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Abstract—The performance of many algorithms in dynamic
networks depends on the properties of the underlying graph
representing the network. Since such a graph is inherently time-
varying, quantifying the change in its structure is important for
understanding the behavior of higher-layer network algorithms.
In this paper, we study change in the dynamic graph structure
of mobile wireless networks that evolve over time due to node
mobility. We define several graph evolution metrics and evaluate
them through extensive numerical simulations under Levy Walk
mobility, which has been shown previously to have similarities to
human mobility patterns. Based on the mean and distribution of
these metrics, we obtain important insights into the properties of
the evolving graph generated by Levy Walk mobility, and then
compare the results to the Random Waypoint mobility model.
Finally, we discuss the effects of the rate of graph change on
the performance of network applications such as data routing
and flooding. Our results suggest that the proposed metrics are
viable for quantitatively measuring the magnitude of change in
a sequence of evolving graphs.

Index Terms—Mobile networks, Truncated Levy Walk mobility
model, evolving graphs, routing overhead, flooding protocol.

I. INTRODUCTION

A mobile wireless network can be naturally represented as
a dynamic graph whose nodes are mobile devices and whose
edges model instantaneous wireless links present between the
nodes. Unlike a static network, the structure of a mobile
network changes over time. Thus, a mobile network can be
abstractly viewed as a time-sequence of graphs.

Wireless networking algorithms, such as scheduling and
routing, operate on evolving graphs. For example, throughput
optimal transmission scheduling algorithms find a matching or
an independent set in a snapshot of the graph [23]. Similarly,
routing algorithms seek the shortest path in these graphs as
they evolve [12]. Naturally, the properties of the evolving
graph directly affect the performance of network algorithms.
For example, consider the problem of routing in a mobile
network. Several approaches exist ranging from proactive
algorithms that store and update routing paths, to reactive
algorithms that generate paths for every request [15], [24]. For
a given scenario, the performance of these algorithms depend
heavily on the mobile activity of the underlying network
nodes.

To gain a fundamental understanding into the performance
of algorithms in mobile networks, it is therefore important
to understand the evolution of the underlying network graph.
In this paper, we focus on measures for quantifying graph
change. Using these measures, we evaluate the change in
evolving graph sequences generated by Levy Walk and Ran-
dom Waypoint mobility models. The Levy Walk model has
been recently shown to have similarities to practical human
mobility behavior. For example, [20] found that traces obtained
from volunteers moving in outdoor settings could be fitted with
a model in which the flight lengths followed a truncated Levy
distribution. The Random Waypoint model has been a standard
mobility model in the literature [7], [15], [26]. In addition,
we also consider an evolving graph sequence generated by a
Markovian model in which links evolve over time as a two-
state Markov process [10].

The Levy Walk mobility model approximates real mobility
patterns well. However, its analysis in the context of evolving
graphs is generally not tractable due to the lack of a closed
form distribution function for the flight lengths. Hence, we
take a numerical approach. We first introduce the new metrics
Graph-Edit-Distance and Graph-Inner-Product for expressing
the magnitude of change in evolving graphs. These metrics
are motivated by a representation of graphs as vectors and
by graph similarity studies in [11], [22]. A visualization
method called the Edit-Graph is introduced in order to expose
the location and frequency of changes in an evolving graph
sequence.

We then derive numerical results on the Levy Walk mobility
model that illustrate the change in the network graph as seen
by higher layer algorithms. In particular, we show a direct
relationship between the parameters of the mobility models
and our graph metrics. Using our results, the behavior of an
evolving graph sequence can be inferred directly from the
model parameters. In addition to the Levy Walk model, the
results are also compared to graph changes stemming from
the Random Waypoint model.

Lastly, we explain the effects of the graph change rate on
networking algorithms. Through the use of our graph metrics,
we propose an adaptive policy for predicting control packet
overhead for various families of routing algorithms. A similar



relationship with graph metrics is also explored with respect
to the performance of flooding algorithms.

The main contribution of this paper is introducing a new
representation of evolving graphs as sequences in vector
spaces. The advantage of this view is demonstrated by the
introduction of novel graph metrics that are applied to well-
known mobility models.

