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Abstract—This paper considers the interaction between
channel assignment and distributed scheduling in multi-channel
multi-radio Wireless Mesh Networks (WMNs). Recently, a number
of distributed scheduling algorithms for wireless networks have
emerged. Due to their distributed operation, these algorithms can
achieve only a fraction of the maximum possible throughput. As
an alternative to increasing the throughput fraction by designing
new algorithms, we present a novel approach that takes advantage
of the inherent multi-radio capability of WMNs. We show that this
capability can enable partitioning of the network into subnetworks
in which simple distributed scheduling algorithms can achieve
100% throughput. The partitioning is based on the notion of Local
Pooling. Using this notion, we characterize topologies in which
100% throughput can be achieved distributedly. These topologies
are used in order to develop a number of centralized channel
assignment algorithms that are based on a matroid intersection
algorithm. These algorithms pre-partition a network in a manner
that not only expands the capacity regions of the subnetworks but
also allows distributed algorithms to achieve these capacity regions.
We evaluate the performance of the algorithms via simulation and
show that they significantly increase the distributedly achievable
capacity region. We note that while the identified topologies are
of general interference graphs, the partitioning algorithms are
designed for networks with primary interference constraints.

Index Terms—Channel assignment, distributed algorithms, local
pooling, matroid intersection, scheduling, stability.

1. INTRODUCTION

IRELESS mesh networks (WMNs) have recently
Wemerged as a solution for providing last-mile Internet
access [2]. A WMN consists of mesh routers, that form the
network backbone, and mesh clients. Mesh routers are rarely
mobile and usually do not have power constraints. The mesh
routers are usually equipped with multiple wireless interfaces
operating in orthogonal channels. Therefore, a major challenge
in the design and operation of such networks is to allocate
channels and schedule transmissions to efficiently share the
common spectrum among the mesh routers. Several recent
works focused on multi-radio multi-channel WMNSs. Specif-
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ically, [3], [14], [22] study the issues of channel allocation,
scheduling, and routing in WMNSs, assuming that the traffic
statistics are given. In this paper, we study the issues of channel
allocation and scheduling but unlike most previous works, we
do not assume that the traffic statistics are known. Alternatively,
we assume a stochastic arrival process and present a novel
partitioning approach that enables throughput maximization in
each partition by distributed scheduling algorithms.

Joint scheduling and routing in a slotted multihop wireless
network with a stochastic packet arrival process was considered
in the seminal paper by Tassiulas and Ephremides [23]. In that
paper they presented the first centralized policy that is guaran-
teed to stabilize the network (i.e., provide 100% throughput)
whenever the arrival rates are within the stability region. The re-
sults of [23] have been extended to various settings of wireless
networks and input-queued switches (e.g., [18], [20]). However,
optimal algorithms based on [23] require repeatedly solving
a global optimization problem, taking into account the queue
backlog information for every link in the network. Obtaining
a centralized solution to such a problem in a wireless network
does not seem to be feasible, due to the communication over-
head associated with continuously collecting the queue backlog
information, and due to the limited processing capability of the
nodes. On the other hand, distributed algorithms usually provide
only approximate solutions, resulting in significantly reduced
throughput.

Hence, the design of distributed scheduling algorithms has
attracted a lot of attention recently. Lin and Shroff [17] studied
the impact of imperfect scheduling on cross-layer rate control.
Regarding primary interference constraints,! they showed that
using a distributed maximal matching algorithm along with a
rate control algorithm may achieve as low as 50% throughput.
Similar results for different settings were obtained in [6], [7],
[16], [24]. Chaporkar et al. [6] characterize the stability region
of a maximal scheduling algorithm under arbitrary topologies
and interference models. They show that under secondary in-
terference constraints, the stability region may be reduced to
A* /8, where A* is the stability region under a perfect (cen-
tralized) scheduler. Finally, a novel distributed randomized ap-
proach that can achieve 100% throughput has been presented
in [19]. Although randomized algorithms can obtain maximum
throughput, deterministic distributed algorithms are desirable,
due to their simplicity and since they often result in attractive
delay performance.

In this paper, we show that the multi-radio and multi-channel
capabilities of WMNs provide an opportunity for simple de-
terministic distributed algorithms to achieve high throughput.

'Under primary interference constraints, each station can converse with at
most a single neighbor at a time. Namely, the set of active links at any point of
time is a matching.
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Mesh routers are usually equipped with multiple radios (trans-
ceivers) and can transmit and receive on multiple channels si-
multaneously [1], [3], [14]. Hence, channels have to be allo-
cated to the links and the transmissions on each link have to be
scheduled to avoid collisions. By allocating different channels to
different links, several non-interfering subnetworks can be con-
structed. We study which subnetwork topologies enable simple
distributed scheduling algorithms to achieve 100% throughput.
Based on these results, we develop centralized network parti-
tioning algorithms that decompose the network into such sub-
networks.

Although in arbitrary topologies the worst case performance
of distributed maximal scheduling algorithms can be very low,
there are some topologies in which they can achieve 100%
throughput. This observation is based on a work by Dimakis
and Walrand [9] in which they study the performance of the
Longest Queue First (LQF) scheduling algorithm in a graph of
interfering queues.2 The LQF algorithm is a greedy maximal
weight scheduling algorithm that selects the set of served
queues greedily according to the queue lengths. Unlike a max-
imum weight (optimal) solution, a maximal weight solution can
be easily obtained in a distributed manner. Sufficient conditions
for a maximal weight algorithm to achieve 100% throughput
are presented in [9]. These conditions are referred to as Local
Pooling (LoP) and are related to the properties of all maximal
independent sets in the conflict graph.

In this paper we conduct the first thorough study of the im-
plications of the LoP conditions on the network performance.
We start by presenting a motivating example demonstrating that
channel allocation algorithms that take into account LoP have
desirable properties. We then conduct an extensive numerical
study of the satisfaction of LoP by conflict graphs of up to 7
nodes. We show that out of 1,252 graphs, only 14 do not satisfy
LoP. It is an indication of the strength of maximal weight sched-
uling for achieving 100% throughput regardless of the network
topology, aside from a few “bad” topologies. Due to computa-
tional limitations, exhaustively verifying the satisfaction of LoP
in graphs with more than 7 nodes seems infeasible. In order to
be able to utilize larger graphs, we study what general proper-
ties of conflict graphs assist or hinder the LoP conditions. For
example, we show that cliques that are connected to each other
in different manners satisfy LoP.3

These observations provide several building blocks for
partitioning a graph into subgraphs satisfying LoP. In order to
demonstrate this capability and for the ease of presentation, we
focus on scheduling under primary interference constraints#
(studied in [6], [7], [19], [24]). For example, we show that
a tree network graph, when subject to primary interference
constraints, yields an interference graph which satisfies LoP.
Hence, in trees, maximal weight matching algorithms achieve
100% throughput. We also study bipartite network graphs that
provide insights regarding the number of required subgraphs.
For instance, we show that in any K> ,, bipartite graph (i.e., a

2A graph of interfering queues can be constructed from the network graph
according to the interference constraints and is usually referred to as an inter-
ference or conflict graph [13].

3In [25] we identify several additional graph classes that satisfy LoP.

4The approach can be extended to more realistic interference constraints and
to joint routing and scheduling (for more details, see [25]).
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2 x n input-queued switch) maximal weight matching algo-
rithms achieve 100% throughput.

Building upon our observations, we design centralized
channel allocation algorithms that pre-partition the network.
Similarly to [3] and to the static channel assignment in [14],
we assume that a channel is assigned to a radio interface for an
extended period of time. For simplicity, similarly to the static
channel assignment in [14], we also assume that one channel
is assigned to each link. Under these assumptions, using the
minimum number of channels requires a partitioning of the
network into the minimum number of subnetworks satisfying
LoP. The general LoP conditions are extremely challenging to
incorporate into a channel allocation algorithm. Fortunately, our
study provides some useful building blocks. Since tree network
graphs satisfy LoP, our approach is to partition the network
into non-overlapping forests, such that each edge will be part
of a single forest and each forest will use a different channel.
This problem is closely related to the matroid intersection and
matroid partitioning problems.

Given k channels, the problem of partitioning the graph into
k forests such that the number of edges included in the forests is
maximized is referred to as the k-forest problem [10]. A simple
approach is to obtain an approximate solution by a Breadth
First Search (BFS) algorithm. Alternatively, since the k-forest
problem is actually a specific case of a Matroid Cardinality In-
tersection problem, an optimal solution can be found by the Ma-
troid Cardinality Intersection (MCI) algorithm of [15] (having
polynomial complexity). We show that the MCI algorithm can
be adapted to take into account the scenario in which different
nodes have different numbers of radios. Using either the BFS
algorithm or the MCI algorithm enables a simple distributed
scheduling algorithm to achieve the capacity region of the sub-
networks (i.e., achieve 100% throughput in the subnetworks).
Yet, the capacity region itself may not be the best possible. This
results from the undesirable property that the sizes (number of
edges) of the forests are unbalanced.

