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Abstract

Using the DC power flow model, we study cascading failures andtheir spatial and temporal properties
in the US Western Interconnection (USWI) power grid. We showthat yield (the fraction of demand
satisfied after the cascade) has a bimodal distribution typical of a first-order transition. The single
line failure leads either to an insignificant power loss or toa cascade which causes a major blackout
with yield less than 0.8. The former occurs with high probability if line toleranceα (the ratio of
the maximal load a line can carry to its initial load) is greater than 2, while a major blackout occurs
with high probability in a broad range of 1< α < 2. We also show that major blackouts begin with
a latent period (with duration proportional toα) during which few lines overload and yield remains
high. The existence of the latent period suggests that intervention during early stages of a cascade can
significantly reduce the risk of a major blackout. Finally, we introduce the preferential Degree And
Distance Attachment (DADA) model to generate random networks with similar degree, resistance,
and flow distributions to the USWI. Moreover, we show that theDADA model behaves similarly to
the USWI against failures.

Keywords: Power grids, Cascading failures, Line Failures, Syntheticpower grids

1 Introduction

Failure of a transmission line in the power grid leads to a redistribution of the power flows.
This redistribution may cause overloads on other lines and their subsequent failures, lead-
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ing to a major blackout (Bernsteinet al., 2014; Pahwaet al., 2014; Buldyrevet al., 2010;
Soltanet al., 2014; Hineset al., 2009). These failures may be initiated by natural disas-
ters, such as earthquakes, hurricanes, and solar flares, as well as by terrorist and elec-
tromagnetic pulse (EMP) attacks (U.S FERC, DHS, and DOE, 2010). Recent blackouts
in the Northeastern US (US-Canada Power System Outage Task Force, 2004) and in In-
dia (Bakshiet al., 2012), demonstrated that major power outages have a devastating impact
on many aspects of modern life. Hence, there is a dire need to study the properties of
cascading failures in power grids.

The direct current (DC) power flow model is commonly used in studying failures in
power grids (Gloveret al., 2012; Soltanet al., 2014; Bienstock, 2011; Carreraset al., 2004;
Bienstock & Verma, 2010; Pinaret al., 2010; Carreraset al., 2002; Asztaloset al., 2014;
Dobson & Lu, 1992; Bakkeet al., 2006). In this paper, we employ a similar power flow
model which is equivalent to the flows in a resistor network (De Arcangeliset al., 1985)
and follow the cascading failure model of (Soltanet al., 2014; Bernsteinet al., 2014).

It is observed in (Carreraset al., 2002) that the distribution of blackout occurrences in
power grids follows a power law, which is related to the phenomenon of self-organized crit-
icality. Other authors suggest that blackouts follow first-order phase transitions, in which
the loss of power is either very small or very large (Zapperiet al., 1997; Pahwaet al., 2014).
The goal of this paper is to thoroughly study the properties of cascading failures in power
grids and create a realistic model that carries the main features of a real grid. For this
reason, we study cascades in the US Western Interconnection(USWI) grid and introduce
a synthetic Degree And Distance Attachment (DADA) model.

We show that the characteristics of blackouts are universal. However, the sizes of black-
outs are much smaller in the USWI with a realistic design thanin an artificial DADA
model with a different spatial organization. In particular, we study the dependence of the
blackout size and the dynamics of the cascading failures on aset of three parameters that
characterize the robustness of the grid: (1) toleranceα, the ratio of the maximum flow a
line can carry to its initial load (Kornbluthet al., 2018; Motter & Lai, 2002; Motter, 2004);
(2) the minimum flowIp which any line in the network can carry independent of its initial
load; and (3) the amount of flow in the initial failed line compared to the distribution of the
flows in the grid (Iu). We characterizeIp andIu by dimensionless parametersp (called the
level of protection) andu (called the significance of initial failure).p andu are the fraction
of the lines with flows less thanIp andIu, respectively.

We show that in a broad range of 1≤ α < 2, u≥ 0.8, and 0< p< 0.95, large blackouts
with yield (the fraction of demand satisfied after the cascade) less than 0.8 may occur with
a significant probability both in the USWI and in a artificially constructed DADA grids.
Moreover, we find that in this range of parameters the distribution of yield is bimodal,
which is consistent with first-order phase transitions. Most importantly, we find that in
cascading failures that lead to a large blackout, there is a latent period during which the
damage is localized, few lines are failed, and the decrease in yield is insignificant. The exis-
tence of this latent period suggests that the majority of blackouts can be effectively stopped
by the timely intervention of grid operators. The length of the latent period increases as the
toleranceα increases. Another important discovery is that in the eventof a large blackout,
cascading failures stop when the network breaks into small,disconnected islands.
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The rest of the paper is organized as follows. Section 2 describes the power flow and and
cascading failure models. In Section 3, we study the topological properties of the USWI
power grid and its robustness against cascading failures. In Section 4, we describe the
DADA model and in Section 5 we compare its features to the USWIpower grid. Finally,
in Section 6, we discuss and summarize the results of our study.

