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Abstract

Using the DC power flow model, we study cascading failurestheid spatial and temporal properties
in the US Western Interconnection (USWI) power grid. We shioat yield (the fraction of demand
satisfied after the cascade) has a bimodal distributiorcéymif a first-order transition. The single
line failure leads either to an insignificant power loss oa ttascade which causes a major blackout
with yield less than 0.8. The former occurs with high proligbif line tolerancea (the ratio of
the maximal load a line can carry to its initial load) is geahan 2, while a major blackout occurs
with high probability in a broad range ofd a < 2. We also show that major blackouts begin with
a latent period (with duration proportional tg during which few lines overload and yield remains
high. The existence of the latent period suggests thatietéion during early stages of a cascade can
significantly reduce the risk of a major blackout. Finallye wmtroduce the preferential Degree And
Distance Attachment (DADA) model to generate random netwavith similar degree, resistance,
and flow distributions to the USWI. Moreover, we show that B#%DA model behaves similarly to
the USWI against failures.
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1 Introduction

Failure of a transmission line in the power grid leads to astetiution of the power flows.
This redistribution may cause overloads on other lines hail subsequent failures, lead-
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ing to a major blackout (Bernsteet al, 2014; Pahwet al, 2014; Buldyreet al., 2010;
Soltanet al,, 2014; Hine<t al, 2009). These failures may be initiated by natural disas-
ters, such as earthquakes, hurricanes, and solar flaresglaasaby terrorist and elec-
tromagnetic pulse (EMP) attacks (U.S FERC, DHS, and DOEQpRORecent blackouts
in the Northeastern US (US-Canada Power System Outage ‘das&,2004) and in In-
dia (Bakshiet al,, 2012), demonstrated that major power outages have a déngdtmpact
on many aspects of modern life. Hence, there is a dire neetutty she properties of
cascading failures in power grids.

The direct current (DC) power flow model is commonly used udging failures in
power grids|(Gloveet al,, 2012{ Soltaret al, 2014{Bienstock, 2011; Carreratal, 2004;
Bienstock & Verma, 2010; Pinat al, 2010;[ Carrerast al, 2002;[ Asztalo®t al,, 2014,
Dobson & Lu, 1992} Bakket al, 2006). In this paper, we employ a similar power flow
model which is equivalent to the flows in a resistor networke @cangelist al,, 1985)
and follow the cascading failure model of (Soleiral, 2014 Bernsteiet al, 2014).

Itis observed in [(Carrerat al, 2002) that the distribution of blackout occurrences in
power grids follows a power law, which is related to the phaeraon of self-organized crit-
icality. Other authors suggest that blackouts follow foster phase transitions, in which
the loss of power is either very small or very large (Zappéal.,, 1997 Pahwat al, 2014).
The goal of this paper is to thoroughly study the propertfasascading failures in power
grids and create a realistic model that carries the mainufeatof a real grid. For this
reason, we study cascades in the US Western Interconn€tk#®W1) grid and introduce
a synthetic Degree And Distance Attachment (DADA) model.

We show that the characteristics of blackouts are universalever, the sizes of black-
outs are much smaller in the USWI with a realistic design timaan artificial DADA
model with a different spatial organization. In particulae study the dependence of the
blackout size and the dynamics of the cascading failuress®et af three parameters that
characterize the robustness of the grid: (1) toleramcthe ratio of the maximum flow a
line can carry to its initial load (Kornblutét al, 2018{ Motter & Lai, 2002; Motter, 2004);
(2) the minimum flowl , which any line in the network can carry independent of it§aihi
load; and (3) the amount of flow in the initial failed line coampd to the distribution of the
flows in the grid {y). We characterizé, andl, by dimensionless parametgrgcalled the
level of protection) andi (called the significance of initial failurep andu are the fraction
of the lines with flows less thay andly, respectively.