We present three algorithms that aim to expand the capacity
region, while maintaining the LoP conditions in all the subnet-
works. The main objective is to balance the number of edges
across channels and to reduce the node degrees in each channel.
Two of these novel capacity expansion algorithms make use
of augmenting paths (in the spirit of the MCI algorithm of
[15]) to balance the node degree across channels. Thus, they
can be viewed as balanced Matroid Cardinality Intersection
algorithms. We evaluate the performance of the algorithms
via simulation. We show that the MCI algorithm significantly
outperforms the BFS algorithms. We also compare the per-
formance of the capacity expansion algorithms and the MCI
algorithm and show that a large capacity improvement can be
gained by using these algorithms. We conclude by comparing
the performance of the capacity expansion algorithms and the
channel allocation algorithm of [14].

The main contributions of this paper are two-fold. First, we
conduct a rigorous study of the properties of network graphs
satisfying Local Pooling. The second contribution is the devel-
opment of network partitioning (i.e., channel allocation) algo-
rithms that generate subnetworks with large capacity regions,
while enabling distributed throughput maximization in each of
the subnetworks. To the best of our knowledge, this is the first
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Fig. 1. (a) A network graph G v, (b) the corresponding interference graph G'; under the primary interference constraints, and (c) the matrix A/ (V7) of maximal

independent sets in G'1.

attempt to study the algorithmic implications of Local Pooling.
This work is not only different from previous works on dis-
tributed stability, due to the focus on partitioning mesh net-
works, but also different from previous works on optimizing
mesh networks that mostly rely on traffic statistics.

This paper is organized as follows. In Section II we present
the network model and formulate the problem. In Section III we
present and clarify the LoP conditions and demonstrate their ef-
fect on the channel assignment problem. Section IV studies the
characteristics of conflict graphs satisfying LoP. In Section V
we present network partitioning and capacity expansion algo-
rithms and in Section VI we evaluate their performance. We
summarize the results and discuss future research directions in
Section VII.

II. MODEL

We consider the backbone of a Wireless Mesh Network
modeled by a nerwork graph Gy = (Vy,EN), where
VN = {1,...,n} is the set of nodes (mesh routers) and
En = {(i,j) : i,j € Vn} is the set of bi-directional links,
with m 2 |Ev|- Depending on the context, we denote a link
either by (i,7) or by e,. We assume that the time is slotted,
denoted by ¢, and that the packet length is normalized to be one
time slot. We denote by K, a clique having n vertices and by
K ; a complete bipartite graph with 7 and j vertices.

Different wireless technologies pose different constraints on
the set of transmissions that can take place simultaneously. For
example, under primary interference constraints, the set of pos-
sible transmissions is the set of all possible matchings on G .
In many cases an interference graph (also known as a conflict
graph) Gy = (Vr, Er) can be defined based on the network
graph Gy [13]. We assign V; 2 FE . Thus, each edge e; in the
network graph is represented by a vertex v; of the interference
graph and an edge (v;, v;) in the interference graph indicates a
conflict between network graph links e; and ¢; (i.e., transmis-
sions on e; and e; cannot take place simultaneously). In graph
theoretic terminology, the interference graph resulting from pri-
mary interference constraints is called a line graph [11]. For ex-
ample, Fig. 1 illustrates a network graph and the corresponding
interference graph under primary interference constraints (i.e.,
the line graph corresponding to the network graph). The model
can be easily generalized to capture network graphs with direc-
tional links. In such a case, link (4, ) may interfere with dif-
ferent links than those link (j,) interferes with. Accordingly,
the interference graph will include a node for each directional
link.

We consider the application of Local Pooling to multi-radio
multi-channel WMNs. Following the model of [3], we assume
that each node v is equipped with R(v) interfaces (radios).
There are k available orthogonal channels and it is assumed
that each of the R(v) interfaces operates on a different channel.

Similarly to [3] and to the static model of [14], we consider a
static channel allocation model in which a channel is allocated
to each interface for an extended period of time. Such an
approach enables the use of commodity 802.11 radios [3]. We
note that the extension of the model for a dynamic channel
allocation is a subject for further research. We assume that
transmissions in different channels cannot collide. Therefore,
once the different channels are allocated, & disjoint interference
graphs are generated.

For the simplicity of presentation, we consider single-hop
bi-directional traffic.5 As mentioned above, the model can be ex-
tended to more general scenarios. Let A;;(¢) denote the number
of packets arrived at node ¢ or node 7 by the end of time-slot
t that need to be transmitted across link (7, 7). A;;(t) can be
viewed as the cumulative number of packets arriving at node
(7, 7) of the interference graph. We assume that arrivals are mu-
tually independent and temporally i.i.d. processes with arrival
rate \;;, that is IE[A4;;(1)] = ;. Let the column vector A =
(M\ij, (i,7) € En) denote the arrival rate vector.

Let Q;;(t) denote the number of packets waiting to be trans-
mitted on link (4, j) at the beginning of time-slot ¢ and Q(¢)
denote the queue-size vector. We will use Q(t) as the system
state at time ¢. Let TI(Gy) denote the set of all feasible link
activations in the network graph Gy . In particular, let 7 =
(mij, (i,j) € En) € II(Gy) be a (0,1) column vector repre-
senting a possible link activation. Under primary interference
constraints, IT1(Gy) includes all possible matchings, while in
general, it corresponds to all independent sets in the interfer-
ence graph Gy. Following the notation of [9], we denote by
M (V) the matrix that includes all the maximal independent sets
in G (i.e., all the maximal elements of II(G v )). For example,
Fig. 1(c) shows the matrix M (V7) for the interference graph G
in Fig. 1(b). We can now define the stability region (also known
as the capacity region).

Definition 1 (Admissible Rate-Vector): An arrival rate vector
A is called admissible, if there exists a collection of link activa-
tions, 77, 1 < [ < L such that

L L
ASZaﬂrl, a; >0, Zal<1.
=1 =1

Definition 2 (Stability Region): The set of all admissible rate
vectors A is called the stability region and is denoted by A*.

A scheduling algorithm has to select a schedule that satis-
fies the transmission constraints at each time slot. Let S;;(t) €
{0,1} be the indicator variable of whether link (4, ) is active
at time ¢ and S(¢) denote the scheduling decision vector. Then,
S(t) € II(Gy). Under a scheduling algorithm, the state of the
system (Q(t),t > 0) evolves according to a Markov Chain. A
stable algorithm is defined as follows. We will also refer to it

SUnder this assumption, the joint routing and scheduling problem reduces to
a scheduling problem.



as an algorithm that achieves 100% throughput or a throughput
optimal algorithm.

Definition 3 (Stable Algorithm): A scheduling algorithm is
stable, if for any admissible A the Markov Chain (Q(t),t > 0)
is positive recurrent.

Tassiulas and Ephremides [23] established the existence of
a stable scheduling algorithm. In particular, the algorithm that
schedules according to S*(¢) where

S*(t) = argmax Q' ()7 (1)
Tell(Gn)

is a stable algorithm (Q’ denotes the transpose of vector Q).
Given an interference graph G, the algorithm of [23] has to
find the maximum weight independent set in G; at each time
slot. Namely, it has to solve an NP-Complete problem in every
time slot. In the context of primary interference constraints, this
algorithm has to schedule the edges of the Maximum Weight
Matching at each time slot, where the edge weights are the
queue sizes. The maximum weight matching in any graph can
be found in O(n?®) computation time, using a centralized al-
gorithm [15]. However in wireless networks, implementing a
centralized algorithm is not feasible and distributed algorithms
(e.g., [12]) can obtain only an approximate solution, resulting
in a fractional throughput. Hence, even under very simple trans-
mission constraints, it is difficult to obtain 100% throughput in
a distributed manner. This motivates us to develop channel al-
location methods that will enable simple distributed scheduling
algorithms to obtain 100% throughput in each channel. There-
fore, we provide a definition of the Channel Allocation Problem
below. In Section V we will develop algorithms for solving this
problem.