2 Model and Definitions

In this section, we describe the power flow and the cascade model in details. Table 1
provides a summary of notations.

2.1 Power Flow Model

We employ the DC power flow model widely used in the power engineering community.
This model is equivalent to the flow equations in resistor networks. In this model, the power
flows, reactance values, and phase angles are replaced by currents, resistance values, and
the voltages, respectively.

We denote the power grid network by a graphG= (N,E), whereN denotes the set of all
nodes andE denotes the set of edges. We assumeG consists ofn0 transmitting,n+ supply,
andn− demand nodes. The total number of nodes isn = n0 + n+ + n−. Each supply or
demand node is specified by the amount of current it supplies (I+i > 0) or by the amount of
current it demands (I−i > 0). Due to the law of charge conservation,∑ I+i =∑ I−i . We denote
the set of all neighbors of nodei by N(i). ki := |N(i)| represents the degree of a nodei and
〈k〉 is the average degree of all nodes in the network. Each transmission line connecting
nodesi and j is characterized by its resistanceRi j , while each nodei is characterized by its
voltageVi . The currentIi j flowing from nodei to nodej is

Ii j = (Vi −Vj)/Ri j . (1)

Additionally, the sum of all the currents flowing into each node i is equal to the sum of all
currents flowing out:

∑
j∈N(i)

Ii j = δ+
i I+i − δ−

i I−i , (2)

whereδ+
i =1 orδ−

i =1 if a nodei is a supply or a demand node, respectively.δ+
i = δ−

i = 0
otherwise.

2.2 Cascading Failures Model

Once the system (1)-(2) is solved, we find the currents in all transmitting linesIi j and define
their maximum capacitiesI∗i j using the following two rules: (i) we defineIp as the standard
capacity of the lines. It is computed such that a fractionp of the lines initially have currents
belowIp. We refer top as thelevel of protection. (ii) For each line we define its individual
capacityα|Ii j |, whereα ≥ 1 is thetolerance(i.e., the factor of safety). We assumeα to be
the same for every transmission line in the grid. Using theserules,

I∗i j ≡ max(Ip,α|Ii j |). (3)
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Table 1. Summary of Notation

Notation Description

n+ The number of supply nodes
n− The number of demand nodes
n0 The number of transmitting nodes
I+i The current supplied by supply nodei
I−i The current demanded by demand nodei
Ri j The resistance of the line connecting nodesi and j
Vi The voltage of nodei
Ii j The current traveling through the line connecting nodesi and j
α The tolerance of the lines
p The level of protection of the lines
u The significance of the initial failure

If a current in line{i, j} exceedsI∗i j , it fails.
The largerp andα are, the better the grid is protected against overloads. Thestandard

capacityIp is to ensure that lines that do not carry a significant currenthave a reasonable
capacity. In this paper, we usep= 0.9 and varyα as the main parameter of grid resilience,
most of the time.

To initiate a cascading failure, we randomly select and remove a single line which
current|Ii j | belongs to the interval[Iu−∆u, Iu], where the fractionu−∆u of lines operate
below Iu−∆u and the fractionu of lines operate belowIu. The parameteru specifies the
significance of the lines which are targeted for the initial failure. We refer tou as the
significance of the initial failure. For example,u= 1.0 and∆u= 0.1 means that the line
which is initially failed, is selected from the top 10% of lines ranked according to their
initial current.

Removing a line can lead to disintegration of the grid into two disconnected compo-
nents, which we call clusters. Obviously, the supply and demand in each cluster should be
equalized to retain charge conservation. Thus, for each clusterCj , we compute∑i∈Cj

I+i
and∑i∈Cj

I−i . If in a cluster∑i∈Cj
I+i > ∑i∈Cj

I−i , we multiply the current of each supply

node inCj by
∑i∈Cj

I−i

∑i∈Cj
I+i

< 1; if ∑i∈Cj
I−i > ∑i∈Cj

I+i , we multiply the current of each demand

node inCj by
∑i∈Cj

I+i

∑i∈Cj
I−i

< 1 to obtain new supply/deman valuesI+(1)
i andI−(1)

i . We define

I1=∑i I
+(1)
i =∑i I

−(1)
i as the total supplied current at the end of the first step of thecascade.

