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Abstract

This work focuses on resource allocation for energy harvesting devices. We analytically and numerically evaluate
the performance of algorithms that determine time fair energy allocation in systems withpredictableandstochastic
energy inputs. To gain insight into the performance of networks of devices, we obtain results for the simple cases
of a single node and a link. Due to the need forvery low complexityalgorithms, we focus onvery simple policies
(some of which proposed in the past as heuristics) and analytically derive performance guarantees. We also evaluate
the performance via simulation, using real-world energy traces that we collected for over a year, and in a testbed
of energy harvesting devices developed within the EnHANTs project.

I. I NTRODUCTION

Recent advances in the areas of solar, piezoelectric, and thermal energy harvesting, and in ultra-low-power
wireless communications will soon enable the realization of energy harvesting wireless devices. When networked
together, they can compose rechargeable sensor networks [5], [14], networks of computational RFIDs [10], and
Energy Harvesting Active Networked Tags (EnHANTs) [9]. Such networks will find applications in various areas,
and thusnetworking energy harvesting deviceshas lately been gaining attention. Work in this area includes design
of energy-harvesting aware algorithms [5], [6], [8], [11]–[16], [18], development of energy harvesting devices, and
characterizations of different energy sources [8], [10] (for reviews of related work see [5], [8], [9]).

Energy sources may have different characteristics. We consider thepredictable profile energy model[5], [8],
[11], [13] in which ideal energy profiles that accurately represent the future are available, and thestochastic energy
model[6], [8], [12] in which the energy availability can be modeled by a stochastic process. Examples of the latter
include a mobile device harvesting light energy, a floorboardthat gathers energy when stepped on, and a solar
cell in a room where lights go on and off as people enter and leave. In our model, we also consider linear energy
storage device (i.e., a battery) and a non-linear device (i.e., a capacitor).

Under both models, energy availability may have high time-variability [10], [11], [18], and therefore, we aim
to, as much as possible, allocate the varying energyin a uniform way with respect to time. For that, we use
the lexicographic maximizationand thenetwork utility maximizationframeworks, which are typically applied
to achieving fair resource allocation among different nodes rather than among different time slots. Once the
energy spending rates are determined by these frameworks, they can be converted to duty cycle, sensing rate,
or communication rate.

Energy harvesting shifts the nature of energy-aware protocols from minimizingenergy expenditure tooptimizingit
over time. Therefore, the resource allocation problems are highly complex [8]. On the other hand, since the devices
are resource constrained, there is a need forvery low (computation and communication) complexity algorithms.
While some attempts have been made to develop algorithms forspecific types of networks (e.g., directed graphs
[14] and trees [5]), most previous work on implementable algorithms focused on a single node or a link [11], [12],
[15], [18]. In order to provide insight into the developmentof low complexity algorithms for a network, we focus
in this work on a single node and a link. We analytically and numerically evaluate the performance ofapproximate
and heuristicpolicies, some of which are proposed in [5], [12], [14], [15]. In particular, for asingle node, we study
the following policies:

• Optimal (OPT) policies for both thepredictable profileand thestochasticmodels serve as a benchmark for
other policies. For the stochastic case, we use aMarkov Decision Process (MDP), prove thatenergy state
discretizationcan be applied, and provide bounds on the performance degradation due to discretization.
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TABLE I
NOMENCLATURE.

D(i) Environmental energy (J)
K Number of slots
C Energy storage capacity (J)
B(i),B0,BK Energy storage state, initial, and final levels (J)
s(i) Energy spending rate (J/slot)
Q(i) Effective energy harvested (J)
h Quantization resolution (J)
r(i) Data rate (bits/s)
ctx, crx Energetic costs to transmit and to receive (J/bit)
U(·) Utility function
Z Objective function value
T Node downtime

• Spend-What-You-Get (SG) policy – within a time slot a node spends the expected energyinput for that slot,
and therefore, the complexity is very low (similar policiesare proposed in [14], [15]). Forboth models, we
provide performance guarantees.

• Constant Rate (CR) policy – a node spends energy at a constant rate in all time slots, resulting in very low
complexity (it is proposed in [5]). For thepredictable profilemodel, we provide a performance guarantee.

• Energy Storage Threshold-based (THR) policy – a set of energy storage thresholds and corresponding rates
are chosen, and the node determines the spending rates basedon the current storage level (similar policies are
proposed in [12], [15]). We study the parameter settings forthe stochasticmodel.

• Energy Storage-Linear (SL) policy – the spending rate is alinear functionof the energy storage level. We
study the parameter settings for thestochasticmodel.

For links (node-pairs) we study the following policies:
• Optimal (OPT) policies (under which nodes need to exchange their parameters) for both energy models.
• Decoupled Rate Control (DRC) policies – the nodes first determineindependentlytheir spending rates, and

then jointly calculate the data rates (similar approaches are used in [5], [14]). We examine a few versions:
– Node-optimal DRC (DRC-NOPT) – the nodes’ spending rates are determined according to theoptimal

single-node policy. We provide a performance guarantee for thepredictable profilemodel.
– DRC-SG, DRC-CR, etc. – one of the above-described policies is used to solve the twosingle-node

problems. These policies are evaluated numerically for thepredictable profilemodel.
Within the Energy Harvesting Active Networked Tags (EnHANTs)project [9] we have been developing energy

harvesting devices and characterizing the availability ofindoor ambient light energy. To evaluate the performance
of the algorithms, we use simulations based on traces that wecollected for over a year [8] as well as experiments
with the EnHANTs prototypes [7]. In many of the considered cases, the simple policies perform very well.