Definition 4 (Channel Allocation Problem): Given a network
graph G, k channels, and R(v) radios at each node v € Vy,
assign channels to links (7, ) ¥(i,7j) € En such that at most
R(v) channels are used by links adjacent to v, every link is as-
signed a single channel, and simple (e.g., greedy) distributed al-
gorithms are stable in each subnetwork operating in a different
channel.

III. LoCAL POOLING CONDITIONS

A. Definitions

Local Pooling (LoP) has been defined by Dimakis and Wal-
rand in [9]. In this section, we separate their definition of Local
Pooling to two different definitions.6 Recall that M (V7) is the
collection of maximal independent vertex sets on GG, organized
as amatrix (an example appears in Fig. 1). We designate by e the
vector having each entry equal to unity. We deliberately avoid
specifying its size, because it will be obvious by the context of
its use. We first define the notion of Subgraph Local Pooling (we
note that the statement of the LoP conditions can be weakened,
if certain restrictions are made on the arrival processes [9]).

Definition 5 (Subgraph Local Pooling—SLoP): An interfer-
ence graph Gy satisfies Subgraph Local Pooling, if there exists
a € ]RLY" and ¢ > 0 such that o’ M (V) = ce'.

We now define the notion of Overall Local Pooling which
requires that Subgraph Local Pooling (SLoP) will be satisfied in

61t has been shown in [5] that the presented definitions are equivalent to those
of [9].
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Fig. 2. (a) A 6-node ring network graph and (b) its interference graph.

any subgraph of a given interference graph induced by selecting
a subset of the nodes.

Definition 6 (Overall Local Pooling—OLoP): Interference
graph G satisfies Overall Local Pooling if each induced sub-
graph over the nodes V' C V7 satisfies SLoP.

We continue with the example of the interference graph G
and the corresponding matrix M (V7) depicted in Fig. 1. We
can see that Gy satisfies SLoP since for « = (1,1,1,1,1),
o' M(Vr) = 2€'. Similarly, the subgraph composed of the
vertex set {2,3,4} satisfies SLoP, since for « = (1,1,0),
o’ M({2,3,4}) = €. It can be shown that all subgraphs of G
satisfy SLoP, and therefore, GG satisfies OLoP.

We can now describe the stability of the system when the
service in each time slot is scheduled according to the Longest
Queue First (LQF) algorithm. This algorithm is an iterative
greedy algorithm that selects the node of G; with the longest
queue, and removes it and its neighbors from the interference
graph. This process is repeated successively until no nodes
remain in the graph. When two queues have the same length a
tie-breaking rule has to be applied. The set of selected nodes
is a maximal independent set in the interference graph. Hence,
since the nodes are selected according to their weights, we will
refer to the LQF algorithm as the Maximal Weight Independent
Set algorithm. Such a greedy algorithm can be easily imple-
mented in a distributed manner. In [9] the following theorem is
proved.

Theorem I (Dimakis and Walrand, 2006 [9]): If interference
graph G satisfies the OLoP conditions, a Maximal Weight In-
dependent Set scheduling algorithm achieves 100% throughput.

To conclude, the satisfaction of OLoP by an interference
graph is a sufficient condition for distributed maximal weight
algorithm to be throughput optimal.

B. Channel Allocation Example

The following simple example demonstrates the application
of the LoP conditions, presented above, to a channel allocation
(network partitioning) problem. We consider the 6-node ring
network graph, depicted in Fig. 2(a). Under primary interfer-
ence constraints, this graph has a corresponding 6-node ring in-
terference graph representation, which is illustrated in Fig. 2(b).
Under these constraints, the maximal weight independent set
in the interference graph is equivalent to the maximal weight
matching in the network graph. A maximal weight matching can
be obtained in a distributed manner by the algorithm of [12].

If a single radio is located at each node of the 6-node ring il-
lustrated in Fig. 2(a), then no two adjacent edges can be simul-
taneously active. The stability region (denoted by A}) is then
characterized by the following inequalities:

A2 + A2z <,
Aas + As6 < b,

A2z + Azq < b,
Ase + Ag1 < b,

Aza+ A5 < b,
Ae1+ A2 < b, (2)
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where b = 1. This stability region can be achieved by a central-
ized algorithm that finds a maximum weight matching in each
time slot. If we allow two channels to be used simultaneously
and two radios are located at each node, the stability region (de-
noted for this case by A%) is characterized by(2) with b = 2.

Consider the case in which a single channel is used. It was
shown in [9] that in the 6-node ring, OLoP does not hold, and
that in general a maximal weight matching algorithm does not
achieve 100% throughput in the 6-node ring.” According to [17],
a maximal weight matching algorithm can guarantee stability
for arrival rates that are at least 50% of the rates in the region
A7 (i.e., the throughput obtained by a maximal weight algorithm
may be 50% lower than that obtained by a maximum weight al-
gorithm). Hence, the guaranteed distributedly achievable region
is given by (2) with b = 0.5 (the region may be larger but this
is not guaranteed).

Consider the case in which two channels can be used simul-
taneously and two radios are located at each node. Under the
assumption that a node can transmit two packets on the selected
link (similarly to a speedup of two, defined in [8]), the guar-
anteed distributedly achievable region is the same as A}. Alter-
natively, we can solve the channel allocation problem defined
in Definition 4. According to that definition, in every time slot
only a single packet can be sent on a link (i.e., it is a more re-
strictive model than the one above). Under a possible allocation,
links (1,2), (2,3), and (3,4) can use one channel, while the re-
maining links use the other channel. The interference graph on
each channel is now a tree (e.g., the line connecting v12, vo3,
and vs,4). Since [9] shows that the maximal weight independent
set algorithm is throughput optimal in tree interference graphs,
the distributedly achievable stability region is now given by

Az A3 <1, Aoz + A3y <1,
A5 +As6 <1, Ase+ Ag1 < 1. 3)

This provides a strict performance improvement over A}, which
is the region guaranteed by using two channels (speedup of two).
Yet, it is clear that this channel allocation is not the best pos-
sible: the allocation in which links (1,2), (3,4), and (5,6) use
one channel, while the remaining links use the other channel
can provide each network link with a stable rate of one unit per
time slot (i.e., A;; < 1VY(4,5) € En).

To summarize, for a network operating under primary inter-
ference constraints with a speedup of two (similar to allocating
two channels to each link), a greedy maximal weight algorithm
(implementable in a distributed manner) can guarantee at least
the network stability region A] [17]. Our example above shows
for a particular network that when two channels are allocated
such that each component satisfies OLoP, the stability region
that can be achieved by a distributed algorithm is strictly larger
than A7 .8 This is despite the fact that the partitioning operation
model is more restrictive than the other model.

This example demonstrates that careful channel allocation
taking into account topologies that satisfy OLoP can provide

7In [9], it was shown that under restricted arrival processes (subject to a vari-
ance constraint and a large deviation bound), a maximal weight matching al-
gorithm is stable in the 6-node ring. In this work the arrival processes are not
restricted in this way.

8Note that this region is, of course, still smaller than A} (the stability region
of a network with two channels, achievable by a centralized algorithm).

significant improvements over arbitrary channel allocation.
Thus, it provides the motivation to study the characteristics
of network topologies satisfying OLoP and to design channel
allocation algorithms that exploit such characteristics.

IV. A STUDY OF LOCAL POOLING

A. Exhaustive Numerical Search

We performed a numerical study in which we searched over
all interference graphs of up to 7 nodes. We employed Mathe-
matica to identify all simple graphs, and Matlab to determine
the maximal configurations (i.e., to obtain the matrices M (V7))
and to verify the satisfaction of the OLoP conditions for each in-
terference graph. The OLoP conditions are based on the SLoP
conditions that were verified using the following linear program
presented in [9]:

¢* = maxc
[NTRA

st. M(VD)pu > M(Vi)v + ce
du=1, v=1, M,VE][{LVII,CE]R.

It has been shown in [9, Prop. 1] that the graph G satisfies SLoP
if and only if ¢* = 0.

In order to simplify the presentation of the numerical results,
we first show that the OLoP conditions are satisfied by the dis-
joint union of two graphs (not sharing any vertices in common)
satisfying the OLoP conditions. This allowed us to restrict our
search to connected simple graphs.

Proposition 1: A graph G = G} U G% (disjoint union) sat-
isfies OLoP, if and only if G} and G7 satisfy OLoP.

