(i) —s(i), C), the amount of energy that is “captured” by the system in &islat mostmin(Q(i), C).
The objective function is maximized when as much as possiblde energy is captured and allocated. Hence,



the total amount of energy a node allocatesAis= >, min(Q(i),C) + By — Bg. If max(Q(i)) < C, then
Q(i) < C Y i, and henced’ = ", Q(i) + By — Bk = A — all energy available to a node is allocated. [ |
Observation 3:Under theCR policy, for! Bx = By < 3. Q(i) and U (s) = log(1 + s),

By
Zcr = Zopr - (_ , ) :
Zz‘fiol (4)

Proof: Denote) ., Q(i)/K by A, and usef to denotef = By/ ), @ (henced < f < 1, andBy/K = f - A).
From Observation 1Zppr < K - U(A). Since}, Q(i) > By = By, a node can spenf$, units of energy and
have sufficientBx in storage at the end of th& slots. Thus the spending in each slg;), will be at leastB, /K.
Thus,Zcr > K -U(By/K) =K -U(f-A), and

ZOPT< KU(A) _ log(1+A)
Zer — K-U(f-A)  log(l+f-A)

For f=1,log(1+ A)/log(l+ f-A)=1.For0 < f <1, this expression is a decreasing functionAQfwith its
maximum achieved fod — 0. Using I'Hopital’s rule,

i log(1+4) \ _, (1(1+4) Y _, L L+fAN L (14fA) 1
Ao \logt v f-A4)) ~ Ao \F/array) A% \ira 5 ) T AN\Frra) T 1
HenceZopr/Zor < 1/f =32, Q(i)/Bo, and thusZcr > Zopr - [Bo/ _; Q(i)]. u

The following proposition provides an approximation ratar the SG policy for both linear and non-linear
energy storage models.
Proposition 1: Under theSG policy and forU(s) = log(s + M),

log(G(Q'))
log (')
where M is a constant(-) and G(-) denote thearithmetic mean and thegyeometricmean of a sequence, and
Q'(i) = Q(i) + M Vi.
Proof: Fors(i) = Q(') ZSG =3, log(M+Q(7j)) =, log(Q'(7)). G(Q'), the geometric mean of a sequence,
can be calculated a8(Q’) = §/Q'(0) ...+ Q'(K — 1), and can be transformed as:

)= VQ’(O) Q1) - QK —1) = exp((1/K) - Y log(Q'(i)) = exp((1/K) - Zsa).
Thus Zs = K - log(G(Q')). From Observation 1 we know thaopr < KU (D", Q(i)/K) = K - log(Q’). Thus,
Zsa/Zopr > [K -1og(G(Q)]/[K -log(@Q))), and thusZsg > Zopr - log(G(Q"))/ log(Q'). =

For example, consider a case @fi) such thatL. samples ofQ(i) = A, and the rest are equal to zero. Such

Q(i) may correspond to the case where the indoor lights are on fooreon of the day. Using Proposition
1, we demonstrate that faBx = Bj (energy neutrality[11]) and for U(s) = log(1 + s), the SG policy is a
K/L-approximation algorithm(for instance, if the indoor lights are on for 8 hours per dag SG policy is a
3-approximation algorithm). Denot@ = > Q(1). ForU(s) =log(1+s), U(Q(:) = 0) =0, and thus:

Zopr _ L(UQ/K)) K -UQ/K) Klog(Q/K +1) _ K

Zsa — L(WUQ/L) L-UQ/L) Llog@/L+1) " L’

where the last inequality comes from the fact that- L, thusQ/K < Q/L, and hencélc’g((g//—ﬁfll) < 1, and thus

K/L is the upper bound. This bound cannot be improved, as)fer co we can demonstrate that

K log(Q + K) —log(K) _ i K Q+K K

im -
Gooo L 1og(Q + L) —log(L) 0Osocl Q+1L A

Zsa > ZoprT -

INamely, undernergy neutrality11], with a relatively small energy storage.
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Fig. 1. Overall schematics of an optimal link policy determination (left) ardDRC algorithms (right).