Then, we solve Eqs. (1)-(2) again to compute new new currentsI (1)i j . At the second time step

of the cascade, we remove all lines for which the new current|I (1)i j | exceeds its maximum
capacityI∗i j . If no overloads occur, the cascade stops. If there are new failures, we repeat the
supply/demand equalization process, modify the system of equations (1)-(2), and compute

the new currentsI (2)i j . We repeat this process recurrently until at a certain time stept of the
cascade no lines fail. We call this time step, the final step ofthe cascade.
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2.3 Metrics

We define here all the metrics used in this paper to characterize the severity of a cascade.
Cascade Duration,fff : the number of time steps until the cascade stops.
Number of Active Lines, LLL: the number of transmission lines in the grid that have not
failed by the end of the cascade.
Yield, YYY(((ttt))): It

I0
, the ratio between the total demand at time stept (It) and the original

demand (I0). Fort = f , we simply denote yield byY.
Local Yield, YYY(((ttt,,,hhh))):

Y(t,h) =
∑i∈H(h) I−(t)

i

∑i∈H(h) I−i
(4)

whereH(h) is the subset of demand nodes a given hop distanceh from the failed line.
Blackout Radius of Gyration, rrrBBB(t): a quantitative measure of the blackout’s geometric
dimension as a function of the cascade time stept,

rB(t)
2 =

〈

∑i∈B(t)h2
i I−(t)

i

〉

〈

∑i∈B(t) I−i
〉 , (5)

where the summation is made over the setB(t) of totally disconnected demand nodes which
do not receive any current at thetth time step of the cascade.< . > denotes the average
over all the cascade simulations.

3 The Topological Properties of the USWI and Its Robustness Against Cascades

In this section, we study the properties of the USWI network obtained from the Platts Ge-
ographic Information System (GIS) (Platts, 2009). This dataset includes approximate in-
formation about transmission lines based on their lengths,supplies based on power plants’
capacities, and demands based on the population at each location (Bernsteinet al., 2014).
In the next section, we provide the DADA model to generate synthetic power grids. Figures
in this section also show the properties of the DADA model that we get back to in the next
section.

3.1 Topological Properties

The USWI power grid contains 8050 transmitting nodes, 1197 supply nodes, 3888 demand
nodes, and 17544 transmission lines. To avoid exposing possible vulnerabilities of the
actual USWI, our data set does not include the geographic coordinates of the nodes. It
does however, include the length of each liner i j connecting nodesi and j. We define the
resistances of the lines to be proportional to their lengthsRi j = ρr i j , whereρ is a constant.

3.1.1 Degree Distribution

The degree distribution of the nodes in the USWI is characterized by a fat-tail distribution
(Fig. 1(a)), which can be approximated by a power lawP(k) ≈ k−3 with an exponential
cut-off. The degree distribution of transmitting nodes, supply nodes, and demand nodes
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Fig. 1. Degree Distributions of the nodes in (a) the USWI power grid, and (b) the DADA
model forµ = 6, ℓ= 1.5.
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Fig. 2. Length distribution of the lines, which are the same as the resistance values, in (a)
the USWI power grid, and (b) the DADA withµ = 6, ℓ= 1.5.

are quite similar to each other. The average degree〈k〉 of the nodes in the USWI is 2.67.
For the supply nodes, it is slightly larger 2.88 and for the demand nodes, it is slightly
smaller 2.61.

3.1.2 Length Distribution of the Lines

The length distribution of the lines in the USWI has an approximately lognormal shape
with power law tails. Fig. 2(a) shows lnP(ln r i j ), the logarithm of the probability density
function (PDF) of lnr i j . For the lognormal distribution, the curve would be a perfect
parabola. Instead, we see that both tails of the distribution can be well approximated by
straight lines with slopeν− = 0.77 for the left tail and slopeν+ =−1.44 for the right tail.
This means that the PDF ofr i j can be approximated by power lawsP(r)≈ rν−−1 for r → 0
andP(r)≈ rν+−1 for r → ∞.

3.2 Cascade Properties

The results provided in this subsection are for 100 trials for each set ofp,u,α. In this
subsection,∆u= 0.1.
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Fig. 3. Distribution of yield forα = 1.6, p= 0.9, andu= 1.0 in (a) USWI, and (b) DADA.
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Fig. 4. Cumulative distribution of the yield forp= 0.9, u = 1.0 and various values ofα
for (a) the USWI model, and (b) the DADA model withµ = 6, ℓ = 1.5. The large gap in
the distributions is a feature of the abrupt first-order transition.

