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ABSTRACT
Network slicing will allow 5G network operators to o�er a diverse
set of services over a shared physical infrastructure. We focus on
supporting the operation of the Radio Access Network (RAN) slice
broker, which maps slice requirements into allocation of Physical
Resource Blocks (PRBs). We �rst develop a new metric, REVA, based
on the number of PRBs available to a single Very Active bearer. REVA
is independent of channel conditions and allows easy derivation
of an individual wireless link’s throughput. In order for the slice
broker to e�ciently utilize the RAN, there is a need for reliable
and short term prediction of resource usage by a slice. To support
such prediction, we construct an LTE testbed and develop custom
additions to the scheduler. Using data collected from the testbed, we
compute REVA and develop a realistic time series prediction model
for REVA. Speci�cally, we present the X-LSTM prediction model,
based upon Long Short-Term Memory (LSTM) neural networks.
Evaluated with data collected in the testbed, X-LSTM outperforms
Autoregressive Integrated Moving Average Model (ARIMA) and
LSTM neural networks by up to 31%. X-LSTM also achieves over
91% accuracy in predicting REVA. By using X-LSTM to predict
future usage, a slice broker is more adept to provision a slice and
reduce over-provisioning and SLA violation costs by more than
10% in comparison to LSTM and ARIMA.
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1 INTRODUCTION
It is expected that 5G networks will support a variety of services
including smart cities, autonomous and network assisted driving,
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Figure 1: 5G network slice architecture: the network infras-
tructure is divided into slices for tenants. The RAN broker
monitors each slice’s SLA. The broker then predicts future
slice resource usage. Slice provisioning is done based on the
SLA and the predicted resource usage. The slice prediction
and provisioning information is used by the slice broker for
admission control decisions.

augmented reality, and virtual reality. Such services will impose
an extremely diverse set of requirements on the mobile network,
ranging from ultra high throughput to ultra low latency at the order
of milliseconds [14].

Network slicing will allow 5G operators to split a shared physical
infrastructure into virtual slices to meet these diverse requirements
(see Fig. 1). The Next Generation Mobile Network (NGMN) Alliance
de�nes a network slice as a set of network functions and associ-
ated resources, forming a complete virtualized end-to-end logical
network meeting certain network characteristics required by the
associated service [1, 2, 16]. Namely, slices will provide virtualized
resource separation for di�erent services, while still allowing for
statistical multiplexing of the resources.

An anticipated challenge is managing a large number of tenants,
each with multiple services, resulting in separate slice instances.
Each such instancemay have unique Service Level Agreement (SLA)
requirements in terms of bandwidth, latency, reliability, mobility,
and security. Each slice can contain multiple bearers from multiple
User Equipments (UEs)1, and each bearer can have a Guaranteed
Bit Rate (GBR)2 or a non-GBR service.

The complexity of management and orchestration will increase
with 5G slicing. As illustrated in Fig. 1, a Radio Access Network
(RAN) slice broker (to which we will refer to as a broker) is used
to manage and orchestrate the slice life cycle [23]. The broker mon-
itors each slice’s SLA and predicts its future RAN resource usage.
The prediction is utilized to dynamically provision resources to
slices. Admission control decisions are based on the slice priority

1A bearer is de�ned as a path for the tra�c with a common QoS from a UE to the
Packet Data Network Gateway.
2GBR bearers have bandwidth guarantees (e.g., min throughput, max throughput,
packet delay variation) from the LTE network.
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Figure 2: (a) An example of provisioning resources to slices
which is based on the broker’s admission control decisions,
where in the second decision interval a 5th slice is admitted.
(b) An example of monitoring REVA for a single slice and
the corresponding dynamic resource provisioning.

and resource requirements. For example, in Fig. 2(a) during the
�rst two decision intervals four and �ve slices are admitted, respec-
tively. Slice admission control algorithms that take into account
given RAN usage have been developed based on solutions to the
multidimensional knapsack problem [7, 25].

E�ciently utilizing the RAN resources is crucial to enable mul-
tiplexing gains and cost e�ectiveness for service providers [19].
Therefore, an accurate prediction model of the usage must be devel-
oped to e�ciently utilize the RAN. An overestimation in the amount
of allocated resources results in a decrease in revenue for the service
provider, while underestimation results in SLA violations.

Speci�cally, the paper has two related objectives. The �rst is
to develop a metric that measures the amount of Physical Resource
Blocks (PRBs) available to very active bearers for each slice. Themetric
could be easily used for slice provisioning. The second objective is
to develop an accurate and short time scale prediction model of that
metric. Once the prediction is obtained, the broker can use each
slice’s predicted PRB usage for slice provisioning.3

Accordingly we de�ne a new metric, REVA, that precisely measures
the average amount of wireless Physical Resource Blocks that the RAN
scheduler can allocate to Very Active bearers (see Sec. 4). The amount
of resources given to each bearer in a slice is determined by the RAN
scheduler. The Very Active (VA) bearers are those that attempt to
obtain more than their fair share of the PRBs that are available from
the scheduler. A broker determines the amount of PRBs to allocate
to each slice in order to satisfy the SLA (e.g., a slice’s SLA may
require a minimum video quality for a remote surveillance camera).
Since the RAN scheduler reserves PRBs for each GBR bearer (e.g.,
voice conversation), the REVAmetric focuses on measuring the PRB
usage of the non-GBR bearers in a slice. For example, in Fig. 2(b)
when REVA falls below the SLA in decision interval t9, it reveals
that there are insu�cient available PRBs for VA bearers. The slice
provisioning algorithm would use this information to increase the
total amount of PRBs allocated to that slice.