B. Node Pair (Link)

The optimal solutions for a link can be obtained by solving fitlowing problems [8].
Link Time Fair Utility Maximization (LTFU) Problem

K-1
max > [U(r(@) + Ulra(0)] ®
wl?),Tv (2 i—0
S.t : constraints (2) i; u,v : constraints (4)- (7)
Link Time Fair Lexicographic Assignment (LTFL) Problem :

Lexicographically maximize{r,(0), ..., 7, (K — 1),7,(0),...,m (K — 1)} 9)
s.t : constraints (2)% i; u,v : constraints (4)- (7)

The results in this section apply to tlieear energy storage model. First, we show below that under specific
conditions the solutions to both problems are equal.
Proposition 2: When ¢y, = ¢, the LTFL problem and the. TFU problem have the same solution.

Proof: When ¢y = ¢x = ¢, constraints (2) reduce t0- (r,,(i) + r,(7)) < su(i) and é - (ry (i) + (7)) <
sy(i), which can be equivalently stated ag(i) + (i) < min(s,(7), s,(2))/¢ — that is, in this case thsum of
the data rates is constrained. Due to the concavity of thectieg functions in theTFU problem, the utility
of variables constrained like this is maximized whep(i) = r,(i) = r(¢). Similarly, the optimal solution to
the LTFL problem will also haver, (i) = r,(i) = r(i), since the optimal solution is max-min fair, and the
max-min fairness is achieved when both rates are increasemhueh as possible. Thus, th&FU problem’s
objective function reduces tmax ), U(min(s,(4), s,(¢))/¢), and theLTFL problem’s objective function reduces
to lex max[min(s,(1),s,(1))/¢,...,min(s, (K — 1), s,(K — 1))/¢], and the constraint set is the same for both
LTFL and LTFU. The equality of optimal solutions to these problems with shene constraint set follows from
the proof of Lemma 2 in [8]. [ ]

We now examine the performance of the following set of attaoms.
Decoupled Rate Control (DRC) Algorithms For a given link(u,v), the algorithms first determine, (i) and
sy (1) for every sloti according to some single-node policy, optimBIRC-NOPT), or approximate (i.e. PRC-SG
DRC-CR. Then, for each slot, under constraints (2), the algorithms obtain a solution to
max ) {U(ru(2)) + U(ry(3))} . (10)

74 (1), (2
Small per-slot problem (10) can be easily solved. For exanfiptg = ¢, the solution to (10) is
ru(2) = ry(7) = min(sy(4), s4(7))/(cx + rx)- (11)
Fig. 1 shows schematically the difference between solvitiggroblems optimally and applying tfizRCalgorithms.
Proposition 3: Zopr < K - Z, whereZ is obtained by solving (10) fo$, (i) < [Bo,w — Br,u +»_; Qu(i)]/ K,
s(i) < [Bow — Brw + 33 Qu(i)] /K.
Proof: Consider the case where the energy storage is unlimited. dbwstraints (4)-(7) reduce to constraints
Y i5u(?) < [Bou — Bru + > Qu(@)]s D_;s0(i) < [Bow — Brw + Y_; @u(7)]. Since the objective function is
concave and non-decreasing, and since the problem is symonfi@t all slots ¢, the optimal solution will be
obtained when each node assigns the same data rate to eacfheldame data rate for each slot will be obtained



when each node assigns the same amount of energy to eacthatds, s, (i) = [Bou — Bru +>_; Qu(i)]/K V i,
5y(1) = [Bow—Brw+Y_; Qu(i)]/K Vi, and hence the overall solution will b€ Z. This value is an upper-bound
since for constrained energy storage conditions, the samogirsts of energy will be assigned with more constraints.
[ |
For example, for the case of; = ¢,

P <min([Bo,u — Bgu+Y, Qu(i)]/f;[Bo,v — Bro+ 3, Qv(z‘)]/[()> |

The Proposition below implies that tH2RC-NOPTpolicy obtains the optimal solution to thelFL problem for
a link (u,v) in which « and v have the same energy parametél&), C, By and By

Proposition 4: DRC-NOPTsolves thelL TFL problem optimally, if for all slots, node-optimals,, (i) < s, (7).