3.2.1 Bimodality of the Yield Distribution

The interesting feature of the yield histogram as can be seenin Fig. 3(a), is its bimodality.
One can clearly see the bimodality of the distribution with two peaks for high yield 0.975
and low yield 0.625, with practically no yields between 0.75and 0.9 for the USWI. This
can be detected by a plateau in the cumulative yield distribution (Fig. 4(a)). The bimodality
of the yield distribution is present in a large region of the parameter space (α, p,u), char-
acterized by relatively smallα < 2, practically allp≤ 0.95, and relatively largeu> 0.8.
One can see (Fig. 4(a)) that the distribution of yield clearly remains bimodal forα < 2 in
the USWI model.

3.2.2 Risk of Large Blackouts

Cascades can be characterized by two important parameters of the outcome: (i) the proba-
bility of a large blackoutP(Y < 0.8), which we call the risk of a large blackoutΠ(α), and
(ii) the average blackout yield〈Y〉, for the cases result in a large blackout.

Figs. 5(a) and 5(b) show how the risk of large blackoutsΠ(α) decreases asα in-
creases for different values ofu and p. We find that for different values ofu and p, the
shapes of the curvesΠ(α) remain approximately constant, but the curves significantly
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Fig. 5. Probability of large blackoutP(Y < 0.8), or risk Π(α), as function ofα in (a)
USWI model for different values ofu and p = 0.5, (b) USWI model for different values
of p andu = 0.9, (c) DADA model for different values ofu and p= 0.5, and (d) DADA
model for different values ofp andu= 0.9.

shift in a horizontal direction. This means that the curvesΠ(α) can be well approxi-
mated byΠ(α −α0(u, p)). The functionα0(u, p) can be defined by solving the equation
Π(α0(u, p)) =

1
2 with respect toα0(u, p). One can see thatα0(u,0.5) is an approximately

linear function ofu, which increases withu (Fig. 6(a)). This means that for protection
against failure in lines carrying high currents, a higher tolerance is needed. In other words,
the same effect can be achieved either by protecting a certain fraction of the most significant
lines from spontaneous failure, or by increasing the tolerance of all the lines by some
quantity (Fig. 6(a)).

The dependence of the risk onp is weaker than onu, especially forp≤ 0.5 (Fig. 6(b)).
An increase inp has practically no effect on the robustness of the grid. The increase inp
achieves a significant effect on the risk of large blackouts only whenp approaches 0.9.

3.2.3 Characteristics of Large Blackouts

Large blackouts can be characterized by their average yield〈Y〉, average fraction of surviv-
ing lines〈L〉, and the average fraction of nodes in the largest connected component of the
grid 〈G〉. These metrics only weakly depend onu, but are strongly increasing functions ofα
(Fig. 7(a)). The independence of the characteristics of large blackouts onu stems from the
fact that the properties of large blackouts, if they occur, do not depend on a particular line
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Fig. 7. Behavior of the yield〈Y〉, the fraction of nodes in the largest connected component
〈G〉, and the fraction of survived lines〈L〉 averaged over cascades resulted in large
blackouts (y < 0.8) as a function ofα for different u and a fixed value ofp = 0.5 in
(a) USWI model, and (c) DADA model. The behavior for different p at fixedu= 0.9 in (b)
USWI model, and (d) DADA model.

to initiate the failure. The risk of large blackouts dependsonu, but the average parameters
of large blackouts do not.

The dependence of these metrics onp is more complex (Fig. 7(b)). While the yield〈Y〉
starts to increase only forp> 0.7, the number of survived lines〈L〉 significantly increases
with p even for smallp. This is not surprising sincep is the level of protection of the lines,
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Fig. 8. Dependence of the average duration of the cascade on toleranceα for differentu
at p = 0.5 in (a) USWI model, and (c) DADA model. The dependence for differentp at
u= 0.9 in (b) USWI model, and (d) DADA model.

and fewer lines fail if more lines are protected. Asp approaches 1, the dependence of〈L〉
on α becomes very weak. The explanation of this fact is based on the notion that〈L〉 is
computed only for the case oflarge blackouts. For a large blackout to occur, a significant
fraction of lines must fail, sufficient to disconnect a largefraction of demand nodes. On the
other hand, asα increases, the risk of a large blackout goes to zero, so the average fraction
of lines surviving for all the cascades (large and small) approaches 1.

