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Abstract Machine learning based modelling of Erbium-Doped Fiber Amplifiers (EDFA) is used to 
determine wavelength dependent gain for use in optical transmission systems, and achieves root mean 
square error (RMSE) of 0.08, 0.18, and 0.27 dB under input ranges of +/- 3, 6, 9 dB. 

Introduction 

The use of software defined networking (SDN) in 
wavelength division multiplexed (WDM) optical 
systems is enabling enhanced levels of control 
and adaptation. Greater automation and software 
control capabilities require more accurate 
information regarding the physical system 
characteristics. The optical amplifier gain 
spectrum for example determines the individual 
channel powers launched into the transmission 
fiber, which is important for both the impact of 
fiber nonlinearity induced signal impairments and 
the optical signal to noise ratio. The gain 
spectrum will also impact the optical power 
excursions in dynamic wavelength routing 
operations. Accurate channel models, with 
individual channel power information at each 
amplifier will improve the potential benefits and 
performance of new functionality such as 
software control of wavelength routing or 
modulation format adaptation. 

Optical power divergence is managed through 
the use of channel power controls in wavelength 
selective switches in reconfigurable optical add 
drop multiplexer nodes. Performance margins 
are then used to account for the uncertainties in 
power at individual amplifier outputs. The ability 
to determine the power at each amplifier output 
will enable reduced margins thereby lowering 
system costs. Accurate power models will also 
improve the speed and stability of wavelength 
provisioning. 

In previous research, methods to predict 
optical channel power divergence and dynamics 
in transmission systems include neural network 
based dynamic channel power estimation1 and 
machine learning based power divergence 
prediction2. Furthermore, several mathematical 
models were introduced to predict individual 
channel output power under changing channel 
configurations, including a numerical power 
estimation framework used to predict EDFA 
output power3, a detailed analytical model for the 

wavelength dependent gain impact4 and a model 
designed for system applications using a simple 
characterization method5, but with limited 
accuracy. 

In this paper, we examine the use of machine 
learning to determine the channel configuration 
and input power dependent EDFA gain spectrum. 
Deep neural networks are built and trained to 
predict the gain spectrum based on the input 
power spectrum. As a result, all of the channel 
power related amplifier effects are captured in the 
process. The resulting trained neural network for 
each individual EDFA provides a computational 
tool for use in quality of transmission (QoT) 
estimation. Thus, by employing machine learning 
to characterize each amplifier in a system prior to 
deployment, accurate wavelength dependent 
gain models are potentially made available for 
improved QoT estimation.  

WDM channel gain models 

Gain dynamics occur in automatic gain controlled 
(AGC) WDM line EDFAs due to wavelength 
dependent gain4, where the gain excursion 𝑔 due 
to a change in channel powers 𝑃# can be written: 
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Accurate channel output power estimation 
therefore requires the gain ripple 𝑔#, tilt 𝑡#, and 
input noise 𝑁6 and gain 𝑔6, amplifier noise 𝑁7 and 
gain 𝑔7, and the amplifier noise compensation 
factor 𝑁8. Many of these parameters such as 𝑔# 
and 𝑡#	are also dependent on the input channel 
configuration through the internal amplifier gain. 
Other effects such as spectral hole burning may 
also play a role.  

In another study, a model was proposed for 
calculating the gain spectrum based on 
measurement of the single channel ripple and 
WDM ripple functions5, which can be written as: 
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In this expression, 𝑔 𝜆%  is the gain spectrum 
of wavelength 𝜆% when a set of wavelengths 
𝜆A, … , 𝜆@  is input to the EDFA. 𝑔 𝜆%  represents 

the characterized WDM gain spectrum, i.e., the 
gain spectrum when all WDM input channels are 
active. 𝑔D 𝜆%  denotes the characterized single 
channel gain spectrum, i.e., the spectrum of the 
gain of each channel 𝜆# when no other channels 
are present. This center of mass (CM) approach 
conveniently provides an estimate from easily 
measured configurations, but misses detailed 
effects that can be important, particularly in 
certain corner cases.   

Machine learning modeling 

A supervised machine learning algorithm is 
designed to train a neural network model of 
EDFAs to predict the gain spectrum based on the 
input power spectrum. The Neural Network (NN) 
architecture is implemented with TensorFlow.  

Ninety features are used as the input to the 
NN, representing the power levels of each of the 
90 channels. A separate NN is created for each 
output channel. Data is divided into 3 classes: 
training data, validation data, and test data. The 
training data is used to train the NN to minimize 
the Mean Square Error (MSE) loss function. The 
validation data is used to determine which 
parameters provide optimal performance after 
using the training data.  The test data is used to 
evaluate the trained model.  

The resulting parameters for the NN 
architecture are described as follows. All power 
levels are converted into decimal power levels, 
normalized, and scaled by a factor of 300. Each 

neural network has 4 hidden layers with artificial 
neuron transfer function of ReLU (rectified linear 
unit), Linear, ReLU, Linear, and ReLU. The full 
NN architecture can be seen in Fig. 1.  The model 
is trained by minimizing the MSE loss function 
using stochastic gradient descent with back-
propagation with a mini batch size of 𝑚 = 60 and 
a learning rate, 𝛼 = 0.00025. Training is done 
over 15000 iterations.  