II. M ODEL AND PRELIMINARIES

We focus ondiscrete-timemodels, where the time axis is separated intoK slots, and a decision is made at the
beginning of a sloti (i = {0, 1, ...,K− 1}). We denote the energy storage capacity byC and the amount of energy
stored byB(i) (0 ≤ B(i) ≤ C). We denote the initial and the final energy levels byB0 and BK . The energy
spending rate is denoted bys(i). The amount of energy a device has access to is denoted byD(i), which can be
a given value or a random variable. Theeffectiveamount of energy a device can harvest from the environment is
denoted byQ(i). In general,Q(i) may depend both on the available energyD(i) and on the current energy level:
Q(i) = q(D(i), B(i)) and hence can be non-linear inD(i) (e.g., thenon-linear energy storage modelapplies to
a capacitor). For alinear energy storage modeldevice (such as abattery), q(D(i), B(i)) = D(i) and in general
Q(i) ≤ D(i) [8]. The ‘storage evolution’ for the models we consider can beexpressed as:

B(i) = min{B(i− 1) +Q(i− 1)− s(i− 1), C} (1)

Note that for the stochastic energy model, we considerquantizingthe above energy-related parameters, and denote
the quantization resolution byh.
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We consider asingle nodeand anode pair (link). We denote the endpoints of a link byu and v, the effective
amount of energy each node can harvest byQu(i) andQv(i), and their data rates byru(i) andrv(i). For asingle
nodewe optimize the energy spending rate vectors(i), which provide inputs for determiningduty cycle, sensing
rate, or communication rate. For alink, we optimize either the spending ratessu(i) andsv(i) or the communication
ratesru(i) andrv(i). We denote the costs to transmit and receive bits byctx andcrx. The constraints relating node
energy spending rates and data rates on a link for sloti are:

ctxru(i) + crxrv(i) ≤ su(i), ctxrv(i) + crxru(i) ≤ sv(i). (2)

We focus on time-uniform (time-fair) allocation of resources, and use thelexicographic maximizationandnetwork
utility maximizationframeworks. In the former, welexicographically maximizean energy spending rate vector (for
a stand-alone node), or a data rates vector (for a link). In the latter, we maximize the overall utility, where the
utility function for each individual assignment isconcaveand non-decreasing. For deriving numerical results we
useU(·) = log(·) or U(·) = log(1+(·)). We denote the total objective function value byZ (i.e.,Z =

∑
i U(·)), and

use subscripts to indicate the policy under whichZ was obtained (e.g.,ZOPT for the OPT policy andZCR for the
CR policy). As another performance measure, we consider thedowntimeof a node and a link. Namely, the fraction
of slots the node or the link do not spend energy. We denote thedowntime of a node byT = |{i|s(i) = 0}|/K
and of a link byTL = |{i|ru(i) = 0, rv(i) = 0}|/K.

III. PREDICTABLE PROFILEENERGY MODEL

In this section we analyze various policies for asingle nodemodel and discuss alink model. Section V provides
numerical results demonstrating the performance of the policies based on real-world energy traces.

A. Single Node

The optimal solution for a single node can be obtained by solving the following problem [8].
Time Fair Utility Maximization (TFU) Problem :

max
s(i)

{
Z ,

K−1∑

i=0

U(s(i))

}
(3)

s.t.: s(i) ≤ B(i) ∀ i (4)

B(i) ≤ B(i− 1) +Q(i− 1)− s(i− 1) ∀ i ≥ 1 (5)

B(0) = B0; B(K) ≥ BK ;B(i) ≤ C ∀ i (6)

B(i), s(i) ≥ 0 ∀ i (7)

We now provide bounds on the optimal solution as well as an approximation ratio for theCRpolicy. Observation
1 applies to bothlinear and non-linear energy storage models, while Observations 2 and 3 apply to the linear
energy storage model.

Observation 1:ZOPT≤ K · U
((

B0 −BK +
∑K−1

i=0 D(i)
)
/K
)

.

Proof: Denote the total energy a node has available to it byA, whereA = B0 − BK +
∑

iQ(i). When the
energy storage is sufficiently large, the optimal allocationis s(i) = A/K ∀ i [8]. The correspondingZ value is
Z̃ =

∑
i U(s(i)) = K ·U(A/K). When the energy storage is smaller, the total energy a node has available to it is

alsoA (or less), and it is allocated less uniformly. Thus, due to concavity of U , theZ value for smaller storage
conditions will be smaller, and therefore the above-statedZ̃ is the upper bound.

Observation 2:The total energy allocated by the optimal solution is
∑

imin(Q(i), C) +B0−BK . The optimal
solution will allocate all available energy ifC > max(Q(i)).