Due to the lack of relevant data and while 5G systems are still un-
dergoing standardization and development, we design and evaluate
a model for short term (single to tens of seconds) REVA predic-
tion using a custom-designed experimental LTE testbed (see
Sec. 5). The scheduler in the testbed is augmented with a thin layer
to compute REVA in real time4 and we use a single Quality of Ser-
vice (QoS) class identi�er (QCI) per slice. The testbed was used
3Slice admission control is out of the scope of this paper and is for future work.
4We expect that the additions to the scheduler and the REVA metric will be applicable
to 5G schedulers.

to collect traces of hundreds of hours of RAN resource allocation
under a variety of network usage patterns. We used one, two, and
three overlapping periodic time patterns to emulate the temporal
patterns that occur in cellular networks [29].

The data collected from the testbed is used to develop and evaluate
the prediction models for REVA (see Sec. 6). Current time series mod-
els [6, 13, 26] are inadequate for multistep prediction of network
resource usage over a short time scale. These models are designed
for predicting one step into the future, but there is a need for higher
accuracy over multiple time steps for dynamic provisioning and
other network optimization techniques (e.g., VM migration). There-
fore, we design a modi�ed Long Short TermMemory (LSTM) model,
X-LSTM, to improve prediction accuracy. To evaluate the perfor-
mance (see Sec. 7), we use X-LSTM to predict REVA tens of seconds
in advance. We show that the gains of X-LSTM over traditional
models such as Autoregressive Integrated Moving Average Model
(ARIMA) and LSTM neural networks increase as the number of
components in the time pattern increases. Given time patterns
composed of one, two, and three independent semi-periodic com-
ponents, X-LSTM outperformed ARIMA and LSTM by 10%, 22%,
and 31% respectively. We show that X-LSTM achieves accuracy
predictions of over 91%.

To evaluate the impact of each prediction model on slice provi-
sioning, we introduce a simple slice provisioning algorithm. The al-
gorithm exploits the prediction models to minimize cost for service
providers. The cost is measured by the amount of over-provisioned
PRBs and violating the SLA. We show that X-LSTM o�ers the ser-
vice provider a greater than 10% cost reduction compared to ARIMA
and LSTM.

2 RELATEDWORK
Network Slicing: Architectural aspects of 5G RAN slicing are de-
veloped by the 5G NORMA project [4] within 5G-PPP, by utilizing
Software De�ned Networks and Network Function Virtualization.
Wireless RAN virtualization will o�er greater �exibility for network
infrastructure operators, while also adding bene�ts to their cus-
tomers (typically called tenants [21]). By enabling RAN virtualiza-
tion, Mobile Network Operators can share common RAN resources
leading to reduced costs and increased energy e�ciency. The con-
cept of network virtualization will enable infrastructure as a service
for end to end networking [1]. An optimization framework was
developed in [18] for resource allocation of network bandwidth and
cloud processing. A network slice broker will enable mobile opera-
tors to request and lease infrastructure dynamically [23]. Orion was
developed to enable dynamic virtualization of the base station [9]. In
[7, 25], the authors develop an admission control decision algorithm
for RAN slice requests based on the knapsack problem and pro-
pose solutions using a greedy algorithm and online-reinforcement
learning. The resource e�ciency and cost-e�ectiveness of resource
management in network slicing is studied in [19]. Slice overbooking
has been shown to maximize the revenue of mobile operators with
minimal impact of SLAs [22].
Cellular Tra�c: Recent work has characterized and modeled city
wide tra�c in cellular networks [29, 30, 32, 35, 36], where con-
gestion is characterized by measuring the tra�c load. In [11], the
authors improve on previous congestion metrics by also including
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round trip times. In [17] a single cell load measure is de�ned as a
combination of the number of connected bearers, achieved through-
put, and percentage of total PRBs per bearer. In [28] congestion is
characterized via skewness of measured aggregate throughput.
NetworkAnalytics:Numerous research e�orts have been devoted
to improving network performance using network analytics. In
[5, 27] tra�c congestion and mobility is predicted across a univer-
sity WLAN network. Improvements for adaptive video streaming
performance over LTE are studied in [33, 34, 37] where the LTE
bandwidth is estimated by monitoring the broadcast messages or
LTE bandwidth availability is given.
Time Series Modeling: Statistical and machine learning mod-
els for forecasting time series have received signi�cant attention.
Common statistical models are ARIMA and the Seasonal ARIMA
(SARIMA) models [6, 26]. Neural Networks (NNs), a popular model
in machine learning, are used to approximate non linear multi-
variate functions. Recurrent Neural Networks (RNNs) is a NN that
uses feedback from previous steps. A speci�c type of RNN is an
LSTM NN, which has memory cells to maintain information for
longer periods [13]. Additional work has been done to improve the
performance of LSTMs for speci�c applications [8, 10, 20].

3 WIRELESS RAN
In this section, we provide background on RAN resource allocation
and then discuss the limitations of the existing metrics available for
monitoring resource utilization. Note that we use LTE terminology
while describing and evaluating our methods, but they should be
applicable to 5G schedulers which are currently in development.

3.1 Background on RAN Resource Allocation
3GPP de�nes wireless resource allocation in the time and frequency
domains. LTE and LTE Advanced utilize a resource allotment unit
called a PRB. A PRB consists of 180 kHz in the frequency domain
and one slot of 0.5 ms in the time domain. Every Transmission
Time Interval (TTI) (1 ms in LTE), the scheduler distributes the
available PRBs for the Downlink (DL) and Uplink (UL) among LTE
bearers. The total number of PRBs assigned depends on the number
of TTIs and the system bandwidth con�guration. According to the
LTE standard, there are 6 PRBs per TTI for 1.4 MHz con�guration
to 100 PRBs for 20 MHz con�guration [2].