We show that in a broad range okla < 2,u> 0.8, and O< p < 0.95, large blackouts
with yield (the fraction of demand satisfied after the casg#ekss than 0.8 may occur with
a significant probability both in the USWI and in a artificiaonstructed DADA grids.
Moreover, we find that in this range of parameters the digtidin of yield is bimodal,
which is consistent with first-order phase transitions. Mowortantly, we find that in
cascading failures that lead to a large blackout, there &eat period during which the
damage is localized, few lines are failed, and the decr@ageld is insignificant. The exis-
tence of this latent period suggests that the majority afkmats can be effectively stopped
by the timely intervention of grid operators. The lengthtod tatent period increases as the
toleranceax increases. Another important discovery is that in the egéatlarge blackout,
cascading failures stop when the network breaks into shattpnnected islands.
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The rest of the paper is organized as follows. Se¢fion 2 tescthe power flow and and
cascading failure models. In Sectioh 3, we study the topctgroperties of the USWI
power grid and its robustness against cascading failuneSettion#, we describe the
DADA model and in Sectiohl5 we compare its features to the U@wer grid. Finally,
in SectiorL 6, we discuss and summarize the results of ouy.stud

2 Model and Definitions

In this section, we describe the power flow and the cascadeehiodletails. Tablé]1
provides a summary of notations.

2.1 Power Flow Model

We employ the DC power flow model widely used in the power eagiimng community.
This model is equivalent to the flow equations in resistowoeks. In this model, the power
flows, reactance values, and phase angles are replacedreytsyresistance values, and
the voltages, respectively.

We denote the power grid network by a gradk= (N, E), whereN denotes the set of all
nodes andE denotes the set of edges. We ass@wonsists oh® transmittingn™ supply,
andn~ demand nodes. The total number of nodes is n° +n* +n~. Each supply or
demand node is specified by the amount of current it supgies ©) or by the amount of
currentitdemandd{ > 0). Due to the law of charge conservatigr;" = 5 I;”. We denote
the set of all neighbors of noddy N(i). ki := |N(i)| represents the degree of a nodad
(k) is the average degree of all nodes in the network. Each tiaa&m line connecting
nodes andj is characterized by its resistariRg, while each nodeis characterized by its
voltageV;. The current;; flowing from node to nodej is

lij =M —Vj)/Rj. 1)
Additionally, the sum of all the currents flowing into eachded is equal to the sum of all
currents flowing out:
lij=o8"1" =51, ()
JEN()
whered” =1org~ =1ifanodd is a supply or ademand node, respectivdly= 8~ =0
otherwise.

2.2 Cascading Failures Model

Once the systeri[(1)4(2) is solved, we find the currents imaatismitting lines;; and define
their maximum capacitielg; using the following two rules: (i) we defirig as the standard
capacity of the lines. Itis computed such that a fracpar the lines initially have currents
belowl,. We refer top as thelevel of protection(ii) For each line we define its individual
capacitya|lij |, wherea > 1 is thetolerance(i.e., the factor of safety). We assumeo be
the same for every transmission line in the grid. Using thekes,

If} =max(lp, allij|). 3)
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Table 1. Summary of Notation

Notation Description

nt The number of supply nodes

n- The number of demand nodes

n® The number of transmitting nodes

Iﬁ The current supplied by supply note

I The current demanded by demand node

Rij The resistance of the line connecting nodesd j
\Y; The voltage of node

lij The current traveling through the line connecting nadasd j
a The tolerance of the lines

p The level of protection of the lines

u The significance of the initial failure

If a currentin line{i, j} exceedsyj, it fails.

The largerp anda are, the better the grid is protected against overloadssimard
capacitylp is to ensure that lines that do not carry a significant cutheme a reasonable
capacity. In this paper, we uge= 0.9 and varya as the main parameter of grid resilience,
most of the time.

To initiate a cascading failure, we randomly select and mam@ single line which
current|ljj| belongs to the intervaly_au, ], where the fractioru — Au of lines operate
below I,_ay and the fractioru of lines operate below,. The parameteu specifies the
significance of the lines which are targeted for the initailure. We refer tou as the
significance of the initial failureFor exampleu = 1.0 andAu = 0.1 means that the line
which is initially failed, is selected from the top 10% of dis ranked according to their
initial current.