Proof: Denote the total energy a node could potentially allocate byA, whereA = B0 − BK +
∑

iQ(i).
Note, however, that when the energy storage is finite, the nodewill not necessarily be able to capture all available
energy. Ass(i) ≤ B(i) (constraint (4)),B(i)− s(i) ≥ 0. Hence, due to the storage evolution equationB(i+ 1) =
min(B(i)+Q(i)−s(i), C), the amount of energy that is “captured” by the system in a slot is at mostmin(Q(i), C).
The objective function is maximized when as much as possible of the energy is captured and allocated. Hence,
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the total amount of energy a node allocates isA′ =
∑

imin(Q(i), C) + B0 − BK . If max(Q(i)) < C, then
Q(i) ≤ C ∀ i, and henceA′ =

∑
iQ(i) +B0 −BK = A – all energy available to a node is allocated.

Observation 3:Under theCR policy, for1 BK = B0 ≤
∑

iQ(i) andU(s) = log(1 + s),

ZCR ≥ ZOPT ·

(
B0∑K−1

i=0 Q(i)

)
.

Proof: Denote
∑

iQ(i)/K by A, and usef to denotef = B0/
∑

iQ (hence0 < f < 1, andB0/K = f ·A).
From Observation 1,ZOPT ≤ K · U(A). Since

∑
iQ(i) > B0 = BK , a node can spendB0 units of energy and

have sufficientBK in storage at the end of theK slots. Thus the spending in each slot,s(i), will be at leastB0/K.
Thus,ZCR ≥ K · U(B0/K) = K · U(f ·A), and

ZOPT

ZCR
≤

K · U(A)

K · U(f ·A)
=

log(1 +A)

log(1 + f ·A)

For f = 1, log(1 +A)/ log(1 + f ·A) = 1. For 0 < f < 1, this expression is a decreasing function ofA, with its
maximum achieved forA→ 0. Using l’Hôpital’s rule,

lim
A→0

(
log(1 +A)

log(1 + f ·A)

)
= lim

A→0

(
1/(1 +A)

f/(1 + fA)

)
= lim

A→0

(
1

1 +A
·
1 + fA

f

)
= lim

A→0

(
1 + fA

f + fA

)
=

1

f
.

HenceZOPT /ZCR ≤ 1/f =
∑

iQ(i)/B0, and thusZCR ≥ ZOPT · [B0/
∑

iQ(i)].

The following proposition provides an approximation ratio for the SG policy for both linear and non-linear
energy storage models.

Proposition 1: Under theSGpolicy and forU(s) = log(s+M),

ZSG ≥ ZOPT ·
log(G(Q′))

log(Q′)
,

whereM is a constant,(·) and G(·) denote thearithmetic mean and thegeometricmean of a sequence, and
Q′(i) , Q(i) +M ∀i.

Proof: For s(i) = Q(i), ZSG =
∑

i log(M+Q(i)) =
∑

i log(Q
′(i)). G(Q′), the geometric mean of a sequence,

can be calculated asG(Q′) = K

√
Q′(0) ·Q′(1) · ... ·Q′(K − 1), and can be transformed as:

G(Q′) = K

√
Q′(0) ·Q′(1) · ... ·Q′(K − 1) = exp((1/K) ·

∑

i

log(Q′(i)) = exp((1/K) · ZSG).

ThusZSG = K · log(G(Q′)). From Observation 1 we know thatZOPT ≤ KU(
∑

iQ(i)/K) = K · log(Q′). Thus,
ZSG/ZOPT ≥ [K · log(G(Q′))]/[K · log(Q′)], and thusZSG ≥ ZOPT · log(G(Q′))/ log(Q′).

For example, consider a case ofQ(i) such thatL samples ofQ(i) = A, and the rest are equal to zero. Such
Q(i) may correspond to the case where the indoor lights are on for aportion of the day. Using Proposition
1, we demonstrate that forBK = B0 (energy neutrality[11]) and for U(s) = log(1 + s), the SG policy is a
K/L-approximation algorithm(for instance, if the indoor lights are on for 8 hours per day,the SG policy is a
3-approximation algorithm). DenotêQ =

∑
iQ(i). For U(s) = log(1 + s), U(Q(i) = 0) = 0, and thus:

ZOPT

ZSG
≤

∑
(U(Q̂/K))

∑
(U(Q̂/L))

=
K · U(Q̂/K)

L · U(Q̂/L)
=

K

L

log(Q̂/K + 1)

log(Q̂/L+ 1)
≤

K

L
,

where the last inequality comes from the fact thatK > L, thusQ̂/K < Q̂/L, and hencelog(Q̂/K+1)

log(Q̂/L+1)
< 1, and thus

K/L is the upper bound. This bound cannot be improved, as forQ̂→∞ we can demonstrate that

lim
Q̂→∞

K

L
·
log(Q̂+K)− log(K)

log(Q̂+ L)− log(L)
= lim

Q̂→∞

K

L
·
Q̂+K

Q̂+ L
=

K

L
.

1Namely, underenergy neutrality[11], with a relatively small energy storage.
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Fig. 1. Overall schematics of an optimal link policy determination (left) and the DRC algorithms (right).