This paper is organized as follows. We begin by an explo-
ration of related work, followed in Section III by introducing
our new viewpoint on graph evolution, the associated graph
change metrics, and the mobility models that will be studied.
Extensive simulation results on the application of these metrics
to the mobility models appear in Section IV. We apply
the results of this quantification to networking protocols to
predict the performance of routing and flooding algorithms
in Section V. Finally, Section VI concludes the work and
discusses future directions.

II. RELATED WORK

There has been a growing interest in evolving graph models,
both from an analytical and an experimental point of view.
From the experimental side, several mobility models have been
analyzed and compared in the survey paper [7]. Most of the
previously known models were variants of the Random Way-
point model [15], or the Random Direction model [19], [21].
However, neither model is believed to adequately represent the
behavior of real mobility patterns. This led to the exploration
of models with heavy-tail behavior. First, the inter-contact time
of most traces were shown to have a heavy-tail distribution [6],
[8]. Then, the movement patterns were shown to have flight
length and pause times that can be approximated by the Levy
Walk [20].

Heavy-tailed models such as the Levy Walk received a
lot of attention from an experimental perspective. However,
their rigorous analysis is lacking, due to their mathematical
intractability. By simplifying the dynamics of evolving graphs,
properties of algorithms like gossiping and covering were
considered in the context of general Markovian models [2]
and adversarial models [16]. Bounds on the flooding time were
obtained in more specific models, in which each edge evolves
independently of the others and according to a Markov chain
[10]. These bounds were further refined in [3].

III. METRICS AND MOBILITY MODELS

Graphs that change over time can be naturally modeled
as an evolving graph sequence. Assume that time is slotted
and that a changing network is sampled at discrete time slots.
At each such sample, we consider the state of the nodes in
the network and derive a network state using a connectivity
model such as the disk model (where two nodes are connected
by a link, if they are within a distance r of each other)
[17]1. A collection of such static graph snapshots forms an

1Although it is well-known that the unit disk model may not capture
realistic connectivity relations [18], it still provides a reasonable abstraction.
Extending the results to general SINR-based constraints is a subject for further
research.

(a) G0 (b) G1

Fig. 1. Sample evolution of an evolving graph sequence Gt ∈ G3. Existing
edges en ∈ Et are marked in bold, and non-existing edges en 6∈ Et are
dashed.

evolving graph sequence [2], [12]. There can be many reasons
to the evolution of the graph structure of a mobile network,
including changes in transmission power levels or changes in
interference, due to communication effects. The focus of this
paper is the stochastic change that occurs over time due to the
mobility of nodes.

A. Graphs as Vectors

We first introduce an interpretation that considers graphs as
points in a vector space. Under this view, an evolving graph
sequence is simply a sequence of points in this vector space.
The regular metrics such as norms and inner products can then
be defined over this vector space to analyze these sequences.

To illustrate this notion, consider a simple example in Fig. 1.
Let G3 denote the space of all possible 3-node graphs (i.e.,
the set of graphs with 1-link, 2-links, or 3-links). Consider an
evolving graph sequence that cycles between the three graphs
consisting of a single link (i.e., at each time slot, only one
edge in a 3-node graph is up). Assume that initially edge e1 is
up and denote the corresponding network graph G0 ∈ G3. We
associate this graph with the vector v(G0) = (1, 0, 0) which
is a 3-element vector representing the state of all possible
links. At time t = 1, edge e2 comes up while e1 goes down,
yielding v(G1) = (0, 1, 0). As the sequence evolves, we obtain
a sequence of graphs {Gt} in the space of graphs G3 and the
corresponding sequence of vector points {v(Gt)}.

Formally, let G be the space of graphs G = (V,E) with
|V | nodes and |E| =

(|V |
2

)
be the total number of possible

edges (labeled e1, · · · , e|E|). An evolving graph sequence can
be represented as the sequence {Gt}, where each Gt ∈ G. We
define the corresponding function v(Gt) as follows:

Definition 1 (Graph Vector): Let G ∈ G. Then, v(G) :
G → R|E| is the vector of edges associated with the graph
G. That is, if v(Gt)i = 1, then ei ∈ Et.