Proof: The optimal solution to th& TFL is max-min fair, and thus, for each r,(i) = r,(i) = r(z), and

constraints (2) can be reducedt@) < (min(sy(4), s,(7))/[ctz + ¢rz). Thus, the data rate in each slots fully
determined by theminimumof {s, (i), s,(¢)}. For s,(i) < s,(i) Vi, the data rates are fully determined by the
allocation ofs, (7). The DRC-NOPTSslot energy spending assignmenjg:) are lexicographically fair — a spending
su(i1) cannot be increased without a decrease in sewg that is already smaller. Thus, the energy allocation
cannot be improved, and thus tB&RC-NOPTsolution is optimal. [ ]

The following observation discusses the downtime undeXRE-SGpolicy.
Observation 4:Under theDRC-SGpolicy, max|[T,, T,] < Tk, < T, + T,.

Proof: Due to constraints (2), the data rates assigned BR& policy to a sloti will be zero if s,(i) = 0
or s,(i) =0, thusTuLﬂj is not smaller thammax[T,,, T,]. If both s,(7) ands, (i) are non-zero, then the(i) values
maximizing (10) will also be non-zero, thli'sﬁv is not larger thari’, + T5,. [ ]
For example, consider a case whepe(i) and Q,(i) are vectors withL non-zero entries. For éu,v) where
Qy(1) = Qu(i) Vi (Qu(7) andQ, (i) aresynchronizey TuL’U = (K — L)/K. On the other hand, for @, v) where
Q. (%) is shiftedwith respect toQ,,(7), TuL,U can be as high a3- (K — L)/K.

IV. STOCHASTICENERGY MODELS

We now study models in which the energy harvested inssistarandom procesg D(i)}. We examine a model
of a single node with{ D(¢)} i.i.d. random variables. We leb denote the “representative” variable fbx(:) and
pp denote itsprobability density functior{pdf). In addition, we also briefly discuss the extension @& thodel to
alink.

A. Single Node — Optimal Policies and Dicretization Bounds

We formulate the problem as an average cost Markov DecisioneBs (MDP). Let3 = [0,C] and S = [0, C]
denote the state and action spaces of the MDP, respectivetyanyb € B and s € S, the transition density is
denoted byp(-|b, s). It determines the next energy storage le¢i + 1) given that the current energy storage level
is B(i) = b and the spending rate igi) = s. This transition density is determined by, and (1). A policyr is a
collection of decision rules; : B' x S~! — A(S) which at each time prescribe a probability distribution over
the actions A(S) denotes the probability simplex over the €8t The goal is to find an optimal policy, which
maximizes the average utility. In particular,4et

K—1
Ae(b) £ lim (E-Z(K))/K = lim E, (ZO U<s<z>>) /K
denote the asymptotic expected average utility obtainedtéting from stateBy, = b and using a given policyt.
The optimal average utility is then

N (b) £ sup Ar(b).

’E.. denotes the expectation with respect to the probability law induced by the MIDIE using policyr, and{s(i)} are the spending
rates under this policy.



It is well known (i.e., [17]) that under certaiergodicity (or mixing) conditions, the optimal average utility does
not depend orb. In our case, we use the following mixing condition.
Assumption 4.1 (Mixing)There exists a scalar € (0,1] and a measure with v(B) > p such that

p(Alb,s) > v(A), VAC B, (b,s) €.

For our problem, we prove the following.
Lemma 4.1:If when B(i) = C, s(i) > a > 0 holds for somen, Assumption 4.1 is satisfied. In particular, for
the linear caseq(d, b) = d) it is satisfied with

£ mi —b , Yy € B,
v(y) (br,I;)HeleD(y +5), ¥

= i —b+s)dy > 0.
P2 Jy oo
Proof: We prove this Lemma for the case of the linear model. Firstialhy

v(y) <pp(y —b+s) < p(ylb, s)

pé/BV(y)dy.