B. Node Pair (Link)

The optimal solutions for a link can be obtained by solving thefollowing problems [8].
Link Time Fair Utility Maximization (LTFU) Problem :

max
ru(i),rv(i)

K−1∑

i=0

[U(ru(i)) + U(rv(i))] (8)

s.t. : constraints (2)∀ i; u, v : constraints (4)− (7)

Link Time Fair Lexicographic Assignment (LTFL) Problem :

Lexicographically maximize:{ru(0), ..., ru(K − 1), rv(0), ..., rv(K − 1)} (9)

s.t. : constraints (2)∀ i; u, v : constraints (4)− (7)

The results in this section apply to thelinear energy storage model. First, we show below that under specific
conditions the solutions to both problems are equal.

Proposition 2: Whenctx = crx, the LTFL problem and theLTFU problem have the same solution.
Proof: When ctx = crx = c̃, constraints (2) reduce tõc · (ru(i) + rv(i)) ≤ su(i) and c̃ · (ru(i) + rv(i)) ≤

sv(i), which can be equivalently stated asru(i) + rv(i) ≤ min(su(i), sv(i))/c̃ – that is, in this case thesumof
the data rates is constrained. Due to the concavity of the objective functions in theLTFU problem, the utility
of variables constrained like this is maximized whenru(i) = rv(i) = r(i). Similarly, the optimal solution to
the LTFL problem will also haveru(i) = rv(i) = r(i), since the optimal solution is max-min fair, and the
max-min fairness is achieved when both rates are increased as much as possible. Thus, theLTFU problem’s
objective function reduces tomax

∑
i U(min(su(i), sv(i))/c̃), and theLTFL problem’s objective function reduces

to lex max[min(su(1), sv(1))/c̃, ...,min(su(K − 1), sv(K − 1))/c̃], and the constraint set is the same for both
LTFL and LTFU. The equality of optimal solutions to these problems with thesame constraint set follows from
the proof of Lemma 2 in [8].

We now examine the performance of the following set of algorithms.
Decoupled Rate Control (DRC) Algorithms: For a given link(u, v), the algorithms first determinesu(i) and
sv(i) for every sloti according to some single-node policy, optimal (DRC-NOPT), or approximate (i.e.,DRC-SG,
DRC-CR). Then, for each sloti, under constraints (2), the algorithms obtain a solution to

max
ru(i),rv(i)

{U(ru(i)) + U(rv(i))} . (10)

Small per-slot problem (10) can be easily solved. For exampleif ctx = crx, the solution to (10) is

ru(i) = rv(i) = min(su(i), sv(i))/(ctx + crx). (11)

Fig. 1 shows schematically the difference between solving link problems optimally and applying theDRCalgorithms.
Proposition 3: ZOPT ≤ K · Z̃, whereZ̃ is obtained by solving (10) forsu(i)← [B0,u −BK,u +

∑
iQu(i)]/K,

sv(i)← [B0,v −BK,v +
∑

iQv(i)]/K.
Proof: Consider the case where the energy storage is unlimited. Thenconstraints (4)-(7) reduce to constraints∑

i su(i) ≤ [B0,u − BK,u +
∑

iQu(i)],
∑

i sv(i) ≤ [B0,v − BK,v +
∑

iQv(i)]. Since the objective function is
concave and non-decreasing, and since the problem is symmetric for all slots i, the optimal solution will be
obtained when each node assigns the same data rate to each slot. The same data rate for each slot will be obtained
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when each node assigns the same amount of energy to each slot,that is,su(i) = [B0,u−BK,u+
∑

iQu(i)]/K ∀ i,
sv(i) = [B0,v−BK,v+

∑
iQv(i)]/K ∀ i, and hence the overall solution will beK ·Z̃. This value is an upper-bound

since for constrained energy storage conditions, the same amounts of energy will be assigned with more constraints.

For example, for the case ofctx = crx,

Z̃ = 2 · U

(
min([B0,u −BK,u +

∑
iQu(i)]/K, [B0,v −BK,v +

∑
iQv(i)]/K)

ctx + crx

)
.

The Proposition below implies that theDRC-NOPTpolicy obtains the optimal solution to theLTFL problem for
a link (u, v) in which u and v have the same energy parametersQ(i), C,B0 andBK .

Proposition 4: DRC-NOPTsolves theLTFL problem optimally, if for all slotsi, node-optimalsu(i) ≤ sv(i).
Proof: The optimal solution to theLTFL is max-min fair, and thus, for eachi, ru(i) = rv(i) = r(i), and

constraints (2) can be reduced tor(i) ≤ (min(su(i), sv(i))/[ctx + crx]. Thus, the data rate in each sloti is fully
determined by theminimumof {su(i), sv(i)}. For su(i) ≤ sv(i) ∀i, the data rates are fully determined by the
allocation ofsu(i). TheDRC-NOPTslot energy spending assignmentssu(i) are lexicographically fair – a spending
su(i1) cannot be increased without a decrease in somes(i2) that is already smaller. Thus, the energy allocation
cannot be improved, and thus theDRC-NOPTsolution is optimal.