B. Graph Change Metrics

Using the vector representation, we now present rigorous
metrics of graph change based on vector space properties. The
notation || · ||2 denotes the `2-norm in a vector space.

Definition 2 (Graph Edit Distance [11], [22]): Given two
graphs G1 and G2, the edit distance between them is given
by:

edt(G1, G2) := ||v(G1)− v(G2)||22.

Definition 3 (Graph Normalized Edit Distance): Given
two graphs G1 and G2, the normalized edit distance between



them is given by:

nedt(G1, G2) :=
||v(G1)− v(G2)||22

|E|
,

where |E| =
(|V |

2

)
.

The edit distance metric measures the number of link
changes that have happened between two graphs G1 and G2.
Namely, it counts the number of links that have become active
in addition to the number of links that have become inactive.
The normalized metric expresses this quantity as a value
between 0 and 1. If nedt(G1, G2) = 1, the two graphs G1 and
G2 must be complements of each other. If nedt(G1, G2) = 0,
the two graphs are identical. The range of values between 0
and 1 represent the order of difference between the two graphs.

Below, we introduce another metric for further characteriz-
ing the similarity between two graphs.

Definition 4 (Graph Normalized Inner Product): Given
two graphs G1 and G2, the normalized inner product between
them is given by:

G1 ·G2 :=
v(G1) · v(G2)

||v(G1)||.||v(G2)||
.

The above metric is the cosine of the angle between the
two vectors v(G1) and v(G2) and satisfies 0 ≤ G1 ·G2 ≤ 1.
If the normalized inner product is 1, the two corresponding
vectors in the vector space are perfectly aligned, and the graphs
G1 and G2 are identical. On the other hand, if the normalized
inner product is 0, the two graphs G1 and G2 have no common
edges.

While the two metrics normalized edit distance and nor-
malized inner product measure change in the graph there is
a subtle difference between them. Normalized edit distance
measures the magnitude of change that has happened between
graphs G1 and G2. On the other hand, the normalized inner
product measures the similarity of two graphs G1 and G2.
To illustrate this, consider a sparse graph consisting of a
large number of nodes, but with very few edges (say just one
edge). If this edge goes down and a new edge comes up, the
edit distance of this graph will be small (only 2) implying a
small change in the edges. However, the inner product will be
zero indicating that the new graph topology has no edges in
common with the old topology.

Another variant of the inner product metric defined above
is the link persistence metric. By normalizing with just the
number of edges in the first graph, this metric represents the
probability that a randomly selected edge in the first graph
also exists in the second graph.

Definition 5 (Link Persistence): Given two graphs G1 and
G2, the link persistence probability between them is given by:

lp(G1, G2) :=
v(G1) · v(G2)

||v(G1)||
.

It is immediately possible to see the use of the above
metrics. If two graphs are consecutive items of an evolving
graph sequence, these metrics represent the quantity of change
in the graph sequence. If the metrics indicate a small change

TABLE I
PARAMETERS FOR THE MOBILITY MODELS.

Name Symbol Model Default
value

Flight length Levy parameter α TLW 1
Pause time Levy parameter β TLW 1
Truncation flight τl TLW
Truncation pause τp TLW
Minimum Velocity vmin RWP
Maximum Velocity vmax RWP
Communication radius 500
Simulation area 1500

from an item of the sequence to the next, the evolving graph
sequence changes slowly, whereas if the metric is large, the
evolving sequence changes rapidly.

The metrics discussed above represent change between two
graphs as a single scalar value. However, they do not provide
information about the nature and locality of this change. To
capture this, we consider the notion of an edit graph defined
as follows.

Definition 6 (Edit Graph): The edit graph 4G is the sym-
metric difference between the edge sets of two graphs. For-
mally, let G1 = (V,E1) and G2 = (V,E2) be two graphs,
then, if e ∈ 4G, either e ∈ E1 \ E2 or e ∈ E2 \ E1.

An edit graph carries more information about the change
between two graphs including the locality of changes. There-
fore, its properties affect the performance of some network
algorithms which depend not only on the frequency of changes
but also on the locations of the changes. This effect will
be discussed later when studying flooding time in dynamic
networks.