We show below that ity > C' — a, wherea is defined in (12), we have that

for all (y,b,s). Now

min pp(y —b+s) > 0.

(b,s)el
This will imply that p > 0. Indeed, supposg > C — a. Also, b — s < C' — a. Thereforey > b — s, which implies
thatpp(y — b+ s) > 0. [
In view of Lemma 4.1, we let
I'2{(bs) e BxS: max(b— C+a,0) < s < b} (12)

denote the set cidmissiblestate-action pairs.
Under the mixing condition, an optimal policy @eterministic Markov stationargolicy 7* : B — S and can be
found by solving theoptimality equation

A+ J(b) = TJ(b), beB,

where7 is Bellman’s operatardefined for any bounded function as

TI(b) = max{U(s) + /B (b, s)J(b’)db’}.

seS

Specifically, a solutior{\*, J*) of optimality equation is such that*(b) = A* and an optimal policy is given by

7 (b) = argmax {U(S) + / p(b'|b, S)J*(b/)db/} .
seS B

However, since our state and action spaces are infinite, feen® practical algorithm to solve the optimality
equation. To address this, wdéscretizethe state and action spaaasiformly, using a fixed discretization parameter
h. We denote thus obtained finite spacesyandS;,. In particular, ifb € By, it is a multiple ofh, and similarly
for S,,. For anyb € B, we letz;, € B, denote theepresentativepoint of b in B, (which is the closest point té

in By).

The discretized set of admissible state-action pairs is then

h
r, £ {(b,s) EBXSh: |s—sp| < B for some max(x, — C' + «,0) <sb<xb}.



Finally, the descretization of the dynamics is as follows:

p(xb’ bv 8)
Sz p(y|b, s)dy

ph(b,|b> 8) £
The corresponding Bellman’s operator is then

Ty J(b) = max {U(S) —i—/bleBph(b/|b, S)J(b’)}

s inSy

It is easy to see that this operator returnsiraplefunction for any given functiory. Moreover, the solutiory; of
the optimality equation
A+ Jp(b) = ThJr(b), be B (13)

is also a simple function. The solutiof;, J;) can be found using value/policy iteration algorithms oreén
programming (see [17] for details).

We use the results in [2] to provide the performance boundstduthe introduced discretization process. To
use these results, in addition to the mixing condition (Lem#riy, our MDP model should satisfy the following
continuity condition.

Assumption 4.2 (Lipschitz Continuity:here exists a constapt> 0 such that

|U(s) —U(s')‘ §B’s—s’ , Vs,8 €8,
Hp(‘ba S) _p("blv Sl)Hv < B H(b7 8) - (blv Sl)Hooa V(bv 8)7 (blv 5,) € Fv

where||-||, is the total variation norm.
The first part of Assumption 4.2 can be satisfied by choosing amopgpte utility function. Let us denote its
continuity constant by3;. For the second part, we impose the following on the prolighilistribution of the
energy random variabl®.

Assumption 4.3.Suppose that there exists a finite constapt,, such that the variablé® takes values in the
interval [0, Dpax]. Let

Poax &  max d).
max [0, D] pD( )

Moreover, assume that there exists a finite constant- 0 such that
}pD(d) _pD(d,)| < /BD ’d - d/} , VO < d, d < Diax-

Lemma 1:Under Assumption 4.3, there exists= 3(Sv, Sp) > 0 such that Assumption 4.2 is satisfied. In
particular, for the linear modek(d, b) = d) we have that

/8 = Inax {BUv 2(CﬁD + Pmax)} .
Proof: We prove this Lemma for the linear model case. In this case
B(i+1) =min{B(:) + D — 5,C}

whereD ~ Pp. Let F(ylb,s) (b — s <y < min{b — s + Dyax, C'}) denote the cumulative transition distribution
function. We have that