The following observation discusses the downtime under theDRC-SGpolicy.
Observation 4:Under theDRC-SGpolicy, max[Tu, Tv] ≤ TL

u,v ≤ Tu + Tv.
Proof: Due to constraints (2), the data rates assigned by aDRC policy to a sloti will be zero if su(i) = 0

or sv(i) = 0, thusTL
u,v is not smaller thanmax[Tu, Tv]. If both su(i) andsv(i) are non-zero, then ther(i) values

maximizing (10) will also be non-zero, thusTL
u,v is not larger thanTu + Tv.

For example, consider a case whereQu(i) and Qv(i) are vectors withL non-zero entries. For a(u, v) where
Qv(i) = Qu(i) ∀ i (Qu(i) andQv(i) aresynchronized), TL

u,v = (K −L)/K. On the other hand, for a(u, v) where
Qv(i) is shiftedwith respect toQu(i), TL

u,v can be as high as2 · (K − L)/K.

IV. STOCHASTIC ENERGY MODELS

We now study models in which the energy harvested in sloti is a random process{D(i)}. We examine a model
of a single node with{D(i)} i.i.d. random variables. We letD denote the “representative” variable forD(i) and
pD denote itsprobability density function(pdf). In addition, we also briefly discuss the extension of the model to
a link.

A. Single Node – Optimal Policies and Dicretization Bounds

We formulate the problem as an average cost Markov Decision Process (MDP). LetB = [0, C] andS = [0, C]
denote the state and action spaces of the MDP, respectively.For anyb ∈ B and s ∈ S, the transition density is
denoted byp(·|b, s). It determines the next energy storage levelB(i+1) given that the current energy storage level
is B(i) = b and the spending rate iss(i) = s. This transition density is determined bypD and (1). A policyπ is a
collection of decision rulesπi : Bi × Si−1 → ∆(S) which at each timei prescribe a probability distribution over
the actions (∆(S) denotes the probability simplex over the setS). The goal is to find an optimal policy, which
maximizes the average utility. In particular, let2

λπ(b) , lim
K→∞

(EπZ(K))/K = lim
K→∞

Eπ

(
K−1∑

i=0

U(s(i))

)
/K

denote the asymptotic expected average utility obtained bystarting from stateB0 = b and using a given policyπ.
The optimal average utility is then

λ∗(b) , sup
π

λπ(b).

2
Eπ denotes the expectation with respect to the probability law induced by the MDP while using policyπ, and{s(i)} are the spending

rates under this policy.
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It is well known (i.e., [17]) that under certainergodicity (or mixing) conditions, the optimal average utility does
not depend onb. In our case, we use the following mixing condition.

Assumption 4.1 (Mixing):There exists a scalarρ ∈ (0, 1] and a measureν with ν(B) ≥ ρ such that

p(A|b, s) ≥ ν(A), ∀A ⊆ B, (b, s) ∈ Γ.

For our problem, we prove the following.
Lemma 4.1:If when B(i) = C, s(i) ≥ α > 0 holds for someα, Assumption 4.1 is satisfied. In particular, for

the linear case (q(d, b) = d) it is satisfied with

ν(y) , min
(b,s)∈Γ

pD(y − b+ s), y ∈ B,

ρ ,

∫

B

min
(b,s)∈Γ

pD(y − b+ s)dy > 0.

Proof: We prove this Lemma for the case of the linear model. First, trivially

ν(y) ≤ pD(y − b+ s) ≤ p(y|b, s)

for all (y, b, s). Now

ρ ,

∫

B

ν(y)dy.

We show below that ify > C − α, whereα is defined in (12), we have that

min
(b,s)∈Γ

pD(y − b+ s) > 0.

This will imply that ρ > 0. Indeed, supposey > C −α. Also, b− s ≤ C −α. Therefore,y > b− s, which implies
that pD(y − b+ s) > 0.
In view of Lemma 4.1, we let

Γ , {(b, s) ∈ B × S : max(b− C + α, 0) ≤ s ≤ b} (12)

denote the set ofadmissiblestate-action pairs.
Under the mixing condition, an optimal policy isdeterministic Markov stationarypolicy π∗ : B → S and can be

found by solving theoptimality equation

λ+ J(b) = T J(b), b ∈ B,

whereT is Bellman’s operator, defined for any bounded functionJ as

T J(b) = max
s∈S

{
U(s) +

∫

B

p(b′|b, s)J(b′)db′
}
.

Specifically, a solution(λ∗, J∗) of optimality equation is such thatλ∗(b) ≡ λ∗ and an optimal policy is given by

π∗(b) = argmax
s∈S

{
U(s) +

∫

B

p(b′|b, s)J∗(b′)db′
}
.

However, since our state and action spaces are infinite, thereis no practical algorithm to solve the optimality
equation. To address this, wediscretizethe state and action spacesuniformly, using a fixed discretization parameter
h. We denote thus obtained finite spaces byBh andSh. In particular, ifb ∈ Bh, it is a multiple ofh, and similarly
for Sh. For anyb ∈ B, we letxb ∈ Bh denote therepresentativepoint of b in Bh (which is the closest point tob
in Bh).