C. Mobility Models

While the metrics are useful to measure change in any
sequence of graphs, this paper considers sequences generated
by the following three models: Levy Walk mobility, Random
Waypoint mobility and the Edge-Markovian model. A survey
of several models can be found in [7].

1) Truncated Levy Walk (TLW) Model: Among the many
mobility models that attempt to find a balance between an-
alytical tractability and practical relevance, the Levy Walk
mobility model has recently received a lot of attention, due to
its relatively good representation of reality [5], [13], [20], [25].
The heavy-tail nature most closely captures human motion.
Namely, it captures that humans move mostly in a given
locality and occasionally make large jumps. The Truncated
Levy Walk model is a variant that has been successfully
applied to several experimental traces [20].

In this model, we assume a square simulation area in which
nodes are free to move. When they reach a corner of the area,
they are bounced off with the same angle with which they
arrived. The Truncated Levy Walk model is described by a
tuple of four variables (l, θ,∆tf ,∆tp). The flight length is
captured by a heavy-tailed random variable l. This variable



(a) α = 0.1 (b) α = 1 (c) α = 2

Fig. 2. Motion traces of the Truncated Levy Walk model for different scale parameter α values. In all three instances, the initial locations of the nodes are
identical.

is sampled from a Levy distribution with parameter α and
its probability distribution function p(·) has the following
property:

p(l) ∼ |l|−(1+α), l < τl, 0 < α ≤ 2.

If the sampled value of l is greater than the truncation factor
τl, a new value is generated. The time it takes for the node to
cover the flight length is taken from the relationship ∆tf =
kl1−ρ, 0 ≤ ρ ≤ 1, with k and ρ constants. The direction of
the flight length θ is taken to be uniform from [0, 2π].

Once the node arrives to its destination, its pause time ∆tp
is also taken from a truncated Levy distribution with parameter
β:

p(∆tp) ∼ |∆tp|−(1+β), ∆tp < τp, 0 < β ≤ 2.

The movement is repeated until the end of the simulation
period. For more information about the Truncated Levy Walk
model, see [20]. The parameters for the various models that
we use are summarized in Table I along with their default
values.

2) Random Waypoint (RWP) Model: The Random Way-
point model [15] has been extensively studied in the literature
. It is used widely in the mobile networking literature due to
its intuitive definition and mathematical tractability [15]. Many
algorithms, including DSR and OLSR have been evaluated
using this model. It is therefore important to understand its
properties with respect to our graph metrics. Our aim in this
work is to use this model as a benchmark for the Trucated
Levy Walk model.

In RWP, each node picks a destination uniformly in the
simulation area and travels to that point from its current
position. The velocity is sampled uniformly from an interval
[vmin, vmax] and the duration of the flight is computed from
this velocity. Once the destination is reached, a random pause
time is selected from a uniform distribution [0, τp]. Note that
in this paper, we are mostly concerned with the behavior of
such algorithms over a finite time-interval. Therefore, steady-
state issues mentioned in [26] do not apply. Furthermore, we
always set a positive vmin, which further helps with having a
proper steady state behavior.

Fig. 3. Evolution of the edit distance over time of the TLW model for
different values of the α parameter.

3) Edge-Markovian Model (eMEG): Although not a mo-
bility model, the edge-Markovian graph is a specific evolving
graph structure that could be used for modeling change in
dynamic networks [9], [10]. In this model, each edge is
governed by a simple two-state Markov chain that dictates
whether an edge is present or not. The evolution of the chain
is Markovian, in the sense that if an edge exists, it disappears
in the next slot with probability q, and if it does not exist, it
appears with probability p. It is easy to see that at steady-state,
this model converges to an Erdös-Renyi random graph model,
where an edge exists with probability p/(p+ q).

IV. QUANTIFYING CHANGE IN GRAPHS

In this section, we utilize the metrics introduced earlier to
study graph change in an evolving graph sequence generated
by the Truncated Levy Walk model.