Removing a line can lead to disintegration of the grid int@ isconnected compo-
nents, which we call clusters. Obviously, the supply andakfin each cluster should be
equalized to retain charge conservation. Thus, for eacsianiG;, we COMPUtEyjcc, I
andyicc i . If in a clusterycc, It > Yiec; i » we multiply the current of each supply
node inCj by % <1;if Yiec; i > Sicc; I;¥, we multiply the current of each demand
Ziecjj I
2ieg; i
l1=7; Ii+(1) =3 Ifu) as the total supplied current at the end of the first step afdkeade.
Then, we solve Eqd.J1)4(2) again to compute new new currgﬁmt the second time step

node inC; by < 1 to obtain new supply/deman vaIuI$+§1) andlfu). We define

of the cascade, we remove all lines for which the new cuﬂné;]ﬁt exceeds its maximum
capacityljj. If no overloads occur, the cascade stops. If there are rikwefg, we repeat the
supply/demand equalization process, modify the systemudittons[(lL){(R), and compute
the new currentq(jz). We repeat this process recurrently until at a certain titeptsof the
cascade no lines fail. We call this time step, the final stepp@tascade.
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2.3 Metrics

We define here all the metrics used in this paper to charaetdre severity of a cascade.
Cascade Duration, f: the number of time steps until the cascade stops.

Number of Active Lines, L: the number of transmission lines in the grid that have not
failed by the end of the cascade.

Yield, Y(t): ,'—(‘J the ratio between the total demand at time dt€p) and the original
demandlp). Fort = f, we simply denote yield by.

Local Yield, Y(t,h):

YieH(h) O

YieHm i
whereH (h) is the subset of demand nodes a given hop distarican the failed line.
Blackout Radius of Gyration, rg(t): a quantitative measure of the blackout’s geometric
dimension as a function of the cascade time step

) <2ie5(r> h?'if(t)>
rg()" = ———-, (5)
(TieBw) i)
where the summation is made over theBg} of totally disconnected demand nodes which
do not receive any current at ti8 time step of the cascade. . > denotes the average
over all the cascade simulations.

Y(th) = (4)

3 The Topological Properties of the USWI and Its Robustness gainst Cascades

In this section, we study the properties of the USWI netwdrtamed from the Platts Ge-
ographic Information System (GIS) (Platts, 2009). Thisadat includes approximate in-
formation about transmission lines based on their lengtgplies based on power plants’
capacities, and demands based on the population at ead¢lofo{@ernsteiret al., 2014).
In the next section, we provide the DADA model to generatétsstic power grids. Figures
in this section also show the properties of the DADA model i get back to in the next
section.

3.1 Topological Properties

The USWI power grid contains 8050 transmitting nodes, 11@plky nodes, 3888 demand
nodes, and 17544 transmission lines. To avoid exposinglgesaulnerabilities of the
actual USWI, our data set does not include the geographidotaies of the nodes. It
does however, include the length of each lineconnecting nodeisand j. We define the
resistances of the lines to be proportional to their lenBths- prij, wherep is a constant.

3.1.1 Degree Distribution

The degree distribution of the nodes in the USWI is charadiby a fat-tail distribution
(Fig.[I{@)), which can be approximated by a power R{k) ~ k=2 with an exponential
cut-off. The degree distribution of transmitting nodegp@Ey nodes, and demand nodes
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Fig. 2. Length distribution of the lines, which are the saméhe resistance values|[inj(a)
the USWI power grid, and (p) the DADA with =6, ¢ = 1.5.

are quite similar to each other. The average degkgef the nodes in the USWI is 2.67.
For the supply nodes, it is slightly larger 2.88 and for thendad nodes, it is slightly
smaller 2.61.

3.1.2 Length Distribution of the Lines

The length distribution of the lines in the USWI has an appmately lognormal shape
with power law tails. Fig[ 2(2) shows R{Inr;;), the logarithm of the probability density
function (PDF) of Irrj;. For the lognormal distribution, the curve would be a perfec
parabola. Instead, we see that both tails of the distributem be well approximated by
straight lines with slop@_ = 0.77 for the left tail and slope, = —1.44 for the right tail.
This means that the PDF of can be approximated by power [aR§) ~ rV-—lforr =0
andP(r) =~ rV+~1forr — oo,

3.2 Cascade Properties

The results provided in this subsection are for 100 triatsefach set ofp,u,a. In this
subsectionpu = 0.1.
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the distributions is a feature of the abrupt first-order sithon.