The scheduler at the base station (eNodeB) uses channel con-
dition information received periodically from the UEs to assign
Modulation and Coding Schema (MCS) to the allocated PRBs. This
essentially determines the number of bits transmitted using the
allocated PRB. Using a higher MCS with poor channel conditions
leads to data loss and requires using more PRBs for retransmissions.
In good channel conditions, using a lower MCS leads to unnecessar-
ily reduced throughput. RAN scheduling algorithms are optimized
to determine the best MCS assignment for each allocated PRB. In
the time domain, the schedulers also make decisions regarding how
often PRBs are assigned to a speci�c bearer.

The LTE standard de�nes scheduling priorities or QCIs to address
the di�erent scheduling rules for the di�erent classes of service [3].
Each QCI has its own associated QoS characteristics (e.g., priority,
guaranteed (or not) bit rate, packet delay budget, and packet error
loss rate. QCIs reserved for GBR service have the scheduler attempt

to ensure certain guaranteed bitrate for the bearer. For example,
QCI 1 is typically reserved for Voice over IP tra�c. QCIs designed
for non-GBR tra�c typically use weighted or max-min fair share
scheduling algorithms for PRB allocation [3]. Max-min fair share
algorithms assign users with a small demand the resources that
they need and distribute the remaining resources evenly to large
users.

3.2 RAN Resource Utilization Metrics
The broker allocates PRBs based on the SLA of each slice. In order
to get better insight into provisioning resources, it is important
to understand how bearers in that slice are currently utilizing the
resources. In addition, it would be insightful to separate PRB us-
age and user channel conditions. Each have an essential role in the
throughput and latency of individual UEs. RAN usage has been stud-
ied by several previous research e�orts [11, 17, 28–30, 35]. However,
they speci�cally do not focus on the application of RAN slicing.
Below are examples of metrics that are not adequate for a broker.
• Aggregate percent of available PRB utilization per sec-
ond by the scheduler [17] - There is no sense of fairness
and relation to per bearer SLA. A single greedy application
such as FTP can utilize close to 100% of all PRBs in the LTE
RAN, if there are no other bearers served by the RAN. Clearly,
the RAN serving just a single client is not congested, and if
a second FTP client joins, the scheduler would allocate to it
roughly half of the available PRBs.
• Aggregate throughput of all bearers [29, 30, 35] - The
metric is inadequate for the same reasons given above. A
single FTP bearer in perfect channel conditions can utilize
close to 100% of all PRBs.
• Metrics based upon latency or throughput of individ-
ual or groups of bearers [11, 28] - These metrics are
inadequate due to the reasons below:
– Bearer throughput depends on channel conditions. Low
throughput or high latency of bearer(s) may not result
from RAN congestion but could result from poor channel
conditions of the respective bearer(s).

– Low throughput may be a function of applications usage
characteristics. Speci�c applications may not need a lot
of network resources (e.g., Voice over IP, low resolution
video, and instant messaging).

• Number of users served by the RAN - Such a metric does
not take into account RAN resource consumption by individ-
ual bearers. A RAN serving a large number of VoIP or other
low volume bearers is not necessarily congested.

4 RAN RESOURCE ESTIMATION
In this section we outline the design objective for a prediction
model along with the REVAmetric. We then describe the de�nitions
needed for REVA, and the algorithm for its computation.

4.1 Objective
Our objective is to develop a metric, REVA, that can be used by
a broker to e�ciently measure, predict usage, and provision slice
resources. We represent REVA as �t throughout the remainder
of the paper. We assume the broker has a history of T decision
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intervals of the series: yt�1 = (�t�1,�t�2, ...,�t�T ). A prediction
model f uses the history yt�1 to predict s decision intervals ahead:
�̂t , ˆ�t+1, ..., ˆ�t+s�1 = f (yt�1). The goal is to develop a prediction
model for �t that has a minimal prediction error �t :

�t = f (yt�1) + �t . (1)
The REVA metric is developed as follows:
• A function of the available resources that is independent
of: (i) channel conditions of the bearers; (ii) the application
behavior and throughput needs of individual user bearers;
(iii) transport protocol (e.g., TCP, QUIC, UDP, or raw IP); (iv)
bearer throughput or roundtrip time. This would allow for
scheduling slices based on the required PRBs.
• The average number of PRBs used by the bearers that attempt
to obtain more than their maximal fair share of PRBs (de�ned
as very active bearer in De�nition 4.2). These are the bearers
that need to be monitored to ensure SLAs.
• A method for precise and direct computation of available
bearer throughput per slice. When combining the amount of
average PRBs (PRBi ) with individual channel bearer con-
ditions (bi ), it allows for easy derivation of the wireless
throughput available to a very active bearer i . The through-
put can be computed as:

R (b) = PRBi ·C (bi ) (2)

whereC (bi ) is the average number of useful bits per PRB for
bearer i [31]. The forecast of the UEs channel quality can be
used to estimate the MCS [24]. Table 1 illustrates the average
throughput given a variety of PRB rates along with the user’s
MCS. For each PRB range, 3 MCS values are provided along
with the corresponding resulting max throughput.

4.2 De�nitions
We introduce the following de�nitions prior to de�ning REVA.
Without loss of generality, we assume one or more QCIs per slice.

De�nition 4.1. Active bearers for a non-GBR QCIm are bearers
that use on average� PRBs per second (e.g.,� = 30)5. Active bearers
can be broken down into two groups: Very Active and Less Active.

De�nition 4.2. Very Active (VA) bearers for a non-GBR QCIm
are those that continuously attempt to obtain more than a maximal
fair share of PRBs that are available from the scheduler for a given
duration of time.