F(ylb,s) = P{min{b+ D —s,C} <y}
- P({min{b+D—s,C}§y}ﬂ{b—|—D—s§C})
+P ({min{b+ D —s,C} <y} (V{b+D—s>C})
= P{D<y—-b+s}+I1{C=y}P{D>C—-b+s}
= Fply—b+s)+I1{C=y}(1—-Fp(C—-0b+35s)),



where Fp is the cdf of D. Thus, the transition density is given by
pylb,s) =pp(y —b+s)+6(y —C) (1 = Fp(C —b+5s)).

Therefore, for anyb, s) and (V/, s’), we have that

C
|p(-[b,s) = p(-t/, )|, = /0 Ip(ylb, s) — p(ylt', s")| dy

c
/0 lpp(y —b+s) —pply — b + )|

c
+/ (5(y— C)|Fn(C — b+ s) — Fp(C — ¥ + )| dy
0
CBp(|b—b|+1|s—5|) +|Fp(C—b+s) — Fp(C —b + )|
QCBD ”(b, S) — (b/, S/)HOO + 2Pmax H<b7 S) - (b/7 S/)Hoo )
where the third inequality follows by Assumption 4.3. ThussAmption 4.2 is satisfied with

B = max {5U7 2(CﬁD + PmaX)} :

as required. [ ]
Hence, the following theorem bounds the distance of thenwitiaverage reward; in the discretized model
from the optimal average reward'. This theorem is in fact an application of Theorem 4.3.5 in {2bur case.
Theorem 1:Under Assumption 4.3, there exisis> 0 and 3, (depending only or8 of Assumption 4.2 ang
of Assumption 4.1) such that for al € (0, h]

<
<

(A" = ALl < Bah

In particular,, and 3y can be explicitly written as

- 1 :
h_mln{25+4/32’5+ﬁ(6+0.5)+4(5+52)}

BA251<1+4)+/82<6+2§>7
p PP
o255+ 5)

B225 (5543

Proof: By Lemma 1, Assumption 4.2 is satisfied. By Lemma 4.1, Assumptidnis satisfied as well. Thus,
the proof follows from Theorem 4.3.5 in [2]. The exact expressifor the parameters, andh are obtained from
the proofs of Theorems 2.4.1 and 2.4.2 therein. [ ]

An optimal policy 7} (in the discretized model) may be computeffline. Therefore, the actual choice of the
spending rate by a device can be done by using the precomfurtetion ; : B, — S;,. The quantized policies
are used to derive numerical results that appear in Section V.

where

and

B. Single Node — Bounds and Heuristic Policies

We now provide some analytical insights into the behaviothef optimal and th&G policies for the stochastic
energy model. The following observations apply to both epatgrage models.
Observation 5:E(Zopr) < U(E(D)).
Proof: The energy received in a slotdoes not exceed (i), and the overall expected amount does not exceed
K -E(D). The concave objective functioti is maximized when the energy is spent uniformly, thus for ttteal



10

expected energ¥ - E(D), the utility is maximized for energy spending rat€) = [K - E(D)|/K = E(D) V .

HenceE(Zopr) is bounded ads - (1/K) - U(E(D)) = U(E(D)). |
Observation 6:E(Zsa) = E(U(Q)).
Proof: E(Zsc) = lim 2, U(Q(i) = E(U(Q)). o

We also consideenergy storage state-basgalicies, namely th&HR and theSL policies.

e THRpolicy: for a set of storage state threshals, B, ... Br] and a set of constants spending ratgsso, ...sr],
STHR(i) ~— 0V B(Z) < Bl;STHR(i) +— 51V B < B(Z) < By; ...;STHR(i) — sp V¥V B(Z) > Br. That is, for
example, forl’ = 1, the THR is an ON-OFF policy, and fof’ = 2 is is a bi-level policy.

e SLpolicy: sgr.(i) < agr - [B(i)/C] for some parametetgy,.