3.2.1 Bimodality of the Yield Distribution

The interesting feature of the yield histogram as can be iseig.[3(a), is its bimodality.
One can clearly see the bimodality of the distribution witle peaks for high yield 0.975
and low yield 0.625, with practically no yields between 0aftsl 0.9 for the USWI. This
can be detected by a plateau in the cumulative yield digtabFig.[4(a)). The bimodality
of the yield distribution is present in a large region of tteegmeter spacex( p,u), char-
acterized by relatively smatt < 2, practically allp < 0.95, and relatively large > 0.8.
One can see (Fi§l. 4{a)) that the distribution of yield cleaeimains bimodal foo < 2 in
the USWI model.

3.2.2 Risk of Large Blackouts

Cascades can be characterized by two important paramétbesautcome: (i) the proba-
bility of a large blackouP(Y < 0.8), which we call the risk of a large blackolit a ), and
(i) the average blackout yielfY), for the cases result in a large blackout.

Figs.[5(a) and 5(b) show how the risk of large blackoUi@) decreases ag in-
creases for different values afand p. We find that for different values af and p, the
shapes of the curved(a) remain approximately constant, but the curves signifigantl
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model for different values gb andu = 0.9.

shift in a horizontal direction. This means that the curlEs) can be well approxi-
mated byl (a — ap(u, p)). The functionag(u, p) can be defined by solving the equation
M (ao(u,p)) = % with respect taxg(u, p). One can see thaty(u,0.5) is an approximately
linear function ofu, which increases withu (Fig.[6(a)). This means that for protection
against failure in lines carrying high currents, a highégrance is needed. In other words,
the same effect can be achieved either by protecting a odréaition of the most significant
lines from spontaneous failure, or by increasing the tolegaof all the lines by some
quantity (Fig[6(d)).

The dependence of the risk qris weaker than on, especially forp < 0.5 (Fig.[6(B)).
An increase inp has practically no effect on the robustness of the grid. Tiheeise irp
achieves a significant effect on the risk of large blackoutg whenp approaches.0.

3.2.3 Characteristics of Large Blackouts

Large blackouts can be characterized by their average $i¢élcgaverage fraction of surviv-
ing lines(L), and the average fraction of nodes in the largest connectaganent of the
grid (G). These metrics only weakly dependwrbut are strongly increasing functionsf
(Fig.[7(a)). The independence of the characteristics gklétackouts om stems from the
fact that the properties of large blackouts, if they occorndt depend on a particular line
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to initiate the failure. The risk of large blackouts depeads, but the average parameters
of large blackouts do not.

The dependence of these metricsis more complex (Fid. 7(b)). While the yielt)
starts to increase only fqgr > 0.7, the number of survived lind&) significantly increases
with p even for smalbp. This is not surprising sincpis the level of protection of the lines,
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and fewer lines fail if more lines are protected. papproaches 1, the dependencéldf

on a becomes very weak. The explanation of this fact is based @madtion that(L) is
computed only for the case t#rge blackouts. For a large blackout to occur, a significant
fraction of lines must fail, sufficient to disconnect a lafggetion of demand nodes. On the
other hand, a& increases, the risk of a large blackout goes to zero, so #rage fraction

of lines surviving for all the cascades (large and smallyapphes 1.

Another important observation from Fig. 7|(b) is the smalpeledence ofG) on the
parameters, p, andu, as opposed td). Hence, by removing a small fraction of the lines
(20%) the grid disintegrates into many small clusters, dashthan 20% of the total size.
Indeed, percolation theory predicts that close to the pation threshold, it is sufficient to
delete an infinitesimally small fraction of the so calleddt®&onds to divide the network
into a set of small disconnected components (Coniglio, 1981

3.2.4 Latent Period of the Cascade

The cascading failures that do not result in large black®ts 0.8) are usually shoitf <