A. Levy Walk Motion

Motion traces of the Truncated Levy Walk model shown
in Fig 2(a)-2(c) illustrate the range of motion that can result
from this model. These traces have been generated using the
Truncated Levy Walk simulator for Matlab provided by [1]
that was improved to support longer simulation runs in order
to observe steady-state behavior. We plotted the mobility traces



Fig. 4. Distribution of edit distance for different values of α.

for 20 nodes over a period of three minutes for α ∈ {0.1, 1, 2}.
The Levy parameter for the pause time is β = 1, the truncation
factors for the flight length and the pause time are chosen to
be the simulation area and 60 minutes, respectively.

Note that choosing different values of α can lead to dra-
matically different kinds of motion under the TLW model.
Choosing low values of α makes the movement similar to
that of a RWP model or of a Random Direction model [19],
[21]. The flights are typically very long and cover the entire
simulation area. When α approaches 2, the motion becomes
similar to Brownian motion, since for α = 2 the Levy
distribution reduces to a Gaussian distribution. Hence, in such
cases, nodes do not move too far from their initial positions.
For values in-between, say α = 1, the motion carries the
characteristic properties of a Levy walk. They perform mostly
short flights around the current position and occasional long
flights. In short, for low α values, the nodes have a high degree
of mobility and move faster, while as α increases the mobility
decreases.

B. Graph Metrics

We analyze the evolving graph produced by Levy Walk
mobility using the graph edit distance metric. This metric
represents by a single value the number of edges that have
changed between two instances of a graph sequence. In Fig. 3,
we plot the edit distance as a function of time for sample
realizations of Truncated Levy Walk traces. The edit distance
rapidly fluctuates in time with low (high) values of α having
larger (smaller) edit-distance values. To better understand this
evolution, the distribution of the edit distance for various
values of α is shown on Fig. 4. These simulation were run over
2000 simulation minutes to obtain a steady-state distribution,
and the other simulation parameters (β, etc) were the same as
above. Notice that the mean and the variance are different on
all accounts.

In order to further understand the effect of the α parameter
on the Levy walk, we plotted in Fig. 5 the mean edit distance
versus α. The figure shows the intuitive trend that as α
becomes larger, the mean edit distance drops. However, the
drop is significant for low α values and decreases as α
increases (i.e., the curve flattens out). As α approaches 2,

Fig. 5. Average value of the edit distance for given α values for flight length,
when β = 1.

Fig. 6. Distribution of the graph inner product for 4 values of α.

the graph becomes less dynamic, almost completely static in
some cases. For values of α that are smaller, the nodes wander
further away from the point where they have started. It is
worth noting that this is due to the heavy-tail nature of the
Levy walk. When α = 2, we are essentially sampling from a
normal distribution and hence have a Brownian motion pattern.

The findings of Fig. 5 suggest that by knowing the α
parameter of the Levy walk, it is possible to anticipate the
magnitude of the change in the graph. For certain values,
the graph will change dramatically and the protocols running
on top of this network must adapt to changes more quickly.
As will be shown in Section V, this can have important
consequences for predicting the flooding times and on the
message overhead of routing algorithms.

We turn our attention to the normalized inner product
between two consecutive graphs in a sequence for different
values of α. In all instances in this section, the pause time
between flights has been set to the same Levy distribution
with parameter β = 1. In order to understand how α affects
the inner product, the distribution of the inner products for four
values of α is plotted in Fig. 6. We note that small values of
α have a lower mean and are, therefore, indicative of a larger
difference in the graphs. For α = 2, the inner product values
are very close to 1, meaning that the graphs are very similar.

Our results suggest that the normalized inner product is a
viable metric for quantitatively measuring how “close” two



Fig. 7. Average link-persistence probability metric for different values of α.

graphs are. Within the context of mobile networks, it is a
good metric that can be used to evaluate the effect of the
model parameters, such as α in our case, on the underlying
evolving graphs sequence.

The link persistence metric also supports the insight ob-
tained by the the normalized inner product. Fig. 7 illustrates
the mapping between the α values and the link persistence
probability metric. The effect of α on the metric is similar
to that of Fig. 5. Moreover, the link persistence probability is
fairly high at 0.95 even for small α values. This is indicative
that when the nodes take large flights, the link quality does
not get affected too much.