Proof: Suppose G satisfies OLoP. Consider all induced
subgraphs restricted to the vertices of G+. Then, any such in-
duced subgraph satisfies the SLoP conditions by our assump-
tion that GG satisfies OLoP. Thus, G} satisfies OLoP. The same
reasoning provides that G satisfies OLoP. Suppose that G} and
G? satisfy OLoP. Then, any induced subgraph of Gy can be split
into disjoint induced subgraphs on G} and G%. For the induced
graph on G}, our assumption provides that there exists nonzero
a1 > 0 that multiplies any maximal independent vector on the
induced subgraph to yield a constant c;. Similarly, there exists
s and co for the induced subgraph on G%. Every maximal inde-
pendent set of the induced subgraph of GG must be the disjoint
union of a maximal independent set of the induced subgraph on
G? and a maximal independent set of the induced subgraph on
G%. Thus, the augmented vector (1, ae) must yield a constant
value of ¢; + ¢4 for all maximal independent sets of the induced
subgraph on G7y. [ |

We note that in the following section we will present several
additional theoretical results regarding LoP in general graphs.
A specific case of one of the results that will be presented there
(Lemma 1) is that graphs that have a node with degree 1 sat-
isfy SLoP. This allowed us to restrict our search to graphs that
do not have vertices of degree 1, thereby significantly reducing
the computation time. We first considered all connected interfer-
ence graphs having up to 5 vertices that do not have vertices of
degree 1. There are 15 such graphs. We obtained the following
numerical result.

Numerical Result 1: All connected simple graphs of up to 5
nodes that do not have vertices of degree 1 satisfy SLoP.
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graph over the outer 6 nodes is a 6-ring (the dotted lines indicate edges that
can exist), and (b) the only 7-node graph that has no induced 6-ring subgraph
and fails SLoP.

This immediately implies that all graphs having up to 5 ver-
tices (there are 52 such graphs) satisfy OLoP. Next, we consid-
ered graphs of 6 vertices (there are 61 such connected graphs
without degree 1) and obtained the following result.

Numerical Result 2: All graphs of 6 vertices except the
6-node ring satisfy SLoP.

Numerical Results 1 and 2 together imply that all graphs of
up to 6 vertices except the 6-node ring satisfy OLoP.

Finally, we considered all graphs of 7 vertices. We first re-
moved from consideration all such graphs having a 6-ring as an
induced subgraph, since due to the failure of SLoP in a 6-ring,
OLoP fails in these graphs by definition. There are 12 such
graphs, and their general form is depicted in Fig. 3(a). Among
the remaining graphs of 7 vertices, we can then guarantee that
there are no induced subgraphs, having 6 vertices or fewer, that
fail the SLoP conditions.

Numerical Result 3: There is one graph of 7 vertices which
does not have an induced 6-ring on any subset of 6 nodes that
fails the SLoP conditions. This graph is depicted in Fig. 3(b).

To conclude, almost all 1,252 graphs of up to 7 nodes sat-
isfy OLoP (specifically, 14 fail OLoP). All attempts at numer-
ical evaluations for graphs of greater than 7 vertices suffered
computational difficulty. Therefore, in the following section we
focus on generating large graphs satisfying OLoP from small
components.

B. Constructive Approach

Our first observation is about connecting a graph and a clique
(complete graph).

Lemma 1: If G satisfies OLoP, then the graph G}, which
consists of G sharing a single vertex with clique K,,, n > 2,
satisfies OLoP.

Proof: Assume that G satisfies OLoP. Denote by v the
vertex of G that is shared with clique K,,. We need only con-
sider the induced subgraphs of G containing a vertex v* # v
belonging to the clique K, since all other induced subgraphs
are subgraphs of G; and satisfy SLoP by our initial assump-
tion. Clearly, the maximal independent sets of any such induced
subgraph (whose vertex set is designated by V') either include
vertex v or v*, but never both vertices. Consequently, the vector
« having all zero entries except at the indices corresponding to
vertices of K,,, where the entries are set to 1, yields o/ M (V') =
€’. Thus, such a subgraph satisfies SLoP. This holds for all in-
duced subgraphs of G} that include v*, and we conclude that
G7 satisfies OLoP. u

From the proof of Lemma 1 it can be seen that a graph that
has a node with degree 1 (such a graph can be viewed as a graph
G'1 sharing a node with K5) satisfies SLoP. Recall that we have
used this result in Section VI-A to reduce the number of graphs
in our numerical search. Moreover, the observation in [9] that
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Fig. 4. An interference graph composed of two cliques and the corresponding
tree of cliques graph.

any interference graph that is a tree (or forest) satisfies OLoP
can be immediately obtained using Lemma 1. We note that in
Section IV-C we will show that even under the simple primary
interference constraints, the only interference graph that can be
a tree is a line. Therefore, we now study more complicated in-
terference graphs.

Lemma 2: Every complete graph satisfies OLoP.

Proof: Consider the complete graph Gy = K,,. Then
clearly any subset of the nodes of Gi1, labeled V, also generates
a complete induced subgraph. Each maximal independent set
of a complete graph can only contain one vertex, from which
we conclude that M (V) is the identity matrix of size |V|. Thus,
we can use a = e, which yields o’ M (V') = €’ for any V, from
which we conclude that every induced subgraph satisfies SLoP,
and consequently that G satisfies OLoP. ]

We define a tree of cliques as follows (an example is provided
in Fig. 4) and derive the following Theorem.

Definition 7: A tree of cliques is composed of cliques con-
nected to each other in a tree structure. Its nodes can be equated
to cliques and its edges imply a shared vertex between two adja-
cent cliques. No vertex can be shared by more than two adjacent
cliques.

Theorem 2: A tree of cliques satisfies OLoP.

Proof: Consider any clique G} on the tree. By Lemma 2
this clique satisfies OLoP. Then, consider any clique adjacent
to G} in the tree of cliques, and denote the graph of the two
combined cliques G%. Since G} and the adjacent clique share
only a single vertex, we can apply Lemma 1 to conclude that
G? satisfies OLoP. By iteratively adding successive cliques to
the overall graph under consideration, we see that each resulting
graph must satisfy OLoP by Lemma 1. Thus, the overall tree of
cliques must satisfy OLoP. |

The next theorem considers cliques connected by disjoint
edges, where no two connecting edges share any vertices in
common. Consequently, at most min{m, n} edges can connect
K,, and K,, while maintaining an overall simple graph. The
proof considers four possible subgraph configurations and
demonstrates SLoP for each type. The main idea is that each
clique usually contributes a single vertex to every maximal
independent set of each subgraph.

Theorem 3: If two cliques are connected by any number of
disjoint edges, the combined graph satisfies OLoP.

Proof: Designate the two cliques G} = (Vi E}) and
G? = (V2,E?), where V} NV = 0 and E}@ N E? = 0.
Further, let E,; be the set of disjoint edges connecting G+ and
G?2. We then have G = (Vr, Ey), where Vi = V} U V? and
Er = E} U E? U Ey. Consider the induced subgraph over the
vertex set V. C Vi. If VNVE =P or VNVE = (), then Lemma
2 implies that V' satisfies SLoP. If |V N V3| = 1 and there ex-
ists v € V7 such that (VNV}, v) € E,, then Lemma 1 ensures
that SLoP is satisfied for V. If |V N V#| = 1 and there is no
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v € V£ such that {V NV}, v} € Ey, then the induced subgraph
over V consists of the disjoint union of two cliques, which sat-
isfies SLoP by Lemma and Proposition 1. The same reasoning
applies when |V N V7| = 1. Finally, when |V N V| > 1 and
|V N V72| > 1, we claim that every maximal independent set of
the induced subgraph of vertices V' in G contains two vertices.
Denote by G} the induced subgraph over G} and G? that over
G2. Since both G} and G? are cliques, no more than two vertices
can belong to any independent set, one in each clique. Suppose
a maximal independent set contains one vertex, v, without loss
of generality this vertex belongs to C_?}. By definition of the set
FE4, v can only share an edge with a single vertex of C_}%. Then, if
no vertex of G 2 can be added to the independent set, G 2 must be
K, since otherwise any vertex of G% not incident on v could be
added. This is a contradiction. Consequently SLoP must be sat-
isfied on such a subgraph. Thus, we have that SLoP is satisfied
on any subgraph of G'7, which implies that OLoP is satisfied. m
We now consider a generalized structure of the one defined
in Definition 7, which we term “tree-of-blocks”. We generalize
the types of structures that can correspond to each vertex of
a tree. We already showed that a clique is one such structure.
We next show that two cliques connected by any number of
disjoint edges is another such structure. We again require that
two “blocks” can only share at most one vertex in common.
Theorem 4: A “tree-of-blocks”, where each block is either
a clique K,,,n > 2 or a pair of cliques K,,, K,,,n,m > 1,
connected by any number of disjoint edges, satisfies OLoP.
Proof: Any connected subgraph of a tree of blocks is tree
of blocks or a forest of blocks. Thus, we only need to consider
satisfaction of the SLoP properties of any tree of blocks, which
will provide the satisfaction of OLoP for any tree of blocks.
If the tree of blocks G = (V, E) has any clique K,,n > 2
associated with a leaf of the tree, then one vertex of this clique
must belong to every maximal independent set of the tree of
blocks. Hence, setting «; = 1 for any vertex corresponding to
this clique and o; = 0 otherwise provides o’ M (V') = €’ and we
conclude that SLoP is satisfied. It remains to consider the case
where every leaf of the tree of blocks corresponds to two cliques
connected by any number of disjoint edges. Consider any such
block and in particular focus on the clique that has no other
blocks sharing a vertex with it. Then, it is clear that the proof of
Theorem 3 applies to this clique, in that there must exist a vertex
of this clique in every maximal independent set of vertices in G.
Thus, SLoP must be satisfied for this configuration. Since SLoP
is satisfied for any tree of blocks, and each subgraph of a tree
of blocks is a forest of blocks, OLoP is satisfied for any tree of
blocks. [ |

