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Abstract—Photovoltaic (PV) panels have become a significant
source of electric power generation. These panels are considered
to be one of the cleanest energy production systems available,
so their spread is expected to increase in the following years,
especially because recent technologies have reduced the cost of
these panels. Unlike classic energy production methodologies that
are connected to the high-voltage transmission power lines, many
PV panels are connected directly to the lower voltage distribution
networks of the electric power grid, making the management of
the grid an ongoing challenge. In this paper, we address this
challenge and show that the irradiance field that is required
to calculate the expected power output of the PV panels can be
estimated in a simplistic methodology, using partial observability
of the solar radiation. We validate our proposed methodology by
conducting an empirical study that uses real data of the solar
radiation taken from satellites, and we show that even when the
observability of the solar radiation is as low as 10% (meaning,
that only 1 in 10 points of interest in a regular grid is observable),
the irradiance field can be accurately estimated.

Index Terms—Photovoltaic Panels, Renewable Energy, Partial
Observability, Inverse Distance Weightning, Irradaince Nowcast.

I. INTRODUCTION

There is a vast growth in photovoltaic (PV) system installa-
tion at the distribution level of the power system, particularly
among residential customers, and this trend is envisioned to
continue in the foreseeable future [1]. This growth creates
both opportunities and challenges. Obviously, increased PV
installation at the distribution level allows more flexible system
operation, and decreases the dependence on traditional, fossil-
fuel-based energy sources. The power output from PV sources
is highly variable, and accurate estimation and prediction of
this variability is essential for reliable and stable operation of
the power system.
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A main challenges in this context is that many PV systems
are connected directly to the distribution system rather than
to transmission power lines. Distribution system operators
have very low observability of the system, and there is a
very limited information regarding the amount of generated
power from each distributed PV system in particular. The
straightforward solution of requiring millions of generators to
communicate with the system operator is practically infeasible
for to many reasons, such as communications limitation and
privacy constraints. Therefore, estimating and forecasting the
PV production based on limited observation is key to enabling
high penetrations of PV systems at the distribution level while
maintaining reliable and stable power system operation.

Most literature on the topic focuses on extrapolating the PV-
specific energy production at future times based on a sensor-
based present measurements (i.e., time forecasting) [2]-[6];
whereas the spatial extrapolation of the irradiance field with
resepct to PV production in low-observability conditions is
mainly focused on leveraging the statistical properties of the
field, via the Kriging approach (e.g., [7], [8]). These methods
require training to establish the variogram of the irradiance
field (i.e., the spatial correlation between the available sensors,
which is both time- and location-dependant) at the specific
location of interest [9], and thus are not directly applicable
in cases where no past measurements with sufficiently high
resolution are available.

In this paper, we focus on a “snapshot” estimation, or
nowcasting, of PV production at different locations of the
power network based on sensor measurements from limited
locations in this network. We develop an interpolation scheme
based on the Inverse Distance Weighting (IDW) modified
Shepard’s approach [10], where we consider only the input
from the available sensors, and the known maximal long-term
irradiance value within the interpolated area (which can be
taken from the literature [11], [12]). By doing so, we show
that it is possible to interpolate the full irradiance field with
high accuracy, under limited sensing capabilities, without the
need for high-resolution historical data.

Both the IDW [10], [13], [14] and the Kriging [13], [15],
[16] methodologies are currently being used to estimate a
2-Dimensional (2-D) grid (or even a 3-Dimensional (3-D)
one) from a set of available measurements in many weather-
related applications (such as the estimation of rain fields
from rain gauges [17], [18] or from microwave links [19],
[20], after extracting the precipitation [21], [22]). These
methodologies essentially treat every grid-point estimates as
a single parameter, and thus they are well defined even when
the sensors are sparsely located. Furthermore, under certain



sparsity conditions, a 2-D field reconstruction can be achieved
using compressed sensing approaches [23].

In this work, we focus on the IDW approach, which is
a deterministic interpolation approach. It is well known that
the Kriging approach might achieve better results because
under certain conditions [16] it is the best linear unbiased
estimator [24], [25]; however, in many cases dealing with
weather-related fields, it has been shown that using the IDW
does not dramatically impact the resulted estimates [18], [26].
Most importantly, to implement a Kriging interpolation, one
must know (or approximate) certain statistical properties of
the field of interest [27], which is generally not known. By
implementing an IDW approach rather than either a Kriging
or a compressed sensing approaches, our developed tool could
be implemented directly on any region of interest, without the
need of any prior knowledge regarding the field’s statistical
or sparsity properties, and provide with deterministic and
consistent results.

The rest of this paper is organized as follows: In Section II,
we present our methodology and develop the field estimation
tool. In Section III, we demonstrate and validate our tool using
a real-world yearlong experiment. Last, in Section IV, we
conclude the paper and discuss future research opportunities.