8) (Figs.[8(a) an@l 8(b)). In contrast, the duration of cascaelgslting in large blackouts
(Y <0.8) increases with, reaching values of order 40 for large This means that for
large tolerances, it takes much longer for the cascade &mdver a large area, since at
each time step only a few lines overload and fail.
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In the cascades resulting in large blackouts, y¥(t) decreases with time in a non-
trivial way (Fig.[9(a)). During the first few time steps of thascades, the yield does not
significantly decrease since the current can successfedlistribute over the remaining
lines without disconnection of the demand nodes. This pemowhich the cascade is still
localized and a blackout has not yet occurred, can be cdléddtent period of the cascage
t;. The recognition of this latent period is important sincis ia period in which a cascade
is beginning to spread but has not yet grown uncontrollabltne latent period it may still
be possible to intervene and redistribute current flow tp e cascade before it becomes
a large blackout.

We define the duration of this latent period of the cascadbasime step at which the
yield drops below 0.95. At approximately this time step thedd/starts to rapidly decrease
and then, towards the end of the cascade, stabilizes agansfiape of this function is
characteristic of an abrupt first-order transition obseériresimpler models of network
failure (Buldyrevet al., 2010; Motter, 2004). Remarkably, the duration of the laferiod
is a linear function of tolerance (Fig. 9]b)).
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3.2.5 Cascade Spatial Evolution

To observe the spatial evolution of a cascade, we group s gemand nodes into bins
based on their “hop distance” from the original failed lireeach bin we compute the local
yield Y(t,h). We average the local yieM(t,h) for cascades resulting in large blackouts
(Fig.[I0(a)). The yield in each bin at the end of cascadedtiegun large blackouts is
almost independent of the distance from the initially faili@e. While at the beginning of
the cascade the blackout is localized near the initialliedriine, eventually the blackout
spreads uniformly over the entire system. Delocalizatiocues at the end of the latent
period of the cascade. This can be clearly seen from the mwh@E\the blackout profiles,
which start to rapidly drop down for large distances onlyndé¢imediate time steps of the
cascade.

To give a more quantitative measure of the blackout spreadiss the “blackout radius
of gyration” (rg(t)) metric defined in Sectidn 2.3. FIg.J11 shows the behaviog (i? ver-
sus the cascade time stefpr the cascades which result in insignificant failures (Eif{a))
and large blackouts (Fig. I{b)). We observe the same phenarm- initiallyrg(t)2 grows
slowly in all the cascades. However, while in cascadestiaglh insignificant consequent
failures the cascade stops during the latent period, in msedting in large blackouts the
cascade rapidly spreads over a large area. The cascaddspreee quickly for smallr
than for largen.

4 DADA Model

In the previous section, we found that cascading failurékenJSWI model have charac-
teristic features of a first-order transition: the bimodiatribution of yield and the latent
period during which the damage to the network is insignifickiis important to investigate
whether these features are due to particular charactsrigtthe USWI design, or whether
they are universal features of a much broader class of nkswbloreover, the data on real

20
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Fig. 11. The averaged behavior of the radius of gyration efdhscading failures in small

blackoutsY > 0.80 in[(a) the USWI model ar{d {c) the DADA model, and large béatk
with Y < 0.80 in[(b) the USWI model ar{d (d) the DADA model.

grids are limited and therefore it is important to develamaithms for generating synthetic
grids resembling real grids topologies.

The two basic features of USWI that we like to reproduce as=dbgree distribu-
tion and the length distribution of the lines. The degredrithstion of the USWI dis-
cussed in Sectidd 3 is in agreement with the Barabasi-Aflveferential attachment model
(Albert & Barabasi, 2002; Barabasi & Albert, 1999). Acdorgly, we use the Barabasi-
Albert model as the basis of the DADA model. In the originak&zasi-Albert model,
a newly created node is attached to an existing node with bapiltity proportional to
its degree. However, for power grids embedded in two-dinosas space, the length dis-
tribution of the lines, resulting from the degree prefel@rattachment, would not de-
crease with length. Therefore, in order to create a grid witthecreasing length distri-
bution, one must introduce a penalty for attaching to a dtsteode. Thus, we employ
here the Degree And Distance Attachment (DADA) model witlistaghce penalty, similar
to (Xulvi-Brunet & Sokolov, 2002 Manna & Sen, 2002). This timed produces degree
and length distributions similar to those of the USWI (seeti®a[3.1).
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4.1 Construction of the DADA model
4.1.1 Construct the Network