These policies require choosing parameters, and the plipgrformance heavily depends on the choice of the
parameters. For policies relying on a small parameter sapls brute-force algorithms can be used to select the
best ones. Consider, for example TR policy with 7" = 1. A simple algorithms to find the best values for
s1 and By is as follows. For each possiblg,, the algorithms considers all feasible valuessof and for each
{B1,s1} combination the algorithm calculates the transition philiiées, determines the stationary probabilities
of the states, and calculatés choosing the{ B, s;} combination that maximize&. For every state in the state
space the algorithm needs to compute transition probiaisiliand the resulting stationary storage state prohielilit
however, the state space the algorithm considers is relatsmall,O(|C/h|?). In the similar manner, th&L policy
parametekvs;, can be computed by going through at mextC/h|) possibleas;, values.

Section V demonstrates the performance of different pdiciging real-world traces.

C. Link Model

The MDP formulation can be extended ttirk (u, v) as follows. We letD(i) = (D, (i), D,(i)) denote the energy
harvested in slot by both devices. We leb = (D,,, D,) denote the “representative” variable (i) andpp denote
its pdf. In this casepp is ajoint pdf of D,, and D,. The state space of the MDP &= [0, C]?, and the action space
at stateb = (by,b,) € B is given byS(b) £ {(ru,70) : cou + v = Su < by, CoxTy + CrxTu = 8y < by} . The
goal is to find an optimal policy that maximizes the averagityitimg . E, (Zfigl U(ry(i)) + U(rv(i))) /K,
which is done using methods similar to those of Section IV-AsQi corresponding discretization bounds can be
obtained.

Similarly to the predictable energy model, tBRRC algorithms can be used with this model. In this case, the
DRC policies are calculated using the marginal pdfsiaf and D, (rather than the joint pdf), and thus do not
account for the dependency betwebp and D,,.

V. NUMERICAL AND EXPERIMENTAL RESULTS
A. Trace-based Simulation

TABLE 1l
EXAMINED LIGHT ENERGY TRACES.

Location | Location description Experiment timeline

O-1 Outdoor, ECSU meteostation [1], Elizabeth City, NC. Jan. 1, 2009 — Dec. 31, 2009
0-2 Outdoor,HSU meteostation [1], Arcata, CA. Jan. 1, 2009 — Dec. 31, 2009
0-3 Outdoor, Las Vegas meteostation [1], Las Vegas, NV. Jan. 1, 2009 — Dec. 31, 2009
L-1 Indoor South-facing location [8], New York, NY. Aug. 15, 2009 — Sept. 13, 201D
L-2 Indoor location receiving mostly indoor light [8], New YorklY. Nov. 13, 2009 — Sept. 9, 2010
L-3 Indoor North-facing location [8], New York, NY. Nov. 7, 2009 - Sept. 13, 2010
L-4 Indoor South-West-facing location [8], New York, NY. Nov. 5, 2009 — Sept. 29, 2010

To evaluate the performance of the various policies, weoperéd an extensive simulation study using traces
from outdoor locations [1] and from our measurement campaign, in whichra@rded indoor light energy
traces at a set of locations at Columbia University for mdr@nta year [8]. The traces are available online at
enhants.ee.columbia.edu.

The traces we analyzed are listed in Table Il. The traces raéo@adiance, power projected onto a unit surface.
To convert the irradiance to the power available to the dgwice assumed that the devices had solar cells With
cn? area and % efficiency [9]. For the initial and final storage levels we usggd= By = C/2, where By = By
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Z (left) and % of energy used (right), for gingle nodewith a predictable profile energyfor the optimal solution and th€R

is chosen to provide foenergy neutrality{11]. For simplicity, we use:y = c¢x, and set them tey = ¢x = 0.5

nJ/bit [9].