The discretized set of admissible state-action pairs is then

Γh ,

{
(b, s) ∈ B × Sh : |s− sb| ≤

h

2
for somemax(xb − C + α, 0) ≤ sb ≤ xb

}
.
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Finally, the descretization of the dynamics is as follows:

ph(b
′|b, s) ,

p(xb′ |b, s)∫
B
p(xy|b, s)dy

The corresponding Bellman’s operator is then

ThJ(b) = max
s inSh

{
U(s) +

∫

b′∈B
ph(b

′|b, s)J(b′)

}

It is easy to see that this operator returns asimplefunction for any given functionJ . Moreover, the solutionJ∗
h of

the optimality equation
λh + Jh(b) = ThJh(b), b ∈ B (13)

is also a simple function. The solution(λ∗
h, J

∗
h) can be found using value/policy iteration algorithms or linear

programming (see [17] for details).
We use the results in [2] to provide the performance bounds due to the introduced discretization process. To

use these results, in addition to the mixing condition (Lemma4.1), our MDP model should satisfy the following
continuity condition.

Assumption 4.2 (Lipschitz Continuity):There exists a constantβ > 0 such that
∣∣U(s)− U(s′)

∣∣ ≤ β
∣∣s− s′

∣∣ , ∀s, s′ ∈ S,
∥∥p(·|b, s)− p(·|b′, s′)

∥∥
v
≤ β

∥∥(b, s)− (b′, s′)
∥∥
∞
, ∀(b, s), (b′, s′) ∈ Γ,

where‖·‖v is the total variation norm.
The first part of Assumption 4.2 can be satisfied by choosing an appropriate utility function. Let us denote its
continuity constant byβU . For the second part, we impose the following on the probability distribution of the
energy random variableD.

Assumption 4.3:Suppose that there exists a finite constantDmax such that the variableD takes values in the
interval [0, Dmax]. Let

Pmax , max
d∈[0,Dmax]

pD(d).

Moreover, assume that there exists a finite constantβD > 0 such that
∣∣pD(d)− pD(d

′)
∣∣ ≤ βD

∣∣d− d′
∣∣ , ∀0 ≤ d, d′ ≤ Dmax.

Lemma 1:Under Assumption 4.3, there existsβ = β(βU , βD) > 0 such that Assumption 4.2 is satisfied. In
particular, for the linear model (q(d, b) = d) we have that

β = max {βU , 2(CβD + Pmax)} .

Proof: We prove this Lemma for the linear model case. In this case

B(i+ 1) = min {B(i) +D − s, C}

whereD ∼ PD. Let F (y|b, s) (b − s ≤ y ≤ min{b − s +Dmax, C}) denote the cumulative transition distribution
function. We have that

F (y|b, s) = P {min {b+D − s, C} ≤ y}

= P

(
{min {b+D − s, C} ≤ y}

⋂
{b+D − s ≤ C}

)

+ P

(
{min {b+D − s, C} ≤ y}

⋂
{b+D − s > C}

)

= P {D ≤ y − b+ s}+ I {C = y} P {D > C − b+ s}

= FD(y − b+ s) + I {C = y} (1− FD(C − b+ s)) ,
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whereFD is the cdf ofD. Thus, the transition density is given by

p(y|b, s) = pD(y − b+ s) + δ (y − C) (1− FD(C − b+ s)) .

Therefore, for any(b, s) and (b′, s′), we have that

∥∥p(·|b, s)− p(·|b′, s′)
∥∥
v

=

∫ C

0

∣∣p(y|b, s)− p(y|b′, s′)
∣∣ dy

≤

∫ C

0

∣∣pD(y − b+ s)− pD(y − b′ + s′)
∣∣

+

∫ C

0

(
δ (y − C)

∣∣FD(C − b+ s)− FD(C − b′ + s′)
∣∣) dy

≤ CβD(
∣∣b− b′

∣∣+ |s− s′|) +
∣∣FD(C − b+ s)− FD(C − b′ + s′)

∣∣
≤ 2CβD

∥∥(b, s)− (b′, s′)
∥∥
∞

+ 2Pmax

∥∥(b, s)− (b′, s′)
∥∥
∞
,

where the third inequality follows by Assumption 4.3. Thus, Assumption 4.2 is satisfied with

β = max {βU , 2(CβD + Pmax)} .

as required.
Hence, the following theorem bounds the distance of the optimal average rewardλ∗

h in the discretized model
from the optimal average rewardλ∗. This theorem is in fact an application of Theorem 4.3.5 in [2] to our case.

Theorem 1:Under Assumption 4.3, there existsh̄ > 0 andβλ (depending only onβ of Assumption 4.2 andρ
of Assumption 4.1) such that for allh ∈ (0, h̄]

|λ∗ − λ∗
h| ≤ βλh.

In particular,h̄ andβλ can be explicitly written as

h̄ = min

{
1

2β + 4β2
,

ρ

β + β(β + 0.5) + 4(β + β2)

}

βλ = β1

(
1 +

4

ρ

)
+ β2

(
β

ρ
+

2β

ρ2

)
,

where

β1 , β

(
β +

3

2

)

and

β2 , β

(
5β +

9

2

)
.