C. Primary Interference Constraints

As mentioned above, the primary interference constraints
yield an interference graph Gy which is the line graph of the
network graph G . In this section, we study the restrictions
imposed on such interference graphs. We begin by considering
the only 7-node graph, which does not have an induced 6-ring,
that failed SLoP (depicted in Fig. 3(b)).

Proposition 2: Under primary interference constraints, the
interference graph presented in Fig. 3(b) cannot correspond to
any valid network graph.

Proof: According to [11] a graph is a line graph, if and only
if it does not contain any one of 9 specific induced subgraphs. In
particular, the following graph is one of the 9 subgraphs, with
vertices of Fig. 3(b) labeled appropriately to show the corre-
spondence.

V3 U2

Uy Ve

v U7

|

We conclude that only the 6-ring leads to failure of the OLoP
conditions in any network graph having 7 edges or fewer.
By similar arguments, we can show that other interference
graphs cannot exist under primary interference constraints. For
example, we can show that there is no network graph whose
interference graph (line graph) is a tree having a node degree
greater or equal to 3. Any such tree has as an induced subgraph
the complete bipartite graph K; 3 (also known as the “claw”).
According to [11], the existence of such an induced subgraph
precludes the possibility that this interference graph is the line
graph of any network graph.

Although there is no interference graph that is a tree, a net-
work graph that is a tree can of course exist. It can be shown
that the interference graph of such a network graph is always
a tree of cliques, defined in Definition 7. The following corol-
lary is an immediate result of Theorem 2. According to this
corollary, maximal weight matching algorithms are stable (pro-
vide 100% throughput) in trees.® To the best of our knowledge,
this corollary provides the first non-trivial network structure in
which simple distributed algorithms are stable. The channel al-
location algorithms that will be presented in Section V are based
on this observation.

Corollary 1: Under primary interference constraints, the in-
terference graph of a tree network graph satisfies OLoP.

Based on the results presented in Section IV-B, we can
construct other non-trivial networks in which maximal weight
matching algorithms are stable. For example, Theorem 4 im-
plies that the network described in Fig. 5 satisfies OLoP, and
thus is stable under distributed scheduling. Developing network
partitioning algorithms that efficiently take advantage of such
topologies is a subject for further research.

We have obtained additional results that concern bipartite
graphs. Although mesh networks are usually not bipartite, bi-
partite graphs provide insight regarding the performance of our
partitioning algorithms. Since input-queued switches are bipar-
tite graphs with primary interference constraints, an additional
byproduct is insight regarding switches. The following corol-
lary generalizes a recent result presented in [4] regarding a 2 X
2 input-queued switch.

Corollary 2: A maximal weight matching algorithm achieves
100% throughputin a K, ,, bipartite graph (i.e., in a 2 X n input-
queued switch).

Proof: A K>, bipartite network graph is depicted on the
left in Fig. 6. Its interference graph can then easily be shown to

9Note that while in [9] it was shown that maximal weight matching algorithms
are stable in tree interference graphs, the corollary shows that they are stable in
tree network graphs.



Fig. 5. Example of a network graph whose interference graph satisfies OLoP.

(51 R} (171,) (527 dn,)

) (

A\
(s1,d1) (s2,d1)

di  dy d3 dy,

Fig. 6. A network graph fora K> ,, bipartite graph (2 X n input-queued switch)
and the corresponding interference graph.

be two cliques of size n (K, ), connected by n disjoint edges, as
depicted on the right in Fig. 6. The result is then directly derived
from Theorem 3. u

It follows that a K ,, bipartite graph can be partitioned into
two subgraphs, each of whose interference graphs satisfies
OLoP. In Section V-B, we will use this observation to evaluate
the performance of our channel allocation algorithms.

V. CHANNEL ALLOCATION

The Channel Allocation Problem, introduced in Definition 4,
seeks to assign a channel to every link such that each partition
(operating in a different channel) can achieve 100% throughput
by a distributed maximal weight scheduling algorithm. In this
section our objective is to develop channel allocation algorithms
that: (i) provide a large stability region and (ii) allow simple
distributed algorithms to achieve this region. As in Section IV-C,
in order to demonstrate the presented concept, we assume that
primary interference constraints hold.

In terms of LoP conditions, we seek to partition the network
edges into channels such that the interference graph in each
channel satisfies OLoP. The OLoP requirement is extremely
challenging to incorporate into an optimization algorithm that
generates a channel allocation, because it seeks the SLoP prop-
erty for every subgraph on each channel. However, Corollary 1
shows that network graphs that are trees satisfy OLoP. Thus, it is
sufficient to partition the edges of the network graph into chan-
nels such that each channel’s network graph is a forest. This is
the basis for our channel allocation algorithms.

Our channel allocation problem is equivalent to a coloring
problem on the network graph. Namely, we seek to color the
network edges such that edges of a single color do not compose a
cycle (i.e., each color composes a forest). The minimum number
of colors is known as the graph arboricity and can be found by
an O(m?) algorithm [10].

Initially, we assume that all nodes have the same number of
radios and that this number is equal to the number of chan-
nels (i.e., R(v) = k Vv € Vy).19 When the number of avail-
able colors (channels) & is fixed, the k-forest problem [10], [15]
seeks to find the maximum number of edges of the graph that
can be colored using only k colors without closing a single color

10We will show below that this assumption can be relaxed.
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cycle. This problem can be formulated as a matroid!! parti-
tioning or a matroid intersection problem. In order to enable the
development of capacity expansion algorithms, we focus on the
matroid intersection formulation. Under this formulation, the
k-forest problem makes use of two matroids: the graphic ma-
troid and the partition matroid. In our setting, we define these
matroids by considering the graph G% = (VX &), equal to k
disjoint copies of the network graph G . The graphic matroid
M = (&,1;) assigns to Z; all possible forests in G%;. The par-
tition matroid My = (&, Z) partitions € into m & |En| sets,
where the 7th set, £;, contains all k copies of edge 7. The collec-
tion Z, contains all sets of edges that have no more than a single
element in any set of the partitions: I € Z, implies [I N &;| < 1
fori = 1,...,m. By associating with each copy of G in G%,
a unique color, it can be seen that the sets belonging to Z; N7,
can be equated to colorings, where each subgraph of a particular
color is a forest. This directly corresponds to a valid channel al-
location, where each channel’s network graph is a forest. The
k-forest problem is to find for a given k the largest set of edges
belonging to the matroid intersection of the graphic and parti-
tion matroids.

A. Partitioning Algorithms

Our first algorithm for the k-forest problem is the suboptimal
Breadth-First Search (BFS) algorithm. Such an algorithm was
used in [21] as a heuristic solution to this problem. Its major ad-
vantage is its low complexity of O(k(m+n)). Yet, in Section VI
we will show that there is a large gap between the BFS solution
and the optimal solution.

Therefore, we selected an optimal algorithm as a basis for
developing our capacity expansion algorithms. The optimal so-
lution to the k-forest problem can be found in polynomial time
[10], [15] by several algorithms. One of these algorithms is the
Matroid Cardinality Intersection (MCI) algorithm of Lawler
[15]. Given a valid coloring I € Z; N Zs, the MCI algorithm
searches for an augmenting path, consisting of an alternating
sequence of edges not in / and edges in I, such that when the
edges of the path belonging to I are removed from [ and those
not belonging to I are added, the resulting coloring (channel al-
location) belongs to Z; N Z5 and its cardinality has increased by
1 (for more details see [15]). The complexity of the MCI algo-
rithm is O(km?n’ + k*mn(n’)?), where ' = min{n,m/k}.
In the description of the following algorithms, we refer to two
copies of the same edge on different colors in Gﬂ“\, as parallel
edges.