De�nition 4.3. Less Active (LA) bearers for a non-GBR QCIm
are the active bearers that are not VA.

Examples of VA bearers are FTP and HTTP adaptive streaming
video. Examples of LA bearers are web browsing and viewing social
media. An example of a non-active bearer is a smartphone applica-
tion that periodically performs keep-alive handshakes and receives
push noti�cations. Bearers for each slice are classi�ed into VA and
LA based upon PRB resource consumption.

REVA is now formally de�ned as the following:

530 PRBs limits the max throughput of a bearer to ⇠ 1 KBps with channel conditions
appropriate for 16QAM modulation. This parameter can vary based on the service
type of the slice.

Table 1: Throughput for PRB rate along with the UE’s MCS.

Average PRBs/sec MCS Max Throughput(kb/sec)
0-500 8,19,27 70,180,310

500-1000 8,19,27 140,360,630
1000-2000 8,19,27 280,720,1260
2000-3000 8,19,27 420,1080,1900
3000-5000 8,19,27 700,1800,3150

Table 2: Notation.

Symbol Semantics
S total Total number of PRBs/sec available

to a slice over interval �t
� Fraction of control plane PRBs

(typically 0.01 or 0.02)
wm Proportional fair weight for QCIm
RPRBm Reserved PRBs for QCIm
~Bm Vector of PRBs of active bearers at QCIm
~BRm Vector of PRBs of unclassi�ed active bearers at QCIm
~LAm Vector of PRBs of LA bearers at QCIm

Nm Number of active bearers at QCIm
NRm Number of unclassi�ed active bearers at QCIm
Um Number of PRBs used by LA bearers at QCIm
Im Fair share of PRBs at QCIm

Procedure 1 Aggregate available PRB Rate
1: procedure Sm
2: S = S total (1 � � ) �Pj4 PRBj
3: if Proportional Weighted Share Scheduling then
4: Sm = S �

P
5j9,j,m min(PRBj , S ·w j )

5: if Strict Priority Scheduling then
6: Sm = S �

P
5jm Sj �

P
j�m+1 RPRBj

return Sm

De�nition 4.4. REVA for a slice is de�ned per QCI and tra�c
direction (DL or UL) as: available Resource rate (in PRBs/sec) for
an ideal ‘Very Active’ bearer.

REVA determines the number of PRBs that a VA bearer at a given
QCI can obtain. REVA speci�cally focuses on non-GBR bearers since,
for GBR bearers a guaranteed amount of resources are allocated.
The GBR service class guarantees the throughput and therefore the
amount of PRBs allocated to a GBR bearer depends upon bearer
channel conditions which typically varies in time. Notice that we
use 1 second (1,000 TTIs) as the time interval. For low latency slices,
one can use a smaller time interval (e.g., 20 to 100 TTIs).

The algorithm to calculate REVA appears in Algorithm 1. Bearers
are categorized in an iterative way similar to the max-min fair share
algorithm. In each iteration, LA bearers are those that use less than
their fair share of the resources remaining. We de�ne S total as the
total number of PRBs/sec available to a slice. For example, for a slice
with 10 MHz bandwidth, S total = 50,000 PRBs/sec. The available
PRBs for the slice is S total (1 � � ), where � represents a fraction of
control plane PRBs.

In this section, we assume that the slice includes multiple QCIs
andwe compute the REVAmetric for each non-GBRQCI. Algorithm
1 consists of two steps:



RAN Resource Usage Prediction for a 5G Slice Broker Mobihoc ’19, July 2–5, 2019, Catania, Italy

Algorithm 1 REVA Computation

1: Initialize � , S total
2: form = 5 : 9 do
3: Initialize ~Bm , Nm , ~LAm
4: ~BRm = ~Bm , NRm = Nm , NR

prev
m = 0,Um = 0

5: Calculate Sm (Procedure 1)
6: while do NRm , NR

prev
m

7: NR
prev
m = NRm

8: Im =
Sm�Um

max (1,NRm )

9: Update ~BRm , NRm ,Um , ~LAm

10: REVA(m) = Sm�Um
VAm

• Compute available PRB rate per QCI of the slice. (line 5 of
Algorithm 1, Procedure 1)
• For each QCI, classify the slice bearers into VA and LA based
upon their PRB consumption. Then, compute the REVA value.
(lines 6-10 of Algorithm 1)

~Bm is the vector of PRB rates for all the active bearers at QCIm .
Initialization is done by assigning Nm as the total number of active
bearers at QCIm . ~BRm is the vector of PRB rates for all the active
bearers that have not been classi�ed yet, and is initially set to ~Bm .
NRm is denoted as the number of active bearers that have not been
classi�ed yet and is initially set to Nm .Um is the number of PRBs
used by LA bearers, and is initially 0. ~LAm is the vector of PRB rates
for bearers that are classi�ed as LA, and initially it is empty.

The next step of Algorithm 1 is to estimate the amount of avail-
able PRBs for non-GBR QCIm (Procedure 1).

Procedure 1 �rst adjusts for control PRBs and then removes the
PRB rate for all the GBR bearers in line 2. The next computation
performed depends upon the scheduling schema used across QCI
classes. If proportional weighted share scheduling is used, Sm is
set based on the minimum of the fair share requirement or the
amount of tra�c required for that QCI level. In the case of priority
scheduling, the amount of resources for that QCI level is calculated
based on the amount of resources for higher priority QCI levels
and the amount of Required PRBs (RPRB) for lower priority QCIs.
The minimum number of resources for lower priority QCIs is used
to ensure that even lower priority QCIs are not starved.