The DADA model randomly generates nodes 1,2,...n one by one on a plane with a
uniform density. It connects each new ngd® an existing nodebased on’s degree and
distance with probability Ki, j}) O r”iy wherek; is the present degree of notlandr;;

is the distance between nodeand j. This rule mimics the way real networks are evolved.
A real network such as the USWI is not planned all at oncepratiew stations are added
to the grid as necessity dictates. The probability of cotior®({i, j}) O r”i“ is assumed

to be proportional td;, since connections to nodes of high degree are more reliable
also inversely proportional to a power gf, since construction of long transmission lines
costs more. The distance penaltys a factor which seeks to optimize the balance between
reliability and cost.

It is shown in (Xulvi-Brunet & Sokolov, 200Z; Manna & Sen, ZX)0that for u < 1,
the degree distribution of the resulted graph is a powerPgly ~ k=3, while for y >
1, it becomes a stretched exponential (Claeset., 2009). However, the fat-tail of the
stretched exponential can be approximated by a powePldgy~ k=¥ with an exponent
y > 3 (Fig.[Z(D)). It is also shown iri (Manna & Sen, 2002) that tegth distribution of
the lines isP(rjj) ~ rij asrij — 0, and for largeu, P(rij) ~ ri}3 asrij — o0, The functional
form of P(rij ) for the DADA and USWI models are similar, but the exponenesthfferent.
As mentioned in Section_3.1.2 regarding the USWI model,ehesymptotic behaviors
correspond to the slopes. = 2 andv, = —2 of the logarithmic distributiofP(In(ri;))
observed in the DADA model (Fig. 2(b)), while for the USWI neddhese values are
v_ = 0.77 andv, = —1.43. In our simulations, we selegt = 6. For this choice ofu,
the degree distribution exponepte 4.3, while —v, = 2. The corresponding values in
the USWI model are smaller. Bothand —v, can be decreased by decreasingo that
the degree and length distributions of the DADA model woutdchoser to those of the
USWI. However, by doing so, our results on the distributidrcarrents in the DADA
model and the properties of the cascading failures do natgahaignificantly, indicating
that the observed features of the cascades are quite walivEing discrepancy in_ for the
DADA and USWI is related to the fact that in the DADA model thedes are spread on
the plane with a uniform density, while in the USWI model thremslity of nodes is related
to the population density which has fractal-like features.

Our goal is to create a grid with a given number of linesherefore, when each new
node is created, we connect it on averagé t@'—n = <—;> preexisting nodes. Sinagis a
real number, we preassign to each node integer;, the number of lines by which it will
be connected to the previously generated nodes. We randwiegtl —n|/| < n nodes,
where | /] is the integer part of. For these nodes, we chooge= |¢] + 1. For the rest
of the nodes, we chooge= LE_J. For each new nodg we attempt to creat§ lines with
the previously existing nodes. Jf< ¢;, then we connecf to all preexisting nodes, as we
cannot creaté; lines without duplicating lines. If > ¢;, there are more existing nodes than
¢j and we create lines according to the rule described abotk probability proportion
to the distance and degree). In the end, a total of almost! lines are created.

For the USWI networkl = (k)/2 ~ 1.5, so for the DADA model we choose= 1.5
(more accurate values dfdo not significantly affect our results). Averaging over 100
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Fig. 13. Distribution of the supply and demand currents eWsWI power grid. Currents
are portrayed in arbitrary units.

different grids, our DADA model has slightly higher averalggree of 2.84. More accurate
values of¢ do not significantly change the cascading properties of thBAmodel.