Our channel allocation framework admits the practical situ-
ation where each node v is equipped with R(v) radios (inter-
faces). Namely, different nodes have a different number of ra-
dios. In the formulation of the matroid intersection problem, we
define the graph G¥%; as the disjoint union of k identical copies
of the network G . This corresponds to the case, where each
node is equipped with exactly k radios. Essentially, rather than
generating k copies of each network graph edge, each network
link should only have an edge represented in the ¢th copy of the
network graph G when there is a radio for that link available

TA matroid is a combinatorial structure M = (&, Z) in which & is a finite
set of elements, and 7 is a collection of subsets of & satisfying (i) § € Z, and
if I € T, then all proper subsets of I belong to Z, and (ii) if I;, > € T with
|I| = |I1] + 1, then there exists e € I> such that I; U {e} € Z.
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for use of the ith channel.!2 Without loss of generality we refer
to any graph defined in this manner as G% = (V{,€). The
matroid intersection properties, the MCI algorithm, and the al-
gorithms described in Section V-B can then be applied to G%;.

Once the channel allocation is performed, at each time slot,
one can use the distributed approximation algorithm of [12] that
finds the maximal weight (greedy) solution, thereby providing
100% throughput. The (local) computational complexity of this
algorithm is O(1), which is low relative to the O(n?) com-
plexity of a centralized optimal algorithm required to solve (1)
[15]. In addition, the centralized algorithm has to collect queue
backlog information from all nodes at each time slot (for an ex-
tended comparison see [19]).

In the realistic situation where the number of channels % is
fixed and insufficient to partition all the network edges into &
forests, we apply the MCI algorithm (or BFS) to generate an
initial allocation that is a k-forest, and assign the unallocated
network edges to the kth channel. Thus, the first £ — 1 channels
are guaranteed to satisfy OLoP, while the kth channel operates
at a worst-case 50% throughput.

A (theoretical) optimal solution will partition the graph into
the minimum number of OLoP satisfying components, whereas
our algorithms partition into forests. In order to evaluate the
performance of our algorithms, we consider complete bipartite
graphs. It can be shown that two channels are necessary and suf-
ficient to guarantee the satisfaction of OLoP in K3 3. Applying
MCI, we find that the arboricity of K3 3 is 2 and conclude that
MCI achieves the minimum number of channels to guarantee
OLoP. This and similar results point to the strong performance
of the MCI algorithm in partitioning the network into a small
number of channels satisfying OLoP. Yet, the following lemma
provides a lower bound on the performance in general. Define
£*(G ) as the minimum number of channels necessary to parti-
tion the edges of a network graph Gy such that the interference
graph of each partitioned subgraph satisfies OLoP.

Lemma 3: For ¢ > 0 there is no approximation algorithm
that partitions a network graph G into k(G ) forests, where
I%(GN) S (1.5 — éf;‘)l'ﬁ;*(G']\r)7 VGN

Proof: Consider a K4 4 bipartite network graph. It can
be partitioned into two K 4 network graphs. Due to Corol-
lary 2, under primary interference constraints, an interference
graph of K> 4 satisfies OLoP. Therefore, 2 channels are suffi-
cient to guarantee the satisfaction of OLoP in Ky 4. Namely,
k*(Ka44) = 2. Since K4 4 has 8 nodes, any forest in such a
graph can have at most 7 edges. Since Ky 4 has 16 edges, its
arboricity must be at least 3 (i.e., (K4 4) = 3). Hence, there
exists a graph Gy for which k(Gy) = 1.56*(G ). ]

B. Capacity Expansion Algorithms

An important undesirable feature of the MCI and BFS algo-
rithms is that each successive channel has a maximal number of
network edges assigned to it, given the assignment to the pre-
vious channels. We wish to balance the trees in order to expand
the capacity.

We present three algorithms for improving the network
capacity properties. Since the admissible region restricts the

12When different nodes have a different number of radios, the specific allo-
cation of the links to the different copies may affect the capacity region. An
efficient allocation algorithm is a subject for further research.

summed throughput of all edges incident on the same vertex in
the network graph to 1, it is desirable to minimize the maximum
vertex degree over the network graphs on each channel. The
first algorithm is called R-GREEDY, and it operates by greedily
selecting edges incident on vertices of maximum degree and
seeking any channel that they can be reallocated to, such that
the new allocation belongs to Z; N Z, and the allocation has an
improved maximum degree. We note that e = (v;,v;) implies
thatv; € e and v; € e. The algorithm makes use of the function
TF, (I), which returns a negative value when the maximum de-
gree or number of vertices at maximum degree under allocation
I improves upon that of a reference allocation, Ij.

TFi(I) = A7 — AF,
+1{A1*:A70} <Z 1{AI(U)=A7} N Z 1{AIo (U):Afo}) '

Above, Af(v) denotes the degree of vertex v in graph (V¥, I),
A% indicates the maximum vertex degree in graph (V%, I), and
1y} is the indicator function. The complexity of the R-GREEDY
algorithm is O(dnmkn’), where d is the maximum vertex de-
gree in G .

Algorithm Greedy Reallocation (R-GREEDY)

1: begin with any edge set I € 7; N I, (this could be the
output of BFS or MCI)

2: repeat

3: Ip — I

4: if Jey € I, ea ¢ I suchthat Jv € eg, Ar(v) = AY,
TF((I \ {e1}) U {e2}) < 0 then

51— (I\{e}) Ufes)

6: until I equals I,

Our second and third capacity expansion algorithms search
for capacity improvements by directly attempting to balance the
vertex degrees over all channels. They make use of augmenting
paths in the spirit of the MCI algorithm to find new locations
for edges that are incident on heavily-loaded vertices. The max-
imum degree reallocation algorithm (R-MAXD) seeks to mini-
mize the maximum degree over vertices in all channels. It pro-
ceeds by disabling edges incident on maximum degree vertices
and searching for augmenting paths that do not use such edges.
The algorithm uses the function TF; for evaluating channel
allocations, and the function ESFY(I) for selecting candidate
edges to disable. ESFY(I) returns all edges incident on vertices
having maximum degree in graph (VE, I),

ESFY(I)={eel:vee Ar(v)=A%}.

The average degree reallocation algorithm (R-AVGD) seeks
to reduce any vertex degree in the graph so long as the reduc-
tion does not lead to higher vertex degrees or more vertices of
maximum degree elsewhere in the graph. R-AvGD employs the
performance evaluation function TF,

A;
TFQ(I) = Z 2’Lsign (Z 1{A1(v)=i} — 1{A10 (u)_z}) .
=1 v



Above, the function sign(z) = —1if 2 < 0, sign(z) = 1
if x > 0, and sign(0) = 0. The function TFy(I) returns
a negative value when the first entry at which the degree se-
quence!3 of (VX I) differs from that of (V%, Io) is lower in
the sequence of (V) than that in (VX Iy). This function
encourages trading higher degree vertices for more vertices of
lower degree. R-AVGD also makes use of the function ESF3 (1),
which returns all edges incident on vertex v in I, ESF3(I) =
{e € I : v € e}. We simultaneously present both algorithms as
Algorithms 1/2, making use of the parameter PARAM;, with
PARAM; = {0}, and PARAM, = V.

Algorithm 1/2 Maximum Degree/Average Degree
Reallocation algorithms (R-MAXD [i = 1]/R-AVGD [i = 2])

1: begin with any edge set [ € 7; N1,

2: repeat

3: IO — I

4: for v € PARAM; do R

50 I «— argminy{TF;(I) : I =

CE — MCI(I,{e},ESF;, TF;,1),e € ESF{(I)}
6: until I equals [y

R-MAXD and R-AvgD employ the recursive procedure
CE-MCIT that successively disables edges until an improved
augmenting path is found, or all possible configurations are
exhausted. CE-MCI takes as input the initial channel allocation
I, the set of edges Fy to exclude when it attempts to search for
augmenting paths, the functions ESF and TF, and an integer to
track the depth of the recursion. The maximum depth of the
recursion can be set using the constant D_MAX. While the
MCI algorithm modifies the channel allocation at each iteration
upon the discovery of its first augmenting path, CE-MCI labels
over the entire graph and selects the best augmenting path
available between all such paths found, in terms of the function
TF.

The complexity of the algorithms is a function of the com-
plexity of the MCI algorithm, which we denote by ¢(MCT).
The complexity of R-MAXD is O(dnmP-M4Xc¢(MCT)) and
of R-AVGD is O(dP-*Xnmc(MCI)). As long as the search
depth is low, the complexity is reasonable. In the following
section, we will see that significant capacity improvement is
achieved for D MAX = 2.