C. Edit Graph

The edit graph sequence introduced in Section III further
characterizes the change in an evolving graph sequence. While
the edit distance is useful in describing the magnitude of
changes between time slots, the information about the locality
of the changes is not considered. It will be shown in Section IV
that the location of the changing edges also plays a significant
role in the behavior of some of the higher-layer algorithms.

Since the edit graph sequence is another evolving graph
sequence, we will illustrate it using graphical methods2. The
frequency plot on Fig. 8-(a) shows the frequency of changes
in the edit graph of a Truncated Levy Walk with α = 1.
If an edge appears and disappears very often, it will appear
more often in the edit graph and will be represented using a
larger bar. We can see from the plots that the distribution of
edge appearance is not uniformly distributed in a finite time-
window. A small number of edges change very often, while
the majority of the edges mostly do not change. This behavior
of the Levy walk has implications on networking algorithms
that will be discussed in Section V.

As a comparison, we also show the same edge frequency
distribution for the edge-Markovian Evolving Graph model
introduced in Section III in Fig. 8-(c). The p and q parameters
for this model have been chosen such that the edit distance
of this graph will be close to that of the Levy walk (p =
q ≈ 2.69). It can be seen that the distribution of the edge

2Animations for the edit graph sequence of this section can be found in
[4].

(a) Truncated Levy Walk model

(b) Random Waypoint model

(c) edge-Markovian model

Fig. 8. Frequency of an edge appearing in the edit graph for the Truncated
Levy Walk model, Random Waypoint model and the edge-Markovian model
in a simulation that lasts for 3 minutes.

appearances for the edge-Markovian sequence is more evenly
distributed. Most edges change a predictable number of times.

In order to emphasize the importance of the α parameter
and the initial point distribution on the structure of the edit
graph, the edge frequency is plotted graphically in Figs. 9(a)-
9(c). The nodes are placed according to their initial positions
at the beginning of a three minute run interval and the colors
of the edges represent the frequency of that edge occuring
in the edit graph. A dark color represents an edge that has
changed its state very frequently during the run. If an edge
does not exist in the edit graph plot, then that edge either has



(a) α = 0.1 (b) α = 1 (c) α = 2

Fig. 9. Edges colored according to their frequency in the edit graph for the same initial coordinates and α ∈ {0.1, 1, 2}.

never appeared in the original graph or has always existed.
These visualizations highlight the dramatic change that can

occur in a graph for different values of α. It was previously
established that if α is low, the edit distance will tend to be
higher and the graph will change quickly. However, the change
is also distributed roughly uniformly among the edges. The
same edges keep appearing and disappearing.

As α increases to 1, the graph becomes more dynamic.
The changes are more uniformly distributed among the various
links but there are still some links that do not change.

Finally, for α = 2, both graphs are very sparse. Namely,
the nodes that are close to each other initially remain close
for the duration of the simulation. The ones that are a mid-
distance from each other keep appearing and disappearing,
which explains why the edit graph has strong edges even
though the total number of edge changes is small. If the initial
distance between the nodes is substantial, the nodes either
never get connected, or get a very light connection.

The edit graph is therefore an interesting tool that provides
statistical information about an evolving graph sequence by
conveying information about the locality of the change. Our
graph plots indicate which edges are more likely to appear and
the effect of the initial distribution of the edges on the path
persistence.

D. Comparison with the Random Waypoint Model

In this section, we compare the behavior of the Truncated
Levy Walk model with that of the Random Waypoint model.
Fig. 10 displays the average edit distance between consecutive
time slots. The velocity is sampled uniformly from the interval
[vmin, vmin + 20] and the plot is drawn with respect to
vmin. The average number of edges that differ between two
consecutive instances is roughly linear for the plotted interval.
This is an interesting phenomenon, since a priori there is no
reason for the number of changes in the graph to be directly
proportional to the velocity.

It can be seen in Fig. 11 that the changes in the edit graph
sequence are roughly evenly distributed among the edges,
which has two implications. First, it is a good predictor that

Fig. 10. Edit distance as a function of velocity which is chosen uniformly
from [vmin, vmin + 20].