Proof: By Lemma 1, Assumption 4.2 is satisfied. By Lemma 4.1, Assumption4.1 is satisfied as well. Thus,
the proof follows from Theorem 4.3.5 in [2]. The exact expressions for the parametersβλ and h̄ are obtained from
the proofs of Theorems 2.4.1 and 2.4.2 therein.

An optimal policy π∗
h (in the discretized model) may be computedoffline. Therefore, the actual choice of the

spending rate by a device can be done by using the precomputedfunction π∗
h : Bh → Sh. The quantized policies

are used to derive numerical results that appear in Section V.

B. Single Node – Bounds and Heuristic Policies

We now provide some analytical insights into the behavior ofthe optimal and theSGpolicies for the stochastic
energy model. The following observations apply to both energy storage models.

Observation 5:E(ZOPT ) ≤ U(E(D)).
Proof: The energy received in a sloti does not exceedD(i), and the overall expected amount does not exceed

K · E(D). The concave objective functionU is maximized when the energy is spent uniformly, thus for thetotal
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expected energyK · E(D), the utility is maximized for energy spending rates(i) = [K · E(D)]/K = E(D) ∀ i.
HenceE(ZOPT ) is bounded asK · (1/K) · U(E(D)) = U(E(D)).

Observation 6:E(ZSG) = E(U(Q)).
Proof: E(ZSG) = lim

K→∞

1
K

∑
i U(Q(i)) = E(U(Q)).

We also considerenergy storage state-basedpolicies, namely theTHR and theSL policies.
• THRpolicy: for a set of storage state thresholds[B1, B2, ...BT ] and a set of constants spending rates[s1, s2, ...sT ],
sTHR(i) ← 0 ∀ B(i) ≤ B1; sTHR(i) ← s1 ∀ B1 < B(i) ≤ B2; ...; sTHR(i) ← sT ∀ B(i) > BT . That is, for
example, forT = 1, the THR is an ON-OFF policy, and forT = 2 is is a bi-level policy.
• SL policy: sSL(i)← αSL · [B(i)/C] for some parameterαSL.

These policies require choosing parameters, and the policies’ performance heavily depends on the choice of the
parameters. For policies relying on a small parameter set, simple brute-force algorithms can be used to select the
best ones. Consider, for example, aTHR policy with T = 1. A simple algorithms to find the best values for
s1 and B1 is as follows. For each possibleB1, the algorithms considers all feasible values ofs1, and for each
{B1, s1} combination the algorithm calculates the transition probabilities, determines the stationary probabilities
of the states, and calculatesZ, choosing the{B1, s1} combination that maximizesZ. For every state in the state
space the algorithm needs to compute transition probabilities, and the resulting stationary storage state probabilities;
however, the state space the algorithm considers is relatively small,O(|C/h|2). In the similar manner, theSLpolicy
parameterαSL can be computed by going through at mostO(|C/h|) possibleαSL values.

Section V demonstrates the performance of different policies using real-world traces.

C. Link Model

The MDP formulation can be extended to alink (u, v) as follows. We letD(i) , (Du(i), Dv(i)) denote the energy
harvested in sloti by both devices. We letD , (Du, Dv) denote the “representative” variable forD(i) andpD denote
its pdf. In this case,pD is a joint pdf of Du andDv. The state space of the MDP isB = [0, C]2, and the action space
at stateb = (bu, bv) ∈ B is given byS(b) , {(ru, rv) : ctxru + crxrv = su ≤ bu, ctxrv + crxru = sv ≤ bv} . The

goal is to find an optimal policy that maximizes the average utility limK→∞ Eπ

(∑K−1
i=0 U(ru(i)) + U(rv(i))

)
/K,

which is done using methods similar to those of Section IV-A. Also, corresponding discretization bounds can be
obtained.

Similarly to the predictable energy model, theDRC algorithms can be used with this model. In this case, the
DRC policies are calculated using the marginal pdfs ofDu andDv (rather than the joint pdf), and thus do not
account for the dependency betweenDu andDv.

V. NUMERICAL AND EXPERIMENTAL RESULTS

A. Trace-based Simulation

TABLE II
EXAMINED LIGHT ENERGY TRACES.

Location Location description Experiment timeline
O-1 Outdoor,ECSUmeteostation [1], Elizabeth City, NC. Jan. 1, 2009 – Dec. 31, 2009
O-2 Outdoor,HSU meteostation [1], Arcata, CA. Jan. 1, 2009 – Dec. 31, 2009
O-3 Outdoor, Las Vegas meteostation [1], Las Vegas, NV. Jan. 1, 2009 – Dec. 31, 2009
L-1 Indoor South-facing location [8], New York, NY. Aug. 15, 2009 – Sept. 13, 2010
L-2 Indoor location receiving mostly indoor light [8], New York,NY. Nov. 13, 2009 – Sept. 9, 2010
L-3 Indoor North-facing location [8], New York, NY. Nov. 7, 2009 - Sept. 13, 2010
L-4 Indoor South-West-facing location [8], New York, NY. Nov. 5, 2009 – Sept. 29, 2010

To evaluate the performance of the various policies, we performed an extensive simulation study using traces
from outdoor locations [1] and from our measurement campaign, in which werecorded indoor light energy
traces at a set of locations at Columbia University for more than a year [8]. The traces are available online at
enhants.ee.columbia.edu.