Algorithm CE-MCI(Iy, Ey, ESF, TF, Depth)

1:7 = {lo \ Eo}

2: while 37 € 7 with |I| < m do

30 T «— T\ {I}

4: remove labels from all edges; assign I, = [_ — ()

5: label ‘+’ on every edge e such that I U {e} € Z; and
eNEy=10

6: while e = [edge with oldest unscanned label] # (} do

7: if e is labeled ‘+’ and I U {e} € I, then

8:  trace the alternating path of ‘4’ and ‘—’ labels that lead
to the ‘+’ label at e by assigning edges labeled ‘+’ to I and
those labeled ‘—’ to I_

13The degree sequence of a graph G is a nondecreasing sequence of the vertex
degrees of G.
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90 I —ZU{({I\I-)uly}

10: else if e is labeled ‘4’ then

11:  label ‘—’ on the edge in [ that is parallel to e (if the
edge is unlabeled)

12:  else

13:  label ‘+’ on each unlabeled edge in the unique cycle
in (V, TU {e})

14: 7 — T U{Ip}; Imei — argminger TF(T)

15:if TF(I;1e;) = TF(Ip) then

16: (failed to generate an improved augmenting path)

17: if Depth < D_MAX then

18: ILimei «— argming{TF(I) : I = CE-MCI(ly, Ey U
{e},ESF, TF,Depth 4+ 1),e € ESF(Iy \ Eo)}

19: else

20: Irmci — IO

21: return I,

The channel allocation algorithms, as described, make no use
of knowledge regarding traffic. In situations where traffic statis-
tics are known, it is desirable to have a channel allocation that
accounts for different levels of load at various nodes. Nodes can
be assigned different levels of priority by associating with each
node v a weight w,,. For example, a gateway node that is antic-
ipated to have a high level of incoming traffic can be assigned
a high weight. Continuing the example, if we apply the perfor-
mance evaluation function TF3(I) = >, w,67(v), along with
parameters PARAM, = V¥ and ESF4(I) in the algorithmic
framework presented in Algorithms 1/2, then the algorithm will
attempt to minimize TF3 (7). It is clear that when the gateway
node has high weight, the resulting channel allocation will favor
low node degree on every channel incident on the gateway node.
Obviously, this discussion oversimplifies the difficult and re-
lated problem of conducting channel allocation when traffic sta-
tistics are known. However, it does serve as a demonstration of
how this goal can be achieved in our framework.

VI. PERFORMANCE EVALUATION

The partitioning and capacity expansion algorithms presented
in Section V were implemented in Matlab and tested on nu-
merous randomly generated networks. In this section we briefly
describe the numerical results obtained for a number of rep-
resentative cases. All presented results have been obtained for
randomly generated instances in which the nodes are uniformly
distributed in a plane of size 1000 m x 1000 m, with a link
existing between two nodes if the distance between them is at
most 250 m. We intentionally present results regarding rela-
tively dense networks, since in very sparse networks the par-
titioning solution is often trivial and does not shed light on the
tradeoffs involved in capacity expansion. As in the previous sec-
tions, we assumed that primary interference constraints hold.
The presented results were obtained assuming that the number
of radios equals the number of channels and is the same for all
nodes (i.e., R(v) = k Vv). As described in Section V-A, this
assumption can be easily relaxed.
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Fig. 7. Average number of channels in the optimal solution, the number re-
quired by the BFS algorithm, and the upper bound.

A. Partitioning Algorithms

Fig. 7 compares the average number of channels (k) required
by the BFS and the MCI algorithms. The results are presented
as a function of the number of nodes in the network (n), where
for each value of n, the average was obtained over 100 different
random instances. Over all cases tested, the BFS algorithm re-
quired on average 32% more channels than the optimal MCI
algorithm. Hence, despite the higher computational complexity,
using a matroid intersection algorithm is beneficial.

Fig. 7 also presents an upper bound on the edge chromatic
number, which is the minimum number of colors (channels)
such that an edge coloring exists having no two equally colored
edges incident on the same vertex. According to Vizing’s The-
orem, the edge chromatic number is bounded above by A* 41,
where A* is the maximum vertex degree in the network [11].
The large gap between the optimal solution and the edge chro-
matic number upper bound arises because under edge coloring,
all edges can be active simultaneously, while MCI creates trees
on which transmissions still have to be scheduled. Hence, by
using edge coloring, the capacity region is enlarged to A;; <
1VY(i,j) € En.In many network instances, such a large ca-
pacity expansion requires numerous channels.

B. Capacity Expansion Algorithms

We now demonstrate the operation of the different capacity
expansion algorithms on a specific randomly generated network
with 20 nodes. Fig. 8 illustrates an example of the channel al-
locations performed by the different algorithms in a network in
which the required number of channels is 4. The figure presents
the network and then, for each algorithm, the 4 forests. Fig. 8(a)
presents the solution obtained by the MCI algorithm. It can be
seen that the leftmost forest is relatively dense, while the right-
most tree is sparse (it includes only a single edge). The capacity
is not efficiently allocated in this solution, since most of the
nodes do not use the fourth channel, while the first channel has
to be shared by many links.

Fig. 8(b) presents the allocation performed by algorithm
R-GREEDY, using the MCI solution as input. It can be seen
that several edges now moved to the fourth (rightmost)
channel. Fig. 8(c) presents the allocation performed by algo-
rithm R-MAXD, using the R-GREEDY solution as input. The
R-GREEDY solution had two vertices of degree three, and
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Fig. 8. Channel assignments by (a) MCI, (b) R-GREEDY, (c) R-MAXD, and
(d) R-AVGD.
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R-MAXD manages to manipulate the allocation such that only
a single vertex has degree three. The solution from R-MAXD
is used as input in R-AVGD to obtain the channel allocation of
Fig. 8(d). Though the maximum vertex degree remains at three,
lower degree vertices have had their degrees improved, with
many more edges in this allocation entirely disconnected.

The example above demonstrates the operation of the ca-
pacity expansion algorithms. We now quantitatively evaluate
their performance. Given a specific channel allocation it is not
straightforward to represent the capacity region. This results
from the fact that it is a polytope in IR'{". Yet, in order to ob-
tain some insight, we make the following simplifying assump-
tion regarding the capacity allocation that takes place once the
channels are assigned to the links. We assume that some degree
of fairness exists, and therefore, if possible, all edges connected
to a node receive an equal share of the node capacity. This is
sometimes impossible, due to a capacity limit resulting from the
other node connected to an edge. Consequently, under this as-
sumption the throughput on an edge (7, j) operating in channel &
will be at least (max(A; r, Aj )™, where A, j is the number
of edges adjacent to node ¢ that use channel k.

Accordingly, the first performance measure is Average Ca-
pacity, which is the average over all edges (4,j) € En of the
above value. The second performance measure is the Worst-
Case Capacity, which is the lowest capacity allocated to a link
in the network. This is inversely proportional to the maximum
node degree over all nodes and all channels. Using the above
notation, it is equal to (max; r A; ;).

Fig. 9 illustrates these performance metrics for random net-
works with different numbers of nodes (n). For each value of
n, the results were averaged over 50 different random network
instances. It can be seen that both for the worst case and the
average case, R-GREEDY provides significant throughput im-
provement over the MCI algorithm (average improvement of
29% and 40% in the average and worst-case capacity, respec-
tively). This is notable, since the complexity of the greedy ca-
pacity expansion algorithm is small relative to that of MCL
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When using the R-MAXD and R-AvGD, we employed a max-
imum search depth of D_-MAX = 2. This implies that the com-
plexities of R-MAXD and R-AVGD are respectively O(dnm?)
and O(d?nm) times the complexity of MCI. Despite the higher
complexities, the value of these algorithms is evident from their
ability to significantly improve the performance metrics. Rela-
tive to the MCI solution, R-MAXD achieves average improve-
ments of 36% and 56% in the average and worst-case capac-
ities, respectively, while R-AvGD achieves 45% and 56%, re-
spectively.14 There is an evident tradeoff between complexity
and performance. Since the channel allocation problem is solved
in a different time scale from the scheduling problem, it seems
beneficial to use R-MAXD or R-AVGD.