Fig. 11. Edge frequency in the edit graph of the Random Waypoint Model
with maximum pause of 10 slots and velocity v ∈ [5, 10].

flooding will be performed quickly since nodes will most
likely contact each other more frequently, resulting in faster
information dissemination. On the other hand, link persistence
probabilities will be low for many links and connection quality
may suffer. It may therefore not be possible to maintain a
connection for a long duration of time which may be harmful
to certain applications.



Fig. 12. Number of control packets sent per second for a given α and activity
coefficient a for the DSR and OLSR protocols.

V. PERFORMANCE EVALUATION OF NETWORK
PROTOCOLS

Our motivation for analyzing change in evolving graph
sequences is to provide a better understanding of the effects
of mobility on network protocols. In this section, we utilize
results from the previous sections to study control message
overhead of routing algorithms as well as flooding time.

A. Message Overhead of Routing

Routing has been extensively studied in the networking
literature with the goal of finding the best way to route
packets under various network topologies and link costs. In
mobile networks, routing algorithms can be broadly classified
as reactive or proactive. In reactive protocols, whenever a
source has data to send and does not have a cached route,
the network is flooded with route-request packets to obtain the
best route to the destination. Proactive algorithms, on the other
hand, maintain an up-to-date view of the network by regularly
exchanging table update messages. In most scenarios, the
optimal decision is to use a combination of these two methods
through an adaptive policy, an approach that is exploited by
hybrid protocols.

In this section, we study control message overhead for the
above two protocol classes by utilizing the insights obtained
earlier about change in the graphs of mobile networks. Specif-
ically, we consider the Dynamic Source Routing (DSR) [15]
and the Optimized Link-State Routing (OLSR) [14] protocols
when the underlying mobility model is a Truncated Levy
Walk. These are examples of reactive and proactive algorithms,
respectively.

A characterization of the control overhead of these two
protocols was provided in [24]. For OLSR, the number of
control packets generated per second is KOLSR · µ+COLSR
(i.e., control overhead is proportional to µ), where µ denotes
a network mobility parameter which was taken as the link
failure probability. For DSR, the number of packets generated
is KDSR ·µ · a+CDSR, where a represents the node activity
defined as the probability that a node is either the source or
the destination of an active route. The specific coefficients
KOLSR, KDSR, COLSR, and CDSR, which are non-trivial

Fig. 13. Areas where OLSR (shaded) has lower control overhead than DSR.

to estimate, depend on the structure of the network, traffic
patterns, and the specific implementation of the algorithm. The
coefficient values that we used were obtained experimentally
in [24] as KOLSR = 749, COLSR = 66, KDSR = 3150, and
CDSR = 1.

The focus of this section is to study the number of control
messages produced by these two protocols for various values
of α (the Truncated Levy Walk model parameter). This will
provide new insights into developing adaptive mechanisms
that determines the optimal routing policy solely based on
the model parameters α and a. For this purpose, we use the
mapping shown in Fig. 7 of Section IV that showcases a
mapping from the α-value to the link persistence metric.

Note that while the results are obtained for these specific
values, the general shape of the plots would remain the same
and the insights would hold. For a given Levy Walk α-value
and activity parameter a, it is now possible to estimate whether
DSR or OLSR will have lower control overhead.

The number of control messages versus α and a is shown
in Fig. 12. Note that the overhead of OLSR is constant over
the a values. Using this figure, the selection of protocols that
minimizes the overhead is shown in Fig. 13. Under Levy walk
mobility, for α > 1, DSR is a better option in terms of routing
control overhead. This is confirmed by the intuition that when
the graph is changing slowly, the regular transmission of
control packets is not justified. When a < 0.6, DSR has lower
overhead than OLSR. As intuitively expected, in networks with
low activity or smaller rate of graph change, creating routes
on-demand is better than maintaining an up-to-date routing
table. In networks that are highly-dynamic and have high
activity, OLSR performs better than DSR. As mentioned in
[24] since proactive protocols can reuse the routes that have
been computed as opposed to recomputing them very quickly.