Another important observation from Fig. 7(b) is the small dependence of〈G〉 on the
parametersα, p, andu, as opposed to〈L〉. Hence, by removing a small fraction of the lines
(20%) the grid disintegrates into many small clusters, eachless than 20% of the total size.
Indeed, percolation theory predicts that close to the percolation threshold, it is sufficient to
delete an infinitesimally small fraction of the so called “red” bonds to divide the network
into a set of small disconnected components (Coniglio, 1981).

3.2.4 Latent Period of the Cascade

The cascading failures that do not result in large blackouts(Y > 0.8) are usually short( f <
8) (Figs. 8(a) and 8(b)). In contrast, the duration of cascadesresulting in large blackouts
(Y ≤ 0.8) increases withα, reaching values of order 40 for largeα. This means that for
large tolerances, it takes much longer for the cascade to spread over a large area, since at
each time step only a few lines overload and fail.
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Fig. 9. Yield as a function of the cascade time steps for the cascades resulting in large
blackouts in (a) the USWI model, and (c) the DADA model. The latent period as a function
of the toleranceα in (b) the USWI model, and (d) the DADA model. In both USWI and
DADA modelsu= 1.0, p= 0.9.

In the cascades resulting in large blackouts, yieldY(t) decreases with time in a non-
trivial way (Fig. 9(a)). During the first few time steps of thecascades, the yield does not
significantly decrease since the current can successfully redistribute over the remaining
lines without disconnection of the demand nodes. This period, in which the cascade is still
localized and a blackout has not yet occurred, can be called thelatent period of the cascade,
tl . The recognition of this latent period is important since itis a period in which a cascade
is beginning to spread but has not yet grown uncontrollable.In the latent period it may still
be possible to intervene and redistribute current flow to stop the cascade before it becomes
a large blackout.

We define the duration of this latent period of the cascade as the time step at which the
yield drops below 0.95. At approximately this time step the yield starts to rapidly decrease
and then, towards the end of the cascade, stabilizes again. The shape of this function is
characteristic of an abrupt first-order transition observed in simpler models of network
failure (Buldyrevet al., 2010; Motter, 2004). Remarkably, the duration of the latent period
is a linear function of tolerance (Fig. 9(b)).
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Fig. 10. The fraction of current reaching demand nodes as a function of hop distance in
cascades resulting in large blackouts in different cascadetime steps, withp = 0.9 and
α = 1.6 in (a) the USWI , and (b) in the DADA model.

3.2.5 Cascade Spatial Evolution

To observe the spatial evolution of a cascade, we group the grid’s demand nodes into bins
based on their “hop distance” from the original failed line.In each bin we compute the local
yield Y(t,h). We average the local yieldY(t,h) for cascades resulting in large blackouts
(Fig. 10(a)). The yield in each bin at the end of cascades resulting in large blackouts is
almost independent of the distance from the initially failed line. While at the beginning of
the cascade the blackout is localized near the initially failed line, eventually the blackout
spreads uniformly over the entire system. Delocalization occurs at the end of the latent
period of the cascade. This can be clearly seen from the behavior of the blackout profiles,
which start to rapidly drop down for large distances only at intermediate time steps of the
cascade.

To give a more quantitative measure of the blackout spread, we use the “blackout radius
of gyration”(rB(t)) metric defined in Section 2.3. Fig. 11 shows the behavior ofrB(t)2 ver-
sus the cascade time stept for the cascades which result in insignificant failures (Fig. 11(a))
and large blackouts (Fig. 11(b)). We observe the same phenomena — initiallyrB(t)2 grows
slowly in all the cascades. However, while in cascades resulting in insignificant consequent
failures the cascade stops during the latent period, in onesresulting in large blackouts the
cascade rapidly spreads over a large area. The cascade spreads more quickly for smallα
than for largeα.

4 DADA Model

In the previous section, we found that cascading failures inthe USWI model have charac-
teristic features of a first-order transition: the bimodal distribution of yield and the latent
period during which the damage to the network is insignificant. It is important to investigate
whether these features are due to particular characteristics of the USWI design, or whether
they are universal features of a much broader class of networks. Moreover, the data on real
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Fig. 11. The averaged behavior of the radius of gyration of the cascading failures in small
blackoutsY > 0.80 in (a) the USWI model and (c) the DADA model, and large blackouts
with Y < 0.80 in (b) the USWI model and (d) the DADA model.

grids are limited and therefore it is important to develop algorithms for generating synthetic
grids resembling real grids topologies.