In realistic situations the number of channels and radios is
bounded. Fig. 10 depicts the average capacity metric versus
the number of available channels (k) for a network with 20
nodes. For each value of k, the results were averaged over 50
different random network instances. Given a fixed k, the MCI,
R-GREEDY, R-MAXD, and R-AVGD algorithms were enlisted to
obtain and expand the capacity of k-forests. In instances where
there were edges that could not be included in a valid k-forest,
these edges were added to the last generated forest (at channel
k). As explained in Section V-A, the first k& — 1 channels are
guaranteed to satisfy OLoP, while the kth channel operates at
a worst-case 50% throughput. If there was a cycle in the kth
channel, we assumed that the edges in the kth channel achieve
only 50% throughput when calculating the average capacity. Al-
gorithms R-GREEDY, R-MAXD and R-AVGD provide significant
improvement over the MCI algorithm alone.

C. Comparison With Other Channel Allocation Algorithms

Thus far, our simulation studies have provided absolute mea-
sures of the performance. It is also desirable to compare the per-
formance of the algorithms to that of algorithms proposed in the
literature. However, as mentioned in Section I, while we do not
assume any knowledge regarding the arrival rates, most of the
previous work regarding mesh networks rely on traffic statistics.
Therefore, we had to carefully compare our algorithms to an al-
gorithm which assumes some knowledge of the arrival rates. A

14The plots of the worst-case capacity for R-AVGD and R-MAXD overlap.
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Fig. 10. Average capacities in a network with 20 nodes.

well known efficient static channel allocation algorithm!5 has
been proposed by Kodialam and Nandagopal [14]. In this sec-
tion, we show that the throughput obtained by our channel allo-
cation algorithm is usually higher than the throughput obtained
by the algorithm of [14].

In [14], the joint routing and channel allocation problem is
considered. The routing problem is solved using a linear pro-
gram, and subsequently the implied link loads are used to de-
termine an effective channel allocation (see [14, Fig. 5]). Es-
sentially, each (link,channel) combination is provided with a
weight that reflects the maximum load on any constraint set con-
taining this pair, and the algorithm successively determines the
minimum weighted link and assigns a channel to that link. The
algorithm as presented in [14] does not provide a tie-breaking
condition for allocating a channel to a link, when multiple chan-
nels have the same weight. In our numerical studies, we find that
the choice of tie-breaking condition has an effect on achievable
throughput. Consequently, we distinguish between two versions
of the algorithm:

1) Ties are broken by selecting the channel with lowest

index—referred to as the KN algorithm.

2) Ties are broken by randomly selecting among equally
weighted channels—referred to as the KN with Random
Tie-Break (KN-RTB) algorithm.

We present results regarding four channel allocation
methods: (i) our static channel allocation, where we apply
the MCI, R-GREEDY, R-MAXD, and R-AVGD algorithms
in sequence, followed by assigning any unallocated edge to
channel &, (ii) the static KN algorithm, (iii) the static KN-RTB
algorithm, and (iv) dynamic channel allocation. Under the
dynamic channel allocation links are not bound to channels,
and (link,channel) combinations are activated at each slot
based on maximal weight scheduling. Note that the dynamic
channel allocation method has the advantage of being allowed
to modify its channel allocation at each time slot. Consequently,
its performance is superior to any static allocation scheme.
Nevertheless, the throughput gap between static and dynamic
channel allocations is of interest, since it clarifies some of the
tradeoffs between performance and scheduler complexity.

It has been assumed in [14] that the traffic is known (i.e., the
arrival rate vector A is explicitly considered as an input to the

I5Recall from Section I that under static channel allocation, a channel is allo-
cated to a link for an extended period of time.
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Fig. 11. Average aggregate queue occupancy in a network with 25 nodes.

channel allocation algorithm of [14]). Although our algorithms
do not need information regarding A, in order to perform a fair
comparison, we assume that the KN and KN-RTB algorithms
conduct channel allocation using the true arrival rate vector A.
Namely, while A is known in advance to the KN and KN-RTB
algorithms, it is not known to our algorithms. It has also been
assumed in [14] that the traffic is deterministic. Under deter-
ministic and known traffic, a fixed Time-Division Multiplexing
(TDM) schedule can be used for serving the queues. Therefore,
the KN algorithm has been designed to be used in conjunction
with a TDM scheduler. Recall that our scheduling objective is
to serve packets that arrive stochastically. Therefore, once the
static channel allocation is obtained by any of the algorithms (in-
cluding KN and KN-RTB), we assume that packets are served
using maximal weight scheduling.

In our simulations, we consider £ = 3 available channels,
with 3 radios at each node. We assume that packets arrive ac-
cording to a Poisson arrival process. In order to measure perfor-
mance in terms of throughput, we assume that the arrival rates
to all links are equal, i.e., A;; = A for all (7, 5) € En. We will
refer to the maximum value of A for which the queues in the
network remain stable (i.e., do not grow without bound) as the
maximum achievable throughput of the network.

We first considered a random placement of n = 25 nodes.
Fig. 11 plots the average aggregate queue occupancy versus the
arrival rate A\ under the various channel allocation algorithms.
Each point in the figure is generated from a sample path of
duration 100,000 time slots. The maximum throughput values
achievable under the KN, KN-RTB, R-AvGD, and the dynamic
channel allocation algorithms are respectively: A = 0.2, 0.25,
0.33, and 0.42 packets per slot.

Similarly, we considered 25 randomly generated mesh net-
works, each with n = 25 nodes. Table I presents the maximum
achievable throughput of the different channel allocation algo-
rithms in 10 of these networks. Observe that our channel alloca-
tion algorithm usually outperforms the other static channel al-
locations. Overall, our channel allocation outperforms the best
KN algorithm by an average of 25%. Additionally, the max-
imum achievable throughput of the KN-RTB is usually higher
than that of the KN algorithm, with an average improvement of

TABLE 1
ACHIEVABLE THROUGHPUT OVER 10 RANDOMLY SELECTED NETWORKS

Network KN KN-RTB R-AvGD Dynamic
index Algorithm | Algorithm | Algorithm | allocation
1 0.33 0.33 0.50 0.50
2 0.16 0.25 0.33 0.37
3 0.25 0.33 0.33 0.42
4 0.14 0.20 0.25 0.33
5 0.11 0.16 0.16 0.27
6 0.33 0.50 0.50 0.60
7 0.20 0.20 0.33 0.33
8 0.25 0.33 0.50 0.50
9 0.25 0.25 0.33 0.43
10 0.33 0.33 0.50 0.55

15%. Dynamic channel allocation always outperforms static al-
location, with an average throughput improvement of 33% over
the best static allocation.

Finally, we note that although our channel allocation al-
gorithms enable distributed algorithms to achieve 100%
throughput in each of the k subnetworks, this scheme does not
necessarily achieve the stability region of a network with &
channels. As mentioned in Section II, achieving this stability
region in general requires centrally solving a global optimiza-
tion problem at each time slot. The throughput obtained by
the dynamic channel allocation is an approximation to that
stability region. However, characterizing the gap between the
throughput obtained by our scheme and the stability region in a
network with & channels is still an open problem.

VII. CONCLUSION

In this paper we have applied techniques stemming from sta-
bility theory and matroid theory to obtain novel results regarding
the design of Wireless Mesh Networks. The application of these
theories allows us to develop algorithms for pre-partitioning a
mesh network into a number of high capacity subnetworks such
that in each of the subnetworks simple distributed algorithms
can obtain 100% throughput.

We have performed a thorough study of the implications
of Local Pooling on network design and shown that although
the notion of Local Pooling is rather abstract, its implications
are quite powerful. We identified several types of interference
graphs that satisfy Local Pooling as well as network graphs
(e.g., trees) which under primary interference constraints
yield interference graphs that satisfy Local Pooling (several
additional graph classes that satisfy Local Pooling can be
found in [25]). Based on our observations, we developed ma-
troid intersection algorithms for efficient network partitioning
under primary interference constraints. We have shown that
these algorithms perform very well in terms of capacity. We
note that the scope of this work spans more than multi-radio
multi-channel WMN:. It is relevant to any wireless network
with stochastic arrivals in which transmissions can be differen-
tiated in the time domain (i.e., scheduling) and in other domains
(frequency, code, etc.).

This paper primarily provides a theoretical contribution that
lays the foundation for developing practical algorithms. Hence,
there are still many problems to deal with. For example, a future
research direction is to allow dynamic channel allocation. This
will require to tailor the channel allocation algorithms for online



and perhaps distributed operation. In addition, Lemma 3 indi-
cates that partitioning into trees may be suboptimal. Therefore,
we would like to develop matroid intersection algorithms that
will partition into other components similar to the ones iden-
tified in Section IV. In general, we would like to develop al-
gorithms that partition the network to the minimum number of
OLoP-satisfying components.
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