B. Flooding Time

Flooding is used by many network algorithms for quickly
disseminating information in networks with unknown topol-
ogy. Mobile networks form an especially attractive venue
for flooding because of their constantly changing nature.
It is therefore of both practical and theoretical interest to
evaluate the performance of flooding schemes in the context



Fig. 14. Flooding time in the Truncated Levy Walk model and the edge-
Markovian Evolving Graph model for comparable edit distances.

of changing networks especially for mobility models, such as
the Levy Walk.

Intuitively, a network that changes very quickly should, in
general, have better flooding performance. This follows from
the observation that the more new nodes a given node contacts,
the higher the likelihood that it will also run into more nodes
that do not have the packet. With respect to graph change
metrics, this implies that given a mobility model and some
initial conditions, the parameters that cause the graph to have
a higher edit distance (or a lower inner product) will have
better flooding performance.

This phenomenon can be further explained as follows. The
bottleneck in completing flooding in many of our simulations
runs were isolated nodes. In most instances, when the graph
is disconnected, there is a large connected component that
contains most of the nodes and smaller groups of isolated
nodes. The flooding time is bounded by the time it takes
the isolated nodes to get connected to the main component.
If nodes move rapidly, it is more likely that they will get
connected to the large component sooner, whereas if they
move slowly it will take them longer.

To study flooding, a sequence of evolving graphs was
generated and a random node was picked to initiate the
flooding. This process was iterated for 2000 simulation runs.
The resulting flooding time was observed for various values
of the model parameters that govern the amount of change in
a graph as expressed by the edit distance.

Fig. 14 presents the results on flooding time for the Trun-
cated Levy Walk model as a function of α. We also plotted the
flooding time in an edge-Markovian Evolving Graph model.
To make the comparison relevant, the model parameters for the
eMEG sequence were computed to have the same edit distance
as the TLW model. Thus, for a given α, the magnitude of
change on the figure for the TLW and the eMEG models is
similar.

The first observation from Fig. 14 is that for larger α values,
flooding takes a longer time. This is in line with the results of
Section IV-B where larger values of α resulted in smaller edit
distances and hence less change. More surprisingly, note that
even if they have similar edit distances, the edge-Markovian

Fig. 15. Flooding time for the Random Waypoint Model.

model always completes flooding faster. This is an important
observation and is due to the uniform edge-distribution of the
edge-Markovian model outlined in Section IV-C.

Fig.15 presents the results for Random Waypoint model
which lead to a similar conclusion. As the velocity of the nodes
increases, the edit distance also increases, and the flooding
time steadily decreases. Thus, the rate of graph change signifi-
cantly affects flooding time with a natural inverse relationship
where average flooding time decreases as the rate of graph
change increases.

VI. CONCLUSIONS

We studied the properties of an evolving graph of a mo-
bile network whose structure changes due to node mobility.
In particular, we studied the dynamic graph properties of
Truncated Levy Walk model and compared it to the Random
Waypoint and the edge-Markovian Evolving Graph models.
We presented several metrics that quantify graph change in
an evolving graph sequence. Through extensive numerical
simulations, we computed these metrics for the TLW and
RWP mobility models and obtained several new insights into
the properties of the underlying dynamic graph. We showed
that some parameters of mobility models, such as the α
parameter of the TLW model and the velocity of the RWP
Model, have a direct relationship with the edit distance metric.
For instance, when the α value of the Truncated Levy Walk
model approaches 2, the graph becomes less dynamic, and this
change is directly captured through our graph edit distance
metric. We related our results on the effect of the rate of
graph change to the performance of network algorithms, such
as control message overhead in data routing and flooding time
in dynamic networks. In particular, we showed how flooding
time is dependent on the amount and the locality of change
in the network, and that it is possible to minimize the control
overhead by observing the parameters of the mobility models.

This paper is a first step in understanding the nature of
change in evolving graphs sequences. An interesting future
research direction would be to evaluate our graph metrics
under the Signal-to-Noise-Interference (SINR) constraints in
order to have a more realistic model of mobile networks.
Although we applied our metrics to mobile networks, evolving



graph sequences appear in many other settings. The applica-
bility of our metrics to other domains where change is also
pervasive, including social networks and optical networks with
link impairments, may guide the design of better algorithms
in those domains as well.
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