Algorithm 1 continues by iteratively eliminating LA bearers. In
each iteration, the amount of fair share of PRBs, Im , is calculated.
LA bearers are those that use less than Im . The amount of PRBs
used by LA bearers,Um , is updated accordingly. After eliminating
LA bearers, the amount of unclassi�ed active bearers and the vector
of PRBs of those bearers are updated, NRm and ~BRm , respectively.
Iterations continue until either no additional LA bearers are added
(NR

prev
m == NRm ), or 0 or 1 non-LA bearers remain. Eliminated

bearers are LA, and remaining bearers are classi�ed as VA. The
resulting REVA level is computed for each QCIm. Each slice will
have at least 1 VA bearer by de�nition. Therefore, if 0 non-LA
bearers remain, then the LA bearer with the largest number of
PRBs becomes VA.

Table 3: REVA computation example.

Iteration NRm Um Im LA UEs
0 20 0 2,450 12-20
1 11 1,620 4,307 8-20
2 7 16,120 4,697 5-20
3 4 25,620 4,845 3-20
4 2 39,120 4,940 2-20
5 1 44,020 4,980 2-20

4.3 Computation Example
Consider a scenario where 20 UEs are served by a 10 MHz slice
(50,000 PRBs/sec) with � = 0.02 and each UE has a single DL
bearer at QCI 9. The PRBs over the past 1 second are assigned as
follows (all units in PRBs/sec): UE1-5000, UE2-4900, UE3-4800,...,
UE9-4200, UE10-3000, UE11-3000, UE12-20 each have 180 PRBS/sec.
For example, in iteration 0 there are initially 20 active bearers, with
Sm = 49,000. The fair share would be Im = 2,450 PRBs, but UEs
12 to 20 use less than that amount and should be classi�ed as LA.
The amount of PRBs used by the LA bearers, Um , would then be
set to 1,620 with 11 remaining active bearers for iteration 1. The
algorithmwould then operate as shown in Table 3. After 6 iterations
there is 1 VA UE, resulting in a REVA value of 4,980 PRBs/sec.

There is one UE that is using its maximal share of the PRBs
and the other UEs do not require additional resources. This can be
converted into throughput based on the UE’s MCS. The slice broker
can then update the slice’s PRB allocation accordingly.

5 EXPERIMENTAL DATA COLLECTION
Due to the lack of data from service providers, we built an experi-
mental LTE testbed to collect data and calculate the REVA metric.
PRB distribution per bearer with  1 second granularity is unavail-
able from deployed eNodeBs. Hence, we designed a lab LTE network
with synthetic loads. The collected data is used in Sec. 6 to train
forecasting models and in Sec. 7 to evaluate the impact prediction
accuracy has on dynamically allocating resources. In this section
we describe the experimental setup and the data collection process.

5.1 LTE Testbed
The experiments were performed using the lab testbed con�gu-
ration depicted in Fig. 3. The LTE eNodeB was con�gured with a
10 MHz bandwidth using 700 MHz wireless spectrum (LTE band
13). All UE minicomputers were connected to LTE Remote Radio
Heads (RRHs) via LTE USB modems using Radio Frequency (RF)
cables and splitters. An RF impairment tool with two input and two
output ports was used to emulate a variety of radio conditions for
two groups of UEs.

Slices were emulated by using di�erent QCIs, with separate Ac-
cess Point Names (APNs) con�gured for each slice. For the purpose
of this paper we focused on predicting REVA of a non-GBR slice at
QCI 9. We built an LTE load generator consisting of 15 UEs con�g-
ured for QCI 9 and 3 UEs con�gured for QCI 3 (GBR). The operation
of the load generator was controlled via scripts by a load generator
controller connected to the UEs over Ethernet LAN. In each experi-
ment, the non-GBR UEs were running FTP download over LTE in a
continuous loop. The scripts also controlled GBR UEs to start/stop
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Figure 3: Lab Con�guration Setup. The LTE eNodeB sched-
uler calculates REVA which is forwarded to Central Ana-
lytics Engine to compute optimal policy action. The Cen-
tral Analytics Engine sends the action to the Slice Manager
for enforcement. Additional components (MME, SGW, HSS,
PCRF) are left out for simplicity.

FTP download over LTE to emulate multiple independent patterns
for the non-GBR slice.

We enhanced the LTE eNodeB scheduler by adding a thin layer to
instantaneously compute REVA. The LTE eNodeB scheduler sends
data digests every second in the form of the REVA metric per QCI
and per slice to the Central Analytics Engine (CAE) via a dedicated
out-of-band connection. The CAE performs instantaneous REVA
data smoothing and further processing of the smoothed data. The
predicted REVA metric is processed by the CAE policy engine to
suggest an optimal policy for resource allocation. The CAE then
sends this suggestion to the slice manager for enforcement.

5.2 Data Collection
The REVA metric (Section 4) is calculated at the eNodeB Scheduler.
It records per bearer PRB distribution data every TTI (1 millisecond),
and aggregates per bearer data into bins of time duration �t (e.g.,
�t = 1 second or �t = 100 milliseconds). At the end of each �t
interval, it performs the computation described in Algorithm 1
(Section 4) and sends data digest per QCI level to the analytics
engine. Our measurements indicate that executing Algorithm 1
every 1 second with approximately 500 active bearers adds less
than 1% to eNodeB CPU utilization. The algorithm’s complexity is
O (k2), where k is the number of users. Performing preprocessing
of the data at the agent instead of sending the raw scheduler data
every 1 millisecond, reduces the amount of data transfer by a factor
of more than 1000.

