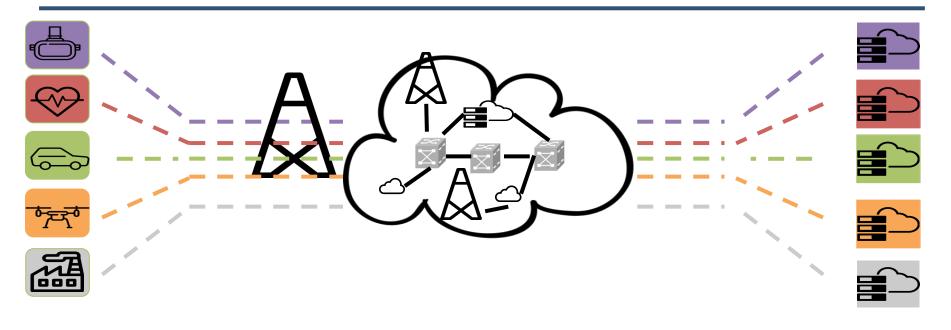
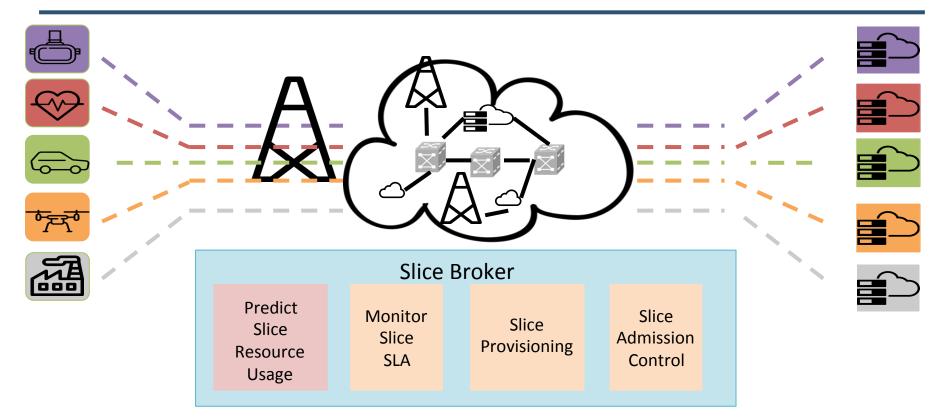
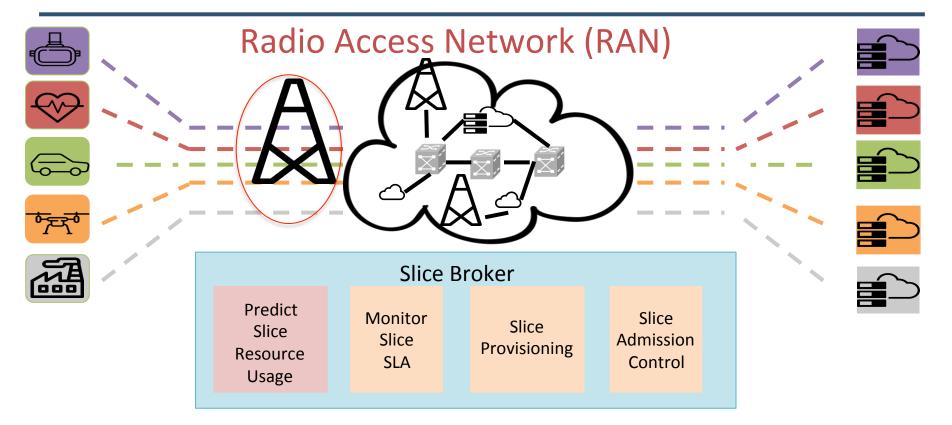

RAN Resource Usage Prediction for a 5G Slice Broker

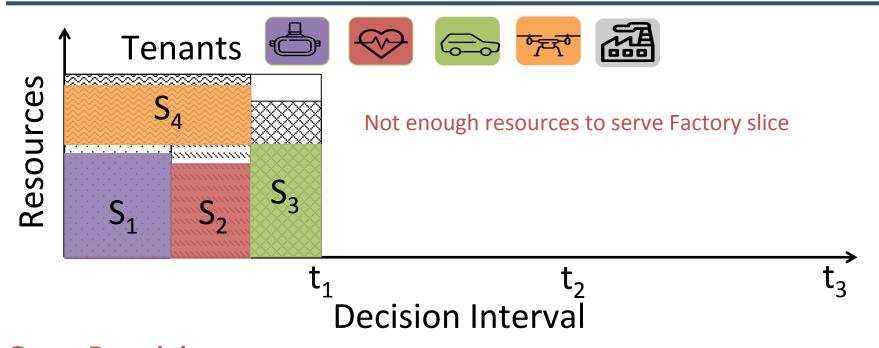
Craig Gutterman*, Edward Grinshpun^, Sameer Sharma^, Gil Zussman*
*Columbia University, ^Nokia Bell Labs



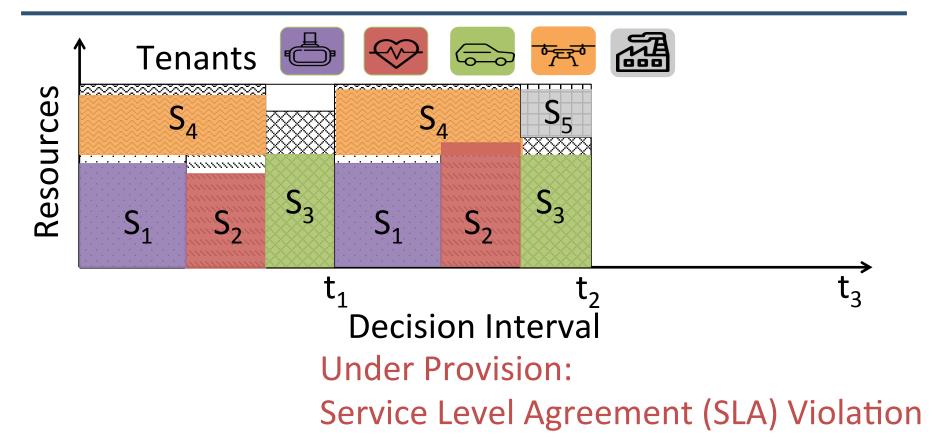



Best Effort – All Traffic Created Equal