For a single nodewith a predictable profile energy modeFig. 2 illustrates the optimal solution and the
performance of theCR policy, for energy profiles of two different setups, and shdiws upper bound derived
in Observation 1. It can be seen that this bound is tight fegdaC. In our numerical results, the actual ratio
between theCR solution and the optimal solution is substantially lowearththe approximation ratio given in
Observation 3. Separately, we evaluate the performanceed@mpolicy. We observe that foputdoor setupsO-1
- O-3, SGpolicy results in node downtiméeg of 0.47 — 0.49, which corresponds to the overall expected duration
of hours of darkness in outdoor environments. Faoor setupsL-1 - L-4 located, the downtimeg' are between
0.22 and0.52.

For alink with a predictable profile modewe use light energy trace®mncurrently recorded in nearby locatians
Fig. 3 illustrates the optimal solution and the performanicghe DRC-CRpolicy for a link (u,v) = (L-1, L-2). Fig.
3(a) shows the case in which bofh, (i) and C\, (i) are varied, while Fig. 3(b) shows the case in whic}(i) is
varied andC,, (i) is kept constant. We note that tBlRC-NOPTobtains results that are close to the optimal solution
in the first case but not in the second case. Separately, weedtthit DRC-SGpolicy, and have noticed that for
the traces examinedZ” is mostly relatively close to the lower bound derived in Qlagon 4. For example,
for a link (L-1, L-2), max(7,,T;,) = 0.52, andTuL,U = 0.57, and for a link -2, L-3), max(7,,T;,) = 0.52, and

TL = 0.64.

For asingle nodeand thestochastic modelFig. 4 shows the optimal solution and the solutions obtalmgthe
SLandTHR1(THR with one threshold) policies. The policies were evaluatedgian empirical pdf of the diurnal
energy of setuj-1. The calculations of the optimal solutions rely on disciagian procedure described in Section
IV-A. We can see that for this setup the performance of$hepolicy is very close to optimal.
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Fig. 4. Z, % of energy spent, and the % of downtime under the optimal solution an8Lthed THR1 (ON-OFF) policies, for setup-1.
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B. Testbed Experimental Results

To evaluate the performance of the policies in realistidremvnents, we also used the testbed of energy harvesting
devices that we have recently developed [7]. In this testbexl devices harvest the energy framaoor light, and
adjust their communication parameters accordingly. Weémpnted theCR, SG andLS single-node policies. We
also implemented thBRC algorithms that can be used with any single-node policytbBssimplementation allows
us to examine the behavior of various policies witldely varyingand controlled energy sources.

For example, under thBRC-SGpolicy, we examined the effect on the performance of the dépece o), (7)
and @, (7). With strongly correlated),, (i), Q, (i) (i.e., harvesting the energy of the same source), simitarithe
light energy traces examined abO\ZElL,U is close to the lower bound derived in Observation 4. Howewdren
Q. (i) and Q,(:7) were independent (i.ey and v positioned next to two lamps controlled by different pedple
TuLﬂ} was closer to theipper boundderived in Observation 4. For example, f6y = 0.65 and T, = 0.55, the link
downtimeTuLm was 0.98. Namely, while bothu andv had substantial amounts of energy, the data rat¢uon)
was extremely low.

VI. CONCLUSIONS

In this work we analyzed and evaluated numerically and empartally a number osimple energy allocation
policies for the predictable profile model and the stochasticlel. Our analysis applies to linear and non-linear
storage models. However, due to the problems’ complexity,amalysis applies only to a node or to a link. Most
algorithms that were developed for a network &ye complexfor resource-constrained nodes. Therefore, we plan
to develop simple algorithms for a network. However, theseunf dimensionality makes it challenging to directly
extend the examined stochastic models to larger scenamastherefore, approximate solution techniques should
be applied (such as Approximate Linear Programming as in [d][81). Moreover, we have so far assumed that
the harvested energy is stationary (i.i.d.) process. However, in many environments the enelggracteristics
changes with time, makingon-stationary models better fit. In such cases, the appropriate model is an MDP
with non-homogeneousr changingtransition function. Since the changes in the distributianrot be known in
advancepnline learning algorithmgsuch as [19]) may be used in such cases.
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