The two basic features of USWI that we like to reproduce are the degree distribu-
tion and the length distribution of the lines. The degree distribution of the USWI dis-
cussed in Section 3 is in agreement with the Barabási-Albert preferential attachment model
(Albert & Barabási, 2002; Barabási & Albert, 1999). Accordingly, we use the Barabási-
Albert model as the basis of the DADA model. In the original Barabási-Albert model,
a newly created node is attached to an existing node with a probability proportional to
its degree. However, for power grids embedded in two-dimensional space, the length dis-
tribution of the lines, resulting from the degree preferential attachment, would not de-
crease with length. Therefore, in order to create a grid witha decreasing length distri-
bution, one must introduce a penalty for attaching to a distant node. Thus, we employ
here the Degree And Distance Attachment (DADA) model with a distance penalty, similar
to (Xulvi-Brunet & Sokolov, 2002; Manna & Sen, 2002). This method produces degree
and length distributions similar to those of the USWI (see Section 3.1).
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4.1 Construction of the DADA model

4.1.1 Construct the Network

The DADA model randomly generates nodesj = 1,2, ...n one by one on a plane with a
uniform density. It connects each new nodej to an existing nodei based oni’s degree and
distance with probability P({i, j}) ∝ ki

r i j
µ , whereki is the present degree of nodei andr i j

is the distance between nodesi and j. This rule mimics the way real networks are evolved.
A real network such as the USWI is not planned all at once; rather, new stations are added
to the grid as necessity dictates. The probability of connection P({i, j}) ∝ ki

r i j
µ is assumed

to be proportional toki , since connections to nodes of high degree are more reliable, but
also inversely proportional to a power ofr i j , since construction of long transmission lines
costs more. The distance penaltyµ is a factor which seeks to optimize the balance between
reliability and cost.

It is shown in (Xulvi-Brunet & Sokolov, 2002; Manna & Sen, 2002) that for µ < 1,
the degree distribution of the resulted graph is a power lawP(k) ≈ k−3, while for µ >

1, it becomes a stretched exponential (Clausetet al., 2009). However, the fat-tail of the
stretched exponential can be approximated by a power lawP(k) ≈ k−γ with an exponent
γ > 3 (Fig. 1(b)). It is also shown in (Manna & Sen, 2002) that the length distribution of
the lines isP(r i j )≈ r i j asr i j → 0, and for largeµ , P(r i j )≈ r−3

i j asr i j → ∞. The functional
form of P(r i j ) for the DADA and USWI models are similar, but the exponents are different.
As mentioned in Section 3.1.2 regarding the USWI model, these asymptotic behaviors
correspond to the slopesν− = 2 andν+ = −2 of the logarithmic distributionP(ln(r i j ))

observed in the DADA model (Fig. 2(b)), while for the USWI model these values are
ν− = 0.77 andν+ = −1.43. In our simulations, we selectµ = 6. For this choice ofµ ,
the degree distribution exponentγ ≈ 4.3, while −ν+ = 2. The corresponding values in
the USWI model are smaller. Bothγ and−ν+ can be decreased by decreasingµ , so that
the degree and length distributions of the DADA model would be closer to those of the
USWI. However, by doing so, our results on the distribution of currents in the DADA
model and the properties of the cascading failures do not change significantly, indicating
that the observed features of the cascades are quite universal. The discrepancy inν− for the
DADA and USWI is related to the fact that in the DADA model the nodes are spread on
the plane with a uniform density, while in the USWI model the density of nodes is related
to the population density which has fractal-like features.

Our goal is to create a grid with a given number of lines,l . Therefore, when each new
node is created, we connect it on average toℓ̄ = l

n = 〈k〉
2 preexisting nodes. Sincēℓ is a

real number, we preassign to each nodei an integerℓi , the number of lines by which it will
be connected to the previously generated nodes. We randomlyselectl −n⌊ℓ̄⌋ < n nodes,
where⌊ℓ̄⌋ is the integer part of̄ℓ. For these nodes, we chooseℓi = ⌊ℓ̄⌋+ 1. For the rest
of the nodes, we chooseℓi = ⌊ℓ̄⌋. For each new nodej, we attempt to createℓ j lines with
the previously existing nodes. Ifj ≤ ℓ j , then we connectj to all preexisting nodes, as we
cannot createℓ j lines without duplicating lines. Ifj ≥ ℓ j , there are more existing nodes than
ℓ j and we create lines according to the rule described above (with probability proportion
to the distance and degree). In the end, a total of almostnℓ̄= l lines are created.