As in the USWI model, we assume that in the DADA mo&gl = prij, wherep is
resistivity, which is constant for all the lines in the syste

4.1.2 Generate Supply and Demand

We randomly assigm™ supply nodes and (differentj- demand nodes. We selett=
13135,n" = 3888, anch™ = 1197 to match the USWI. We assign the supply and demand
nodes independent of the nodes’ degree. Thus the averageedegf the supply and
demand nodes are the same as the average degree of the DARA ®ionde the supplies
and demands of the USWI have an approximately lognormaiildigion (see Fig[13),

we generate currents of supplies and demands in the DADA hfioliteving a modified
lognormal distribution:

|i+ :evio++m+lnk;’ (6)

for supplies and
|- = gio +m Ink; (7)

| 3
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for demands, wherg is randomly generated according to a standard normalloligion,
o™ is a standard deviation, ama" is a parameter which creates a correlation between the
node’s current and its degree.

Furthermore, since it is unrealistic to have nodes with \dgh supply and demand
vales, we introduce a cut-off“c*, wherea®™ is a parameter of the model such that we
accept onlyii < €89 Thus, the supply and demand of each node is

Iij: — min (eviaiﬂnilnk.-’eaiai) ) (8)

This cut-off corresponds to the sharp drops of the righstafl the supply and demand
distributions in the USWI (Fid.13).

To best match the USWI data, we let the valuesnofbe the slopes of the regression
lines of the log-log scatter plots which plot the averaggpdupr demand versus the degree
of corresponding nodes. We then select values ahda so that the distributions simulated
for the DADA model best match the USWI distributions (Hig) 18/e obtainc™ = 2.0,
mt =0.38924,a" =1.6,0 =1.8,m = 0.62826, anca” = 1.2.

5 Comparison of the USWI and DADA Model

Here we compare the main properties of the USWI and the DADAeh&e also discuss
reasons for the differences observed. The cumulativeldlision of currents in the DADA
model closely follows the exponential distribution of amts in the USWI grid (Fid._12).
This is important because the ratio of currents in the two@sdorresponding to the same
significance of lines parametarss approximately equal.

5.1 Yield

The distribution of the yield&y in the DADA model is also bimodal for approximately the
same set of parametess u, and p as in the USWI model, but the gap between the two
modes (low and high yield) is significantly wider in the DADAogtel than in the USWI
model (Fig[Z).

Figure[4 shows the yield distributions of the USWI and DADA debfor u =1 and
p = 0.9 for several values of ¥ o < 2. In both networks, the cascade results is a large
blackout ¥ < 0.8) for small values ofr, and results in an insignificant consequent failures
(Y > 0.8) for large values ofr. But for the DADA model, chances of large blackout (risk)
are smaller for the same set of parameters than in the USWEemBdr example, the
DADA model can still survive with a small probability far = 1.2, but the USWI always
collapses fora < 1.3. Conversely, we do not observe any large blackouts in thBAdA
model fora > 1.7, while a failure in the USWI can still cause large blackoaten for
a = 1.9. Thus, even though in the event of a large blackout the gegrield in the USWI
is greater than in the DADA model (and thus, in this sense JA®A model is more
vulnerable than the USWI), the risk of large blackouts isatgein the USWI than in the
DADA model for the same set of parameters.

These differences may be related to the fractal structutieeof)SWI, in which densely
populated areas with lot of demand and supply nodes areatepdny large patches of
empty land over which few long transmission lines are builiereas the DADA model
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has constant density of nodes. Thus, it is less likely that#scade spreads over the entire
grid in the USWI. However, a higher tolerance is needed tegntlarge blackouts in the
USWI than in the DADA model.

Qualitatively, the behaviors of the metri¢g), (L), and(G) are similar in the USWI
model and in the DADA model, but in the DADA model the survigahantities are always
smaller for the same, u, and p. This indicates that the artificial DADA model is more
vulnerable than the USWI (Figsl [, 6, dnd 7). The value&3)fin the DADA model are
very small, indicating that in the event of a large blacktetDADA network disintegrates
into very small connected components, each constitutingit? of the nodes of the grid.
In the USWI grid, the average largest component is largeaibse USWI grid consists of
several dense areas connected by few long lines. The odesfadhese long lines breaks
the USWI grid into relatively large disconnected composgpteventing the cascade from
further spreading.