II. METHODOLOGY

Define a 2-D field of irradiance representing the Global
Horizontal Irradiance (GHI) values (in W/m?), as I,.(z,y, t).
Our goal is to reconstruct the irradiance field in a given area
of interest and at a given time. In other words, I,-(z,y,t;) is
to be estimated V{0 <z < A,0 <y < B}, for a given time
index, ¢;, where A and B are the boundaries of the respected
area of interest.

Next, we can define:

0] = I,(xi, yi, t) (D

where 9? is the value of the irradiance (in W/m?) at a given
location, {x;,y;}, at time index, t;.

A. Problem Statement

To reconstruct the irradiance field for time index t;, we
require estimating a set of 6/, where i € {1,2,---,N},
so that the set of {x;,y;} represents a regular 2-D grid
spanning {0 <z < A,0 <y < B}. Note that the resolution
of the reconstructed field is determined by the value of V.
Once the estimates 67 are found V{i,j}, the full continuous
irradiance field, I-(z, y,t), can be directly reconstructed using
standard methodologies such as the nearest-neighbor [28], the
cubic [29], and the spline [30] methods.

We assume that we have access to a set of measurements
(i.e., samples) of the actual GHI values within the field. The
GHI measurements can be taken either directly (via weather
stations or dedicated equipment), or by using the PV systems,
given that the PV installation angle is known and the current
(I) and the voltage (V') status (also known as the IV curve)
of the PV panels are being regularly monitored and reported
[31].

As stated in Section I, we aim to reconstruct the irradiance
field under conditions of low or partial observability (e.g.,
only a small number of GHI sensors are available, or only
a small part of the PV systems connected to the distribution
grid in a given area are being monitored for the IV status
by the utility company). Thus, we assume that within the
given area of interest at time index j, the number of estimates,
éf ;i€ {1,2,---,N}, is to be estimated based on a set of
GHI measurements, 75, ; k € {1,2,---, K}, where K < N,
or, at some scenarios, K << N. ‘

Note, that although the arrangement of the grid of 6! follows
a regular grid, and its density is dictated by /N (and translates
into the resolution of the interpolated irradiance field), the
locations of 7, are arbitrary. Fig. 1 illustrates a rectangular
area divided by a regular grid of 551 points (i.e., N = 551)
for a given time index. The use of N = 551 in this specific
grid formation is chosen in order to correspond with the real-
world experimental setup that will be presented in the sequel.
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Fig. 1. Ilustration of an area of interest, Ir(z,y,t;) S

{0<z<A0<y<B} and 6/ ;i € {1,2,---,551} estimates.
In addition, the available GHI sensors (each produces a single GHI sample
at that given time index) are marked by r;. For simplicity, the time index
superscript is dropped.

B. Irradiance Field Interpolation

Our goal is to compute each estimate é{ within a given area
and at the relevant time indexes. For simplicity, from now on,
we focus on estimating the irradiance field for a single time
index, tj. Thus, in the sequel, we drop the superscript j.

Let 0 = [01,02,---,0N]" and 7 = [r1, 79, -+, 7K|T denote
the parameter and measurement vectors, respectively. Observe
that as § € RY, 7 € RE, with K < N, implementing a
parameter estimation processes, either deterministic such as
the weighted least squares or statistic such as the Maximum
Likelihood estimation, are infeasible. On the other hand,
the IDW and Kriging methodologies treat every grid-point
estimate as a single parameter, and thus they are well defined
even when the sensors are sparsely located. As advocated in
Section I, this paper focuses on the application of the IDW
method to the problem at hand, which is detailed next.

C. Modified Shepard’s-Like Approach

To estimate any of the grid points, 6;, we use the Modified
Shepard’s interpolation [10]. The Modified Shepard’s inter-
polation closely resembles the standard IDW [13], but adds



a conditional distance rule. In particular, for each estimated
grid point, only the sensors (i.e., the available measurements)
located within a given Radius Of Influence (ROI) around the
relevant grid point are taken into account.

One of the properties of the standard modified Shepard’s
approach is that the grid points are always smaller or equal
to the maximum sampled value. This fact is desired in cases
such as rain-field interpolation from rain-gauges data because
an interpolated rain-field grid point is nullified if no rain
gauge is located inside its ROI. In our scenario, using this
approach without modification will result in a negative bias
that will be introduced into the estimation. We therefore use
the disturbance-free GHI value for interpolated grid points
with no sensor is located inside its ROI. This disturbance-
free value is the maximal possible GHI value in the area of
interest. In a real-world application, this maximum value can
be taken from the literature (e.g., [11], [12]), or by using very
low-resolution measurements that are widely available. Thus,
the estimation of #; can be formalized using the weighting
function w(+):