The traces we analyzed are listed in Table II. The traces recordirradiance, power projected onto a unit surface.
To convert the irradiance to the power available to the device, we assumed that the devices had solar cells with10
cm2 area and1% efficiency [9]. For the initial and final storage levels we usedB0 = BK = C/2, whereB0 = BK
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(b) SetupL-3.
Fig. 2. Z (left) and % of energy used (right), for asingle nodewith a predictable profile energy, for the optimal solution and theCR
policy.
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(a) BothCu andCv are varied.
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(b) Cu is kept the same, andCv is varied.
Fig. 3. Z (left) and energy used (right), fora link (u, v) = (L-1, L-2) with a predictable profile energy. The results include the optimal
solution, and theDRC-NOPTandDRC-CRpolicies.

is chosen to provide forenergy neutrality[11]. For simplicity, we usectx = crx, and set them toctx = crx = 0.5
nJ/bit [9].

For a single nodewith a predictable profile energy model, Fig. 2 illustrates the optimal solution and the
performance of theCR policy, for energy profiles of two different setups, and showsthe upper bound derived
in Observation 1. It can be seen that this bound is tight for large C. In our numerical results, the actual ratio
between theCR solution and the optimal solution is substantially lower than the approximation ratio given in
Observation 3. Separately, we evaluate the performance of the SGpolicy. We observe that foroutdoor setupsO-1
- O-3, SGpolicy results in node downtimesT of 0.47− 0.49, which corresponds to the overall expected duration
of hours of darkness in outdoor environments. Forindoor setupsL-1 - L-4 located, the downtimesT are between
0.22 and0.52.

For a link with a predictable profile model, we use light energy tracesconcurrently recorded in nearby locations.
Fig. 3 illustrates the optimal solution and the performance of the DRC-CRpolicy for a link (u, v) = (L-1, L-2). Fig.
3(a) shows the case in which bothCu(i) andCv(i) are varied, while Fig. 3(b) shows the case in whichCv(i) is
varied andCu(i) is kept constant. We note that theDRC-NOPTobtains results that are close to the optimal solution
in the first case but not in the second case. Separately, we studied theDRC-SGpolicy, and have noticed that for
the traces examined ,TL is mostly relatively close to the lower bound derived in Observation 4. For example,
for a link (L-1, L-2), max(Tu, Tv) = 0.52, andTL

u,v = 0.57, and for a link (L-2, L-3), max(Tu, Tv) = 0.52, and
TL = 0.64.

For asingle nodeand thestochastic model, Fig. 4 shows the optimal solution and the solutions obtainedby the
SL andTHR1(THR with one threshold) policies. The policies were evaluated using an empirical pdf of the diurnal
energy of setupL-1. The calculations of the optimal solutions rely on discretization procedure described in Section
IV-A. We can see that for this setup the performance of theSL policy is very close to optimal.
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Fig. 4. Z, % of energy spent, and the % of downtime under the optimal solution and theSL andTHR1 (ON-OFF) policies, for setupL-1.
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B. Testbed Experimental Results

To evaluate the performance of the policies in realistic environments, we also used the testbed of energy harvesting
devices that we have recently developed [7]. In this testbed, the devices harvest the energy fromindoor light, and
adjust their communication parameters accordingly. We implemented theCR, SG, andLS single-node policies. We
also implemented theDRC algorithms that can be used with any single-node policy. Testbed implementation allows
us to examine the behavior of various policies withwidely varyingandcontrolled energy sources.

For example, under theDRC-SGpolicy, we examined the effect on the performance of the dependence onQu(i)
andQv(i). With strongly correlatedQu(i), Qv(i) (i.e., harvesting the energy of the same source), similarlyto the
light energy traces examined above,TL

u,v is close to the lower bound derived in Observation 4. However, when
Qu(i) and Qv(i) were independent (i.e.,u and v positioned next to two lamps controlled by different people),
TL
u,v was closer to theupper boundderived in Observation 4. For example, forTu = 0.65 andTv = 0.55, the link

downtimeTL
u,v was 0.98. Namely, while bothu and v had substantial amounts of energy, the data rate on(u, v)

was extremely low.

VI. CONCLUSIONS

In this work we analyzed and evaluated numerically and experimentally a number ofsimpleenergy allocation
policies for the predictable profile model and the stochasticmodel. Our analysis applies to linear and non-linear
storage models. However, due to the problems’ complexity, our analysis applies only to a node or to a link. Most
algorithms that were developed for a network aretoo complexfor resource-constrained nodes. Therefore, we plan
to develop simple algorithms for a network. However, the curse of dimensionality makes it challenging to directly
extend the examined stochastic models to larger scenarios,and therefore, approximate solution techniques should
be applied (such as Approximate Linear Programming as in [4] and [3]). Moreover, we have so far assumed that
the harvested energy is astationary (i.i.d.) process. However, in many environments the energycharacteristics
changes with time, makingnon-stationary modelsa better fit. In such cases, the appropriate model is an MDP
with non-homogeneousor changingtransition function. Since the changes in the distribution cannot be known in
advance,online learning algorithms(such as [19]) may be used in such cases.
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