For the USWI networkℓ̄ = 〈k〉/2 ≈ 1.5, so for the DADA model we choosēℓ = 1.5
(more accurate values of̄ℓ do not significantly affect our results). Averaging over 100
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are portrayed in arbitrary units.

different grids, our DADA model has slightly higher averagedegree of 2.84. More accurate
values ofℓ̄ do not significantly change the cascading properties of the DADA model.

As in the USWI model, we assume that in the DADA modelRi j = ρr i j , whereρ is
resistivity, which is constant for all the lines in the system.

4.1.2 Generate Supply and Demand

We randomly assignn+ supply nodes and (different)n− demand nodes. We selectn =

13135,n− = 3888, andn+ = 1197 to match the USWI. We assign the supply and demand
nodes independent of the nodes’ degree. Thus the average degrees of the supply and
demand nodes are the same as the average degree of the DADA model. Since the supplies
and demands of the USWI have an approximately lognormal distribution (see Fig. 13),
we generate currents of supplies and demands in the DADA model following a modified
lognormal distribution:

I+i = eνiσ++m+ lnki , (6)

for supplies and

I−i = eνiσ−+m− lnki , (7)
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for demands, whereνi is randomly generated according to a standard normal distribution,
σ± is a standard deviation, andm± is a parameter which creates a correlation between the
node’s current and its degree.

Furthermore, since it is unrealistic to have nodes with veryhigh supply and demand
vales, we introduce a cut-offa±σ±, wherea± is a parameter of the model such that we
accept onlyI±i ≤ ea±σ±

. Thus, the supply and demand of each node is

I±i = min
(

eνiσ±+m± lnki ,ea±σ±
)

. (8)

This cut-off corresponds to the sharp drops of the right tails of the supply and demand
distributions in the USWI (Fig. 13).

To best match the USWI data, we let the values ofm± be the slopes of the regression
lines of the log-log scatter plots which plot the average supply or demand versus the degree
of corresponding nodes. We then select values ofσ anda so that the distributions simulated
for the DADA model best match the USWI distributions (Fig. 13). We obtainσ+ = 2.0,
m+ = 0.38924,a+ = 1.6, σ− = 1.8, m− = 0.62826, anda− = 1.2.

5 Comparison of the USWI and DADA Model

Here we compare the main properties of the USWI and the DADA model. We also discuss
reasons for the differences observed. The cumulative distribution of currents in the DADA
model closely follows the exponential distribution of currents in the USWI grid (Fig. 12).
This is important because the ratio of currents in the two models corresponding to the same
significance of lines parametersu is approximately equal.

5.1 Yield

The distribution of the yieldY in the DADA model is also bimodal for approximately the
same set of parametersα, u, and p as in the USWI model, but the gap between the two
modes (low and high yield) is significantly wider in the DADA model than in the USWI
model (Fig. 4).

Figure 4 shows the yield distributions of the USWI and DADA model for u = 1 and
p = 0.9 for several values of 1≤ α < 2. In both networks, the cascade results is a large
blackout (Y < 0.8) for small values ofα, and results in an insignificant consequent failures
(Y > 0.8) for large values ofα. But for the DADA model, chances of large blackout (risk)
are smaller for the same set of parameters than in the USWI model. For example, the
DADA model can still survive with a small probability forα = 1.2, but the USWI always
collapses forα < 1.3. Conversely, we do not observe any large blackouts in the DADA
model forα > 1.7, while a failure in the USWI can still cause large blackoutseven for
α = 1.9. Thus, even though in the event of a large blackout the average yield in the USWI
is greater than in the DADA model (and thus, in this sense, theDADA model is more
vulnerable than the USWI), the risk of large blackouts is greater in the USWI than in the
DADA model for the same set of parameters.

These differences may be related to the fractal structure ofthe USWI, in which densely
populated areas with lot of demand and supply nodes are separated by large patches of
empty land over which few long transmission lines are built,whereas the DADA model
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has constant density of nodes. Thus, it is less likely that the cascade spreads over the entire
grid in the USWI. However, a higher tolerance is needed to prevent large blackouts in the
USWI than in the DADA model.

Qualitatively, the behaviors of the metrics〈Y〉, 〈L〉, and〈G〉 are similar in the USWI
model and in the DADA model, but in the DADA model the survivalquantities are always
smaller for the sameα, u, and p. This indicates that the artificial DADA model is more
vulnerable than the USWI (Figs. 5, 6, and 7). The values of〈G〉 in the DADA model are
very small, indicating that in the event of a large blackout the DADA network disintegrates
into very small connected components, each constituting about 1% of the nodes of the grid.
In the USWI grid, the average largest component is larger, because USWI grid consists of
several dense areas connected by few long lines. The overload of these long lines breaks
the USWI grid into relatively large disconnected components, preventing the cascade from
further spreading.