0, = { Ef%if"ﬁi‘%? Lk w(dik,p, ) > 0 )
e P e w(di,p, R) =0
<1—%>p d < R2
w(die,p, R) =y (F)" = 3)
0 ;dik > R?
diw = (zi — 21)® + (yi — yr)? @)

where R is the specific ROI, {z;,y;} and {zy,y;} are the
coordinates of #; and r, respectively, and p is a coefficient that
dictates the decay rate of w(-). In weather-related applications,
p is usually set to p = 2 [17], [32]. I;*** is the maximum (or
approximated maximum) GHI value (in W/ m?) within the
respected area of interest (at the relevant time index):

Ir = OrgnwaSXA{IT(xvyatj)} (5)
0<y<B

D. ROI Selection Consideration

The ROI, R, is a design parameter that dictates the ge-
ographical radius around a sensor in which the sensor’s
measurements will affect the estimated GHI field. Estimating
0, by using only measurements taken from the area inside a
given ROI makes sense because any large-scale disturbance to
the irradiance (such as a cloud, foliage, shade, etc.) is almost
certainly confined to a specific location, and will not affect
the irradiance field outside of a given radius. Thus, on one
hand, it is important to select a sufficiently large ROI so that
the sensor-measured information will be fully incorporated
into the interpolation, especially when the sensors are sparse.
On the other hand, the information provided by a specific
sensor is location based, and thus, it is physically limited
(i.e., a disturbance in the GHI field (caused by, e.g., clouds) is
location limited). To insure these two demands when selecting

a specific ROI, we suggest to considering the averaged cloud
size, as clouds are the main cause of disturbance in the GHI
field. In [33], it was suggested that the standard Cumulus-
cloud size follows the Log-Normal distribution, with a mean
size of a few kilometers and a standard deviation of a few
kilometers. In [34], the authors present a detailed Large-Eddy
simulation and suggest that the horizontal domain size of a
general cloud is roughly 3.2 km to 12.8 km.

Based on these conjectures, in the sequel, we use R = 20
and R = 28 km, which should be sufficiently large to cover
the majority of the rain-causing Cumulus clouds. Indeed, the
ROI value may be optimized for a given location based on
the position and the sparsity of the available sensors, as well
as the location-specific climate, which remains a subject of
future research. Nonetheless, based on the the experimental
validation presented in the sequel, the resulting GHI field
estimation did not change in a significant manner based on
the selected ROI, which suggests that the presented approach
is reasonably robust with respect to the choice of the ROL

III. EXPERIMENTAL VALIDATION

To validate our approach, we designed a real-world ex-
periment based on actual solar data. The data used were
collected via the National Renewable Energy Laboratory ini-
tiative (NSRDB). The data were collected via half-hourly
radiance images from the GOES weather satellites. These, in
combination with snow coverage, temperature, and pressure
profiles - were used to produce the GHI values in 30-minute
intervals. The measurements are recorded as the averaged GHI
within cells, with a spacial resolution of 0.038 degrees latitude
and 0.038 degrees longitude per cell [12]. From the NSRDB
database, we collected and analyzed the GHI measurements
from an area of interest, located between 40.57N and 41.29N
degrees latitude, and 73.50W and 74.62W degrees longitude.
This area includes 19%29 cells (with a total area' approximated
to be 76¥116 km?) covering the city of New York and its
surroundings. A map of the selected area with the division
into the specific cells is depicted in Fig. 2.

A. Experiment Description

Each of the 4 x 4 km? cells that comprise the selected area
(depicted in Fig. 2) is treated as a single estimation point 6;.
Thus, in this scenario?, N = 19 % 29 = 551.

We performed the estimation process for each of the
551 grid points (i.e., the set of 0; of Eq. (2), where ¢ €
{1,2,---,551}) as follows:

1) A set of K = round(0.9 * 551) sensors, r; ; k =
{1,2,---, K}, were chosen and located randomly within the
selected area. The ROI was chosen to be either R = 20 km
or R = 28 km.

IPlease note that the transformation between a fixed value of 0.038 degrees
latitude and/or longitude into the distance and/or surface area measured in
kilometers depends on the specific location (due to the Earth’s curvature).
Nonetheless, in the location of interest, the differences between individual
tiles are negligible, and, for simplicity, we approximated each cell to have the
surface area of 4*4 km?.

2Using the formulation of Eq. (5) results in: 0 < x — 73.50 < A, and
0 <y —40.57 < B, where A = 74.62 — 73.50 and B = 41.29 — 40.57.
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Fig. 2. Map of the selected area, divided into 19¥29 cells of ~ 4 * 4 km?
(captured via Google Maps), and the actual irradiance field as calculated based
on the NSRDB on 12:00, June 21, 2014.