Experiment setup and results 

As shown in Fig. 2, a 90-channel comb source is 
used to generate the WDM input. The wavelength 
selective switch is used to control the input power 
spectrum. The EDFA is configured to have 3 dB 
tilt and work in AGC mode, with target gain set as 
18 dB. Two optical channel monitors are used to 
monitor the input and output power spectrum. 
The controller is used to communicate with all of 
these devices and capture data.  

First, we characterized the single channel and 
WDM ripple of the EDFA and built a model using 
Eq. 2. In Fig. 3(a), the typical single channel and 
WDM input gain spectra are shown. We can see 
that for different channel loading the gain spectra 
are quite different.  

Then we used captured samples of measured 
input and output spectra to evaluate the error of 
analytical model derived from Eq. 2. In Fig. 3(b), 
the normalized frequency density (NFD) of the 
error of analytical model is shown.  It is shown 
that wider dynamic range of the input power leads 
to higher error in the prediction of the gain 
spectrum.  

To build the NN, we captured data samples of 
the input and output spectra under different 
channel loadings. We then compare the root 

Fig. 3 (a) Measured WDM and single channel gain 
spectral. (b) Normalized frequency density function of 
prediction error using the CM analytical model.  
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Fig. 1 Architecture of neural networks. 
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Fig. 2 Experiment setup for data capture. 



mean square error (RMSE) distribution of the CM 
analytical model and the ML model. In Tab. 1, the 
dynamic range is defined as the range over which 
the input channel power is varied around the 
target power (-18 dBm) in a uniform random 
distribution. It is shown in the table that the ML 
model is able to reduce the RMSE by 67%, 50% 
and 35% in scenarios where dynamic range is +/- 
3 dB, +/- 6 dB and +/- 9 dB. 

We then analyze the error distribution of the 
analytical model and the ML model using the 
same test set, shown in Fig. 4(a), Fig. 4(c) and 
Fig. 4(e). In the case of +/- 3 dB dynamic range, 
the ratio of the errors below 0.5 dB is 99.95% for 
the ML model and 94.9% for the analytical model. 
In the +/- 6 dB case, the ratio is 98.37% vs. 
85.11%. In the +/- 9 dB case, the ratio is 93.57% 
vs. 81.07%. The ML model shows better 
performance in gain spectrum prediction for all 
dynamic range values.  

Since the most severe channel power 
dynamics occur when there is a handful of open 
channels, it is of interest to analyze how the ML 
models perform in these corner cases. Here we 
look at the corner case with just two channels 
turned on. In Fig. 4(b), Fig. 4(d) and Fig. 4(f), the 
error distributions of these corner cases are 
shown. With dynamic ranges of +/- 3, 6, 9 dB, the 
ratios of prediction errors below 0.5 dB are 
99.38% vs. 95.88%, 98.57% vs. 87.78% and 
95.62% vs. 83.18%, respectively. The ML model 
is able to avoid high errors (over 0.5 dB) for most 
of the cases, outperforming the analytical model.  

To verify the performance of ML modeling 
under different EDFA configurations, we adjusted 
the gain setting of the EDFA and test the error of 
the models. In Fig. 5, the EDFA with 14 dB and 
22 dB gain were modeled and tested and the 
error distributions are shown. The overall RMSE 
error reduction in +/- 9 dB dynamic range is 
10.37% (0.3535 vs. 0.3944) for 14 dB gain and 
15.21% (0.3501 vs. 0.4129) for 22 dB.  

The EDFA spontaneous emission noise will 
show up at the downstream amplifier inputs on 
blocked channels if more than one amplifier is 
used between nodes (before being blocked again 
at the next node). In this ML model, noise power 
outside the dynamic range is ignored. Test 
results further show that the RMSE reduction is 
51.71% (0.2368 vs. 0.4904), 33.18% (0.2346 vs. 
0.3511), 9.44% (0.2840 vs. 0.3136), with blocked 

channel noise levels of -40, -35, -30 dBm per 
channel, respectively. 

Conclusion 

A machine learning based modeling method is 
analyzed and shown to reduce the gain 
estimation error compared with analytical 
models. For future studies, it will be of interest to 
evaluate the prediction performance in QoT using 
this model in large scale optical networks. 
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Tab. 1: RMSE of analytical and ML model 
 

Dynamic 
range [dB] 

Analytical 
[dB] 

Machine 
learning [dB] 

+/- 3 0.247 0.081 
+/- 6 0.359 0.180 
+/- 9 0.410 0.266 

 

Fig. 4: Error distribution of analytical model and ML 
model with dynamic range of +/- 3, 6, 9 dB. 

Fig. 5: Error distribution of analytical model and ML 
model with gain value of 14 dB and 22 dB. 


