

Recurrent Neural Network Based Dynamic Resource Reallocation of BBU Pools in 5G C-RAN ROADM Networks

Weiyang Mo¹, Craig L. Gutterman², Yao Li¹, Gil Zussman², and Daniel C. Kilper¹

- 1. College of Optical Sciences, University of Arizona, Tucson, AZ 85721, USA
- 2. Electrical Engineering, Columbia University, New York, NY 10027, USA {wmo,yaoli, dkilper}@optics.arizona.edu; clg2168@columbia.edu; gil@ee.columbia.edu

OFC 2018, San Diego, USA March 15, 2018

Background

- 5G=orders of magnitude more capacity
- Legacy RAN=low resource utilization
- Centralized or Cloud RAN=better resource utilization
- Moved to centralized locations (BBU pools) for sharing of power and computational resources

From legacy RAN to C-RAN

Problem Statement

- High capacity + Low latency = ROADM networks
- ROADM networks take minutes for wavelength reconfigurations
- Dynamic reallocation require traffic prediction in advance
- Machine learning solution: Long short-term memory (LSTM) networks

C-RAN network architecture with resource reallocation

C-RAN Simulations

- New York City incumbent local exchange carrier (ILEC) network
- 9 ROADMs, 400 km², average degree=3.5
- Modified K shortest path, k=5
- 64 23Gbps small cells directly routed to each ROADM, 2 BBU pools (ROADM 2 and ROADM 5)
- 12060 connections following Poisson distributions over 28 days
- Residential, office, and entertainment traffic is distributed based on geographical locations

New York City regional ILEC topology (from zayo.com)

Traffic at different ROADMs

Traffic at two BBU pools

LSTM Network

- Recurrent neural networks (RNN) predict time series data
- RNN face "gradient vanishing"
- LSTM introduces memory cells to control the input information
- Truncated backpropagation through time to reduce learning time

Feedforward neural network

LSTM unfolded through time

LSTM Network Training and Prediction

- 740 training samples (55%), 268 validation samples (20%), 336 test samples (25%)
- 60 previous time steps are used to predict the next time step
- Predict the peak traffic in each BBU pool 30 minutes in advance
- Stochastic gradient descent with mini-batch size of 20 over 1000 epochs (training time=3 minutes)
- Use dropout=0.2 to prevent overfitting
- RMSE = 96.9 Gbps, MAE = 84.2 Gbps

Parameter	Value
Learning rate	0.0005
Dropout	0.2
Activation function	LSTM cell->Linear
Number of epochs	1000
Mini-batch size	20
Cost function	Root mean square error (RMSE)

Simulation Results

- Vary the peak resource processing capacity per BBU pool
- 7% maximum improvement of 5G traffic throughput
- 18% resource reduction while achieving 0% traffic rejection rate

Conclusion

- The 5G throughput can be improved by dynamic resource reallocation through ROADM network configurations
- Heterogeneous 5G traffic patterns can be accurately predicted 30 minutes in advance by an LSTM network
- 7% increase in network throughput and an 18% reduction of processing resources are achieved
- Future work will investigate the performance of LSTM networks with commercial data in largescale networks

References

- F. Musumeci, et al. "Optimal BBU placement for 5G C-RAN deployment over WDM aggregation networks." Journal of Lightwave Technology, 2016.
- 2. H. Wang, et al. "Understanding Mobile Traffic Patterns of Large Scale Cellular Towers in Urban Environment." Internet Measurement Conference, 2015.
- A. Nag, et al. "Integrating wireless BBUs with optical OFDM flexible-grid transponders in a C-RAN architecture." Optical Fiber Communications Conference and Exhibition, 2017.
- 4. L. E. Nelson, et al. "SDN-Controlled 400GbE end-to-end service using a CFP8 client over a deployed, commercial flexible ROADM system." Optical Fiber Communications Conference and Exhibition, 2017.
- 5. F. A. Gers, et al. "Learning precise timing with LSTM recurrent networks." Journal of machine learning research, 2002.
- 6. S. Hochreiterand and J. Schmidhuber. "Long short-term memory." Neural computation, 1997.

Thank you

Normalized traffic