2) The actual GHI value of each of the sensors 7, were taken
from the NSRDB data set, for January 1, 2014, at 12:00 EST.
3) The value of I7*** was taken from the recorded by the
NSRDB data set of the entire selected area on January 1.
4) Steps 1 - 3 were repeated 100 times, each time with a
different set of random r; (causing a different placement of
the sensors).

5) Steps 1 - 4 were repeated 365 times, for every day within
the year 2014, at 12:00:00 local time.

6) Steps 1 - 5 were repeated for different
values of K = round(s % 551), where s €
{0.9,0.8,0.7.0.6,0.5,0.4,0.3,0.2,0.1,0.05} represents

the percentage of grid cells with an observable GHI sensor.

B. Results

Overall, the value of each grid cell was estimated via Eq.
(2) 36,500 times for each value of s. Using all of the 551 grid
cells, a total of 20,111, 500 cells were estimated per value of
s, for R =20 km and R =28 km. To analyze the resulted
interpolation, the Root Mean Squared Error (RMSE) between
all of the 20, 111, 500 estimates and the actual cells GHI values
(taken from the available NSRDB data set, and calculated after
the grid cell used as sensors input data are excluded) was
calculated. The resultant RMSE as a function of the number
of available GHI sensors, for both cases where R =20 km
and R =28 km, are depicted in Fig. 3. In addition, the same
experiment (as described in Section III-A) was repeated daily
at 08:00:00 and 16:00:00 local times, and the respective RMSE
results are also depicted in Fig. 3. Furthermore, examples of
the full scatter plots of the entire 20,111, 500 estimated grid
cells vs. the actual GHI values as reported by the NSRDB, for
R =20 km with s = 0.8 and s = 0.1, are depicted in Fig. 4,
and Fig. 5, respectively.

IV. D1SCUSSION AND CONCLUSION

From the results presented in Section III-B, it can be
concluded that the 2-D irradiance field can be interpolated in
relatively high accuracy in most cases, even in cases where as
little as only 10% (i.e., s = 0.1) of the grid cells is observable.
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Fig. 3. The RMSE between the estimated grid cells and the actual GHI
values (as reported by the NSRDB, excluding the cells used as the the sensors
input data), as a function of the number of observable GHI sensors, for
08:00:00, 12:00:00, and 16:00:00 local times, throughout the year 2014. The
actual RMSE is presented in the top panel, and the RMSE in the sense of
percentage of the total averaged measured GHI value (calculated for each
time) is presented in the bottom panel.
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Fig. 5. Scatter plot (in log-scale) of the estimated grid cells based on GHI
sensors located at 10% of the cells (s = 0.1). See Fig. 4 for details.

Specifically, Fig. 3 shows that the relative RMSE between an
estimated grid cell and the actual GHI value for a case where
s = 0.1 is less than than 22%, regardless of the time of day
(and thus, regardless of the angle of the sun or the maximum
GHI within the area).

A few further challenges require future research. First, in
this experiment, the ROI was taken to be R =20 km and
R =28 km. Although we did not detect any meaningful



change in the resulting RMSE when different ROI values were
chosen, Fig. 3 shows that the larger selected ROI (R =28
km) produced better results for the cases where the number
of sensors is very low (i.e., < 20%, whereas the smaller ROI
tested (R=20 km) produced slightly better results for when
the observability is higher. As mentioned in Section II-D, we
believe that the ROI coefficient selection could be optimized
based on the sparsity of the available sensors, especially if
the local climate (such as the size of the average clouds)
is known, and, can potentially improve the accuracy of the
irradiance-field estimation. Second, as shown in Fig. 4 and
Fig. 5, there is a small bias in the estimation of the grid
cells towards the higher GHI values. We believe this bias is
caused by our modification of the estimation process presented
in Eq. (2), which results in the estimate 0, being equal to
the maximum GHI value measured (or assumed), I]"**, in
cases where the closest GHI sensors, 7y, are located (relative
to the location of 6;) outside the ROI. Future enhancement
such as iterative estimation algorithms (which, might also
incorporate the irradiance temporal changes) might be able to
compensate for this bias. Nonetheless, in all cases, the spatial
correlation coefficients between the estimated grids and the
actual NSRDB ground-trugh grids, for all the values of s and
R tested, were higher than 0.9. Furthermore, we performed
a multi-variable cubic interpolation (based on the approach
described in [6]) on the same experimental setup (of Section
Il), and compared the resulted interpolated irradiance field
with our presented approach: Our approach out-performed
the multi-variable interpolation (with respect to the RMSE
and the correlation coefficients values) for all cases (R =20
km), and for all cases when s > 0.1 (R =28 km). To
conclude, we believe that the feasibility study presented in
this paper is promising and shows that the irradiance field can
be interpolated accurately in a simplistic formulation, under
limited observability conditions.
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