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• 5G=orders of magnitude more capacity

• Legacy RAN=low resource utilization 

• Centralized or Cloud RAN=better resource utilization 

• Moved to centralized locations (BBU pools) for sharing of power and computational resources

From legacy RAN to C-RAN
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Background

From legacy RAN to C-RAN
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C-RAN network architecture with resource reallocation

Problem Statement

• High capacity + Low latency = ROADM 
networks

• ROADM networks take minutes for 
wavelength reconfigurations

• Dynamic reallocation require traffic 
prediction in advance

• Machine learning solution: Long short-term 
memory (LSTM) networks



New York City regional ILEC 
topology (from zayo.com) Traffic at different ROADMs Traffic at two BBU pools

• New York City incumbent local exchange carrier (ILEC) network

• 9 ROADMs, 400 km2, average degree=3.5

• Modified K shortest path, k=5

• 64 23Gbps small cells directly routed to each ROADM, 2 BBU pools (ROADM 2 and ROADM 5)

• 12060 connections following Poisson distributions over 28 days

• Residential, office, and entertainment traffic is distributed based on geographical locations

C-RAN Simulations



• Recurrent neural networks (RNN) predict time series data

• RNN face “gradient vanishing” 

• LSTM introduces memory cells to control the input information

• Truncated backpropagation through time to reduce learning time

LSTM memory cell
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Feedforward neural network

Recurrent neural network LSTM unfolded through time

LSTM Network



LSTM Network Training and Prediction
• 740 training samples (55%), 268 validation samples (20%), 336 test samples (25%)

• 60 previous time steps are used to predict the next time step

• Predict the peak traffic in each BBU pool 30 minutes in advance

• Stochastic gradient descent with mini-batch size of 20 over 1000 epochs (training time=3 minutes)

• Use dropout=0.2 to prevent overfitting

• RMSE = 96.9 Gbps, MAE = 84.2 Gbps

BBU pool traffic prediction with LSTM networkLSTM network parameters

Parameter Value

Learning rate 0.0005

Dropout 0.2

Activation function LSTM cell->Linear

Number of epochs 1000

Mini-batch size 20

Cost function Root mean square error (RMSE)
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Simulation Results

• Vary the peak resource processing capacity per BBU pool

• 7% maximum improvement of 5G traffic throughput

• 18% resource reduction while achieving 0% traffic rejection rate

5G throughput improvement Reduced traffic rejection 7



Conclusion

• The 5G throughput can be improved by dynamic resource reallocation through ROADM network 
configurations

• Heterogeneous 5G traffic patterns can be accurately predicted 30 minutes in advance by an LSTM 
network

• 7% increase in network throughput and an 18% reduction of processing resources are achieved

• Future work will investigate the performance of LSTM networks with commercial data in large-
scale networks
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Thank you
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Normalized traffic
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