5.2 Cascade Temporal Dynamics

The spatial and temporal behaviors of the cascades in theADAddel closely follow the
behaviors in the USWI model (Fids.[8,[9.] 10, 1)t)? in the DADA model is much
smaller than in the USWI model due to the different structwfehe models and difference
in diameters of the networks. The longest distance (in tevimamber of hops) between
any two nodes (i.e., diameter of the network) in the DADA mddex 16, while in the
USWI model it is= 41. In both models we see that the cascade spreads moreygiaickl
small a than for a largen. However, the first-order all-or-nothing nature of the cates,
characterized by a latent period during which the blackestnall and localized followed
by a fast blackout spread over a large area, is common in bottels.

5.3 Cascade Spatial Evolution

The advantage of the DADA model is that we know the exact doatds of the nodes
and thus we can illustrate the spatial and temporal evaluifoa cascade as a sequence
of snapshots on the plane. Hig] 14 shows spatial snapshtits ohscading failures taken
at different time steps for the DADA model with parametars- 1.8 andp = 0.4. The
color of each line indicates the time step of the cascade itwthe line is failed. One can
see that during the first 3 time steps of the cascade (red lihesarea of line failures is
small and localized near the initial failure. The cascadetsto spread during time steps
4-8 (orange and yellow-green), but the area of line failisesill localized. At time step
10, the cascade quickly spreads to very distant parts ofytsters (green). The blue and
violet lines are the final time steps of the cascade. Thudighee also illustrates the latent
period of the cascade during which the distressed area it antblocalized.

6 Conclusion

In this paper, we thoroughly studied the properties of adiscafailures in power grids.
We showed that the cascading failures in power grids havariesiof all-or-nothing tran-
sition, just like in a broad spectrum of more primitive maglslich as the Motter model
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e DADA model with 13135
nodes/ = 1.5, u = 6. Lines that failed at different time steps of the cascadesaown
with different colors. The initial line randomly selectemlfail due to spontaneous failure
or attack is depicted at the center of the grid and is surredfy a gray circle.

(Motter & Lai, 2002 Motter, 2004). In the Motter model, iest of currents, the between-
ness of each node in a graph is computed and the maximum |leatbfode is defined as
its original betweenness multiplied by the tolerance. Theandom node is taken out as an
initial failure, and the new betweenness of each node isitziked. If the new betweenness
of a node exceeds its maximum load, this node is taken out lamentire process is
repeated. The yield in the Motter model is defined as theifmaaif survived nodes at
the end of the cascade. The distribution of the yield in theétdétanodel is bimodal for
a large range of tolerances. Similarly, in a wide range ohpeters, the USWI is in a
meta-stable state and there exists the risk that the fafuaesingle line will lead to a large
blackout, in which the yield falls below 0.8. As tolerancerisases beyond(@, the risk of

a large blackout decreases almost to 0.

We also showed that the level of line protectign,increases the robustness of the
grid, but to a lower extent than does the tolerance. An ingoarparameter defining the
robustness of the grid is the significance of the initialfiaglu. Given a particulao, when
uis small, there is practically no risk of a large blackoutl@lvhenu approaches 1, the
risk is maximal for a giver. If a is kept constant anaddecreases, there is the same effect
on the risk of a large blackout as whearincreases andis kept constant, meaning that the
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same effect could be achieved by protecting important lageby increasing the overall
tolerance.

Another important observation from our simulation is thatn failure of a line, the first
few cascade time steps affect only the immediate vicinityreffailed line. During the first
few time steps of the cascade, the yield does not significdettrease, but it starts to drop
quickly at the end of the latent period. The duration of therd& period of the cascade
linearly increases with the line tolerances. Hence, irgingathe line tolerances provides
sufficient time for grid operators to intervene and stop thecade.

Finally, we introduced the DADA model to generate synthptiwer grids. We showed
that the DADA model and the USWI have many common features.pHysical features,
such as the distribution of degrees, resistances, andtsyswmpare well in both models.
The behavior of cascading failures in the DADA model is aisailar to their behavior in
the USWI power grid.

Overall, our results provide a useful understanding anigim®f the general properties
of cascading failures in power grids. Our findings can be tgéacrease the resilience of
power grids against failures and to design optimal sheddimyprotection strategies for
preventing cascades from spreading.
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