The original REVA data has a high variance over short windows
due to �uctuations in the TCP client behavior. To rectify this issue
we smoothed the data to reduce the noise �uctuations. Smoothing
is done by looking at a window size of 10 seconds and eliminating
the minimum and maximum values to remove potential outliers.
The minimum remaining value of REVA is chosen. We focus on the
minimum opposed to other metrics (e.g., mean, median, max) to
ensure that current slices have enough resources and to prioritize
current slices over incoming new slices.

In this paper, we discuss 3 time series sets collected from the
testbed. [29] shows that there are temporal patterns of cellular
tra�c at time scales on an hourly, daily, and weekly basis. We vary

(a) (b)

(c) (d)

(e) (f)

Figure 4: Experimental Data Collected (a) Set 1, (b) Set 1 au-
tocorrelation, (c) Set 2, (d) Set 2 autocorrelation, (e) Set 3, (f)
Set 3 autocorrelation.

the number of overlapping temporal patterns from 1 to 3 to emulate
similar situations.

The data sets consist of the 15 non-GBR clients using FTP, and
were collected for roughly 18 hours. The �rst data trace contained
one periodic GBR client and is referenced as Set 1 and viewed in Fig.
4(a). This resulted in a simple square pattern with small variations
and can be used for baseline evaluations of the prediction models.
The second data set had two varying GBR clients that used FTP
and is referenced as Set 2 and viewed in Fig. 4(c). Three GBR clients
periodically used FTP to create a three pattern overlay pro�le for
Set 3 (Fig. 4(e)).

The Autocorrelation Function (ACF) is used to analyze the po-
tential predictability of a time series. ACF is the correlation of a
signal with a time lag l version of itself. The results of ACF give
insight into how much information from the past can be used to
predict future values. Figs. 4(b), 4(d), 4(f) show ACF at a time lag of
l = 0,1, ...,2000 for REVA in Sets 1,2, and 3, respectively.

The periodic nature of ACF for Set 1 shows spikes that do not
decay. It also reveals that the underlying data should have a high
predictability. The ACF of Set 2 shows a stong autocorrelation for
the �rst 100 time lags with additional signi�cant correlation at later
time lags. The medium correlation values reveal a time series that
should have moderate predictability. The ACF of Set 3 is not smooth
like the previous two functions. In addition, there are not as many
peaks in the ACF, meaning that this data set should be the most
di�cult of the three to predict.

6 MACHINE LEARNING MODELS
A precise prediction model allows a broker to utilize the RAN
more e�ectively. Therefore, there is a need for reliable and short
term prediction of the slice resource utilization. Current time series
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models are designed for predicting one step into the future and
do not perform well when predicting multiple steps at a time. Our
design objective is to forecast REVA for the next 30 seconds with
prediction intervals of 5 seconds. The forecasting function f (yt�1),
will provide a forecast for ˆ�t+5, ˆ�t+10, ˆ�t+15, ˆ�t+20, ˆ�t+25, ˆ�t+30. The
�rst 60% of each time series is used as training data, the next 20% for
validation, and the �nal 20% for testing. We begin this section with
a description of the time series models used as a baseline: ARIMA
and LSTM. We then describe the architecture of the X-LSTM model
designed to solve this problem.

6.1 ARIMA
One of the most popular statistical methods for time series analysis
is the ARIMAmodel [6]. The ARIMAmodel assumes that future val-
ues are a linear function of previously observed values and random
noise. The ARIMA model can be modeled as ARIMA(p,d,q).

The data used to train the ARIMA model was the 5 second aver-
ages of the smoothed data. The ARIMA model was implemented in
Python using the Statsmodel package. Optimizing the performance
of the ARIMA prediction model requires tuning of the parameters
p, q, and d . The optimal model was selected by a grid search while
varying the parameters for p, q, and d between 0 and 3. The pa-
rameter setting that gave the minimum RMSE for the validation
data was (p,q,d ) = (1,0,1) for both data sets. To obtain a 30 second
prediction, there were 6 steps of prediction done at a time. The
ARIMA model parameters are retained for every batch of multistep
prediction.

6.2 LSTM
Recurrent Neural Networks (RNNs) di�er from traditional Feed-
forward Neural Networks (FNNs) in that they contain feedback
loops to allow information to propagate from previous steps. Feed-
ing information from previous steps into the next step allows for a
deep neural network architecture without computing and storing as
many parameters. Therefore, these models are ideal neural network
architectures for time series prediction. One of the major problems
with traditional RNN is that it does not store information for long
periods of time due to the vanishing gradient problem [12]. A type
of RNN speci�cally designed to understand long term dependencies
is an LSTM [13].

We implemented the LSTM neural network in Python on Keras
using the Tensor�ow backend. It contains a single recurrent layer
with a linear layer. Validation data was used to tune the performance
of a variety of neural network architectures. The architecture cho-
sen for testing uses a single LSTM layer with 100 hidden neurons,
and a dense output layer to predict the output congestion level. The
LSTM uses a history of the previous 80 timesteps to predict the next
step. The learning rate was set to � = 0.005. The input data is the 5
second averages of the RAN congestion. In theory, LSTMs can store
memory for an in�nite number of timesteps, but, as the number
of timesteps increases it creates more computation complexity to
tune the parameters for back propagation. In implementation the
Truncated Back Propagation Through Time (TBPTT) method is
used to limit the number of memory steps [15].

For multistep prediction (Multistep LSTM), an iterative proce-
dure is used with T set to 80. For the �rst prediction the real past

30 Second 
Average  

5 Second 
Average  

Upsample 

+ - 

+ + LSTM 

LSTM 

Figure 5: An example of X-LSTM machine learning archi-
tecture used for the experimentally collected data. This X-
LSTM architecture contains two phases, one at a time scale
of 30 seconds and the next at 5 seconds.