5.2 Cascade Temporal Dynamics

The spatial and temporal behaviors of the cascades in the DADA model closely follow the
behaviors in the USWI model (Figs. 8, 9, 10, and 11).rB(t)2 in the DADA model is much
smaller than in the USWI model due to the different structures of the models and difference
in diameters of the networks. The longest distance (in termsof number of hops) between
any two nodes (i.e., diameter of the network) in the DADA model is ≈ 16, while in the
USWI model it is≈ 41. In both models we see that the cascade spreads more quickly for a
smallα than for a largeα. However, the first-order all-or-nothing nature of the cascades,
characterized by a latent period during which the blackout is small and localized followed
by a fast blackout spread over a large area, is common in both models.

5.3 Cascade Spatial Evolution

The advantage of the DADA model is that we know the exact coordinates of the nodes
and thus we can illustrate the spatial and temporal evolution of a cascade as a sequence
of snapshots on the plane. Fig. 14 shows spatial snapshots ofthe cascading failures taken
at different time steps for the DADA model with parametersα = 1.8 andp = 0.4. The
color of each line indicates the time step of the cascade at which the line is failed. One can
see that during the first 3 time steps of the cascade (red lines) the area of line failures is
small and localized near the initial failure. The cascade starts to spread during time steps
4-8 (orange and yellow-green), but the area of line failuresis still localized. At time step
10, the cascade quickly spreads to very distant parts of the system (green). The blue and
violet lines are the final time steps of the cascade. Thus, thefigure also illustrates the latent
period of the cascade during which the distressed area is small and localized.

6 Conclusion

In this paper, we thoroughly studied the properties of cascading failures in power grids.
We showed that the cascading failures in power grids have features of all-or-nothing tran-
sition, just like in a broad spectrum of more primitive models such as the Motter model
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Fig. 14. Cascade propagation forα = 1.8, p= 0.4, u= 1 in the DADA model with 13135
nodes,ℓ = 1.5, µ = 6. Lines that failed at different time steps of the cascade are shown
with different colors. The initial line randomly selected to fail due to spontaneous failure
or attack is depicted at the center of the grid and is surrounded by a gray circle.

(Motter & Lai, 2002; Motter, 2004). In the Motter model, instead of currents, the between-
ness of each node in a graph is computed and the maximum load ofeach node is defined as
its original betweenness multiplied by the tolerance. Then, a random node is taken out as an
initial failure, and the new betweenness of each node is calculated. If the new betweenness
of a node exceeds its maximum load, this node is taken out and the entire process is
repeated. The yield in the Motter model is defined as the fraction of survived nodes at
the end of the cascade. The distribution of the yield in the Motter model is bimodal for
a large range of tolerances. Similarly, in a wide range of parameters, the USWI is in a
meta-stable state and there exists the risk that the failureof a single line will lead to a large
blackout, in which the yield falls below 0.8. As tolerance increases beyond 2.0, the risk of
a large blackout decreases almost to 0.

We also showed that the level of line protection,p, increases the robustness of the
grid, but to a lower extent than does the tolerance. An important parameter defining the
robustness of the grid is the significance of the initial failureu. Given a particularα, when
u is small, there is practically no risk of a large blackout, while whenu approaches 1, the
risk is maximal for a givenα. If α is kept constant andu decreases, there is the same effect
on the risk of a large blackout as whenα increases andu is kept constant, meaning that the
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same effect could be achieved by protecting important linesas by increasing the overall
tolerance.

Another important observation from our simulation is that upon failure of a line, the first
few cascade time steps affect only the immediate vicinity ofthe failed line. During the first
few time steps of the cascade, the yield does not significantly decrease, but it starts to drop
quickly at the end of the latent period. The duration of the latent period of the cascade
linearly increases with the line tolerances. Hence, increasing the line tolerances provides
sufficient time for grid operators to intervene and stop the cascade.

Finally, we introduced the DADA model to generate syntheticpower grids. We showed
that the DADA model and the USWI have many common features. The physical features,
such as the distribution of degrees, resistances, and currents, compare well in both models.
The behavior of cascading failures in the DADA model is also similar to their behavior in
the USWI power grid.

Overall, our results provide a useful understanding and insight of the general properties
of cascading failures in power grids. Our findings can be usedto increase the resilience of
power grids against failures and to design optimal sheddingand protection strategies for
preventing cascades from spreading.
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