80 timesteps are used. For the second prediction, 79 real timesteps
are used along with the previously predicted value. This continues
until the 6th prediction is done with 75 real values and the previous
5 predicted values.

6.3 X-LSTM
We develop X-LSTM as an extension of LSTM. It is based on the
idea of ARIMA and the X-11 statistical method. X-11 is an itera-
tive process that decomposes time series data into seasonal data
patterns. This method combined with the prediction of an LSTM
improves results over standard methods. We break the method into
two phases as can be seen in Fig. 5.

The X-LSTM model uses multiple LSTMs, each with a di�erent
time scale. It �lters out higher order temporal patterns and uses the
residual to make additional predictions on data with a shorter time
scale.

We implemented each LSTM neural network of X-LSTM in
Python using Keras with the Tensor�ow backend. Each LSTM block
contains a single recurrent layer with 100 hidden neurons with a
dense output layer. For each LSTM block 80 timesteps were used.
The learning rate was set to � = 0.005.

For our experimental data, the �rst phase is done at a 30 second
time level. The �rst LSTM block makes predictions for the average
over the next 30 seconds, ˆ�t+30. The goal of the next phase LSTM is
to make predictions for the time series of the residuals (�t � ˆ�t+30)
at a higher granularity. For our evaluation, a second phase with
a time scale of 5 seconds was used. The residual values for Sets 1,
2 and 3 are seen in Figs. 6(a), 6(c), and 6(e), respectively. Looking
at the autocorrelations, in 6(b), 6(d), 6(f), reveals that the residual
data has information from previous time lags that can be used to
improve the prediction accuracy.

The �rst step is to make a prediction for the average over the
next 30 seconds. The second LSTM phase predicts the residual
(�t � ˆ�t+30) on a granularity of 5 seconds. It is used for multistep
prediction in an iterative procedure for 6 steps. The 6 predicted
values are then added back to the predicted 30 second average in
order to predict REVA at ˆ�t+5, ˆ�t+10, ˆ�t+15, ˆ�t+20, ˆ�t+25, ˆ�t+30.

The number of phases and the time scale of each phase are the
additional tuning parameters for X-LSTM neural network. While
each of our data sets was only collected for roughly one day, this
method can be extended to longer data sets by including additional
phases. Typically networks exhibit time patterns due to natural sea-
sonal, weekly, daily, and hourly tra�c variations [29]. Data can be
reduced by summarizing the data into lower granularity. For exam-
ple, instead of storing per second data, data can be summarized into
hourly, and daily averages. Data can be stored on the granularity
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(a) (b)

(c) (d)

(e) (f)

Figure 6: Residual of �rst phase prediction (a) Set 1, (b) Set 1
autocorrelation, (c) Set 2, (d) Set 2 autocorrelation, (e) Set 3,
(f) Set 3 autocorrelation.

of seconds for the past day, per hour bases for the past month, and
daily values for the past year. This can reduce the amount of data
needed for prediction by over 99%.

7 EVALUATION
In this section we brie�y discuss accuracy measures used for evalu-
ation. We then analyze the prediction accuracy of each proposed
prediction model. We continue with a description of a slice pro-
visioning algorithm and design of a cost function based on the
amount of over-provisioned PRBs and SLA violations. We conclude
by showing how the algorithm exploits the prediction models to
minimize cost for service providers.

7.1 Prediction Results
Accuracy measures used for comparison between the di�erent time
series methods include: Root Mean Square Error (RMSE), Mean
Absolute Error (MAE),andMean Absolute Percentage Error (MAPE).
The true output value is �t and the predicted value is �̂t for each
time t . The accuracy of each proposed method is measured by
splitting the experimental data collected into three components:
training, validation, and test. The training data is used to tune the
machine learning parameters for each method, while the validation
data determines the best parameters for each method. The test data
is used to compare the performance of each model.

The prediction results on test data for Sets 1, 2, and 3 can be
seen in Fig. 7, along with the resulting error measures in Fig. 8.
Four di�erent prediction models are used for comparison. The �rst
model predicts a one step 30 second mean of the time series using
a vanilla LSTM model (referred to as 30 Second LSTM). The second
model is determined by the X-LSTM model. The third prediction

model uses a multistep LSTM to determine the congestion over the
next 30 seconds in a granularity of 5 seconds. The fourth model
uses a multistep ARIMA model to predict the congestion over the
next 30 seconds in a granularity of 5 seconds.

Set 1 follows close to a periodic square wave with numerous time
steps in between. The results show that all the models are able to
follow the square wave relatively accurately. The multistep LSTM
and ARIMA models have a more di�cult time and incorporate
errors from earlier steps leading to extrapolation. The prediction of
the 30 Second LSTM is better able to determine the square pattern,
as it has less information to store from previous periods and is only
making a one step prediction. The resulting error measurements
show that even on the simpler square wave pattern, our X-LSTM
model outperforms the other models. It is able to learn meaningful
information from the residual between phase 1 and phase 2.

The second best model, 30 Second LSTM, gives a MAPE of 7.68%
and an RMSE of 312, while the X-LSTM model gives a MAPE of
6.93% and an RMSE of 256, resulting in a 10% and 18% improvement,
respectively.

Set 2 has a more complex time series which has two overlapping
periodic events. All models in this data set have a higher error rate
than in Set 1. The multistep LSTM has a di�cult time incorporating
the many variations it learned from the two overlapping patterns.
When creating multistep predictions the errors continue in a posi-
tive or negative direction causing a sawtooth pattern. The multistep
ARIMA model has a higher accuracy for Set 2 than the multistep
LSTM model. Phase 1 of the X-LSTM model is able to track the
model, however it is often slow to update when there are large
changes. The X-LSTM model is able to incorporate the residual
di�erence and make an improvement on the phase 1 predictions.
The additional bene�t of X-LSTM is that when the last phase LSTM
needs to predict multiple steps, the bias of the prediction is reduced.

The second best model is again, 30 Second LSTM, which has
a MAPE of 8.11% and an RMSE of 353. The X-LSTM model has a
MAPE of 6.36% and an RMSE of 304, resulting in a 22% and 14%
improvement.

The most challenging set to model due to its three overlapping
periodic patterns is Set 3. The result is a lower level accuracy across
all models. There is a strong residual component that has high ACF
values. This allows the second phase of X-LSTM to improve upon
the accuracy of the �rst phase and thus reduce the prediction error.
The multistep ARIMA and LSTM models in this situation perform
signi�cantly worse than X-LSTM.

The MAPE of the multistep LSTM is 13.07% and for the LSTM
predicting 30 second averages it is 13.03%. The X-LSTM is able to
outperform these models by 31% with a MAPE of 8.99%.

7.2 Slice Allocation
We evaluate the impact that forecasting accuracy has on slice re-
source utilization. The REVA metric allows for easy adjustment of
slice provisioning by using the di�erence between REVA and the
SLA. The value can be used to estimate the amount of additional
resources the slice should be allocated to satisfy the SLA or the
amount of PRBs that should be removed while still satisfying the
SLA.
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(a) (b) (c)

Figure 7: Results obtained by various prediction models: (a) Set 1, (b) Set 2, (c) Set 3.

(a) (b) (c)

Figure 8: Prediction errors for Sets 1,2,3 illustrated in Fig. 7: (a) RMSE, (b) MAE, (c) MAPE.

(a) (b) (c)

Figure 9: Average system cost vs. SLA cost K for various prediction models: (a) Set 1, (b) Set 2, (c) Set 3.

We assume that the forecasting error �t in (1) is normally dis-
tributed with a standard deviation of � and a mean of 0, since the
exact distribution of the empirical error is unavailable. This gives a
Gaussian prior for the prediction model:

�t ⇠ N (�̂t , �
2) (3)

We assume that assigning too few resources results in an SLA viola-
tion and incurs a penalty with cost k . Conversely, when forecasting
a higher REVA value than predicted results in extra PRBs available
to VA users that can otherwise be allocated to other slices. We use
a one sided prediction interval h that determines the bound that
should be used when assigning resources for forecast model f . We
de�ne the cost function, � as:

�(�t ) =
8><>:
k , if �̂t + h > �t

�t � h � �̂t , if �̂t + h  �t

Accordingly, we formulate the following optimization problem
to obtain the optimal h such that the system cost is minimized,
given � , �̂t , and k :

minimize
h

k (�̂t + h � �t )+ + (�t � �̂t � h) (�t � �̂t � h)+. (4)

Taking the expected value of the cost metric simpli�es the opti-
mization problem to:

minimize
h

(k + �̂t ) (�(
h

�
)) � h(1 � �( h

�
)) + � (

� ( h� )

1 � �( h� )
), (5)

Where �(z) is the CDF of the standard normal random variable Z,
and � (z) is the PDF of the standard normal random variable Z.

7.3 Slice Allocation E�ciency
For each forecasting model, the optimalh is used for each �̂t and the
cost �(�t ) is calculated. Fig. 9 shows the average � per forecasting
point verses the SLA violation cost k . As k increases the optimiza-
tion function weighs SLA violations more. Therefore, the number
of standard deviations away the prediction interval h is increases.
The optimization function causes the probability of missing the
SLA to decrease from 10% to 1% (depending on the forecasting
algorithm’s � , �̂t , and the cost k).

In data set 1, with k = 0, Multistep LSTM slightly outperforms
X-LSTM by less than 1%. For every other SLA cost k the X-LSTM
outperforms the other forecasting algorithms. For k � 5000, X-
LSTM provides more than 15%, 40%, and 15% reduction in average
system cost over 30 Second LSTM, Multistep ARIMA, and Multistep
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LSTM, respectively. In data set 2, X-LSTM provides more than 11%,
35%, and 60% reduction in average system cost over 30 Second
LSTM, Multistep ARIMA, and Multistep LSTM, respectively. In data
set 3, X-LSTM provides more than 18%, 39%, and 18% reduction in
average system cost over 30 Second LSTM, Multistep ARIMA, and
Multistep LSTM, respectively. Generally across the three data sets,
as SLA violations increase in cost the value of X-LSTM over the
other prediction models increases.

8 CONCLUSION
In order to e�ectively provision resources and make admission
control decisions, the 5G RAN slice broker requires an accurate
prediction of the required resources in a slice. We de�ned a new
metric, REVA, that precisely measures the amount of PRBs that the
RAN scheduler can allocate to VA bearers. This allows for direct
derivation of wireless link throughput when coupled with channel
conditions information. An experimental LTE testbed was devel-
oped to collect REVA for time series analysis. This data was then
used to develop and evaluate the accuracy of time series prediction
models.

We proposed and evaluated a new time series prediction model,
X-LSTM, for REVA. We showed that X-LSTM provides a higher
degree of prediction accuracy with a MAPE of 7.68%, 6.36%, 8.99%
for Sets 1, 2, and 3, respectively. As the number of independent
semi-periodic components increases from one to three in the test
sets, the improvement of X-LSTM over ARIMA and LSTM increases.
X-LSTM outperformed the other time series models by 10%, 22%,
and 31%, respectively. In addition, X-LSTM results in more than
10% cost reduction per slice. In future work, we will further test
the accuracy of X-LSTM on real world traces, and develop slice
admission control algorithms for the broker, based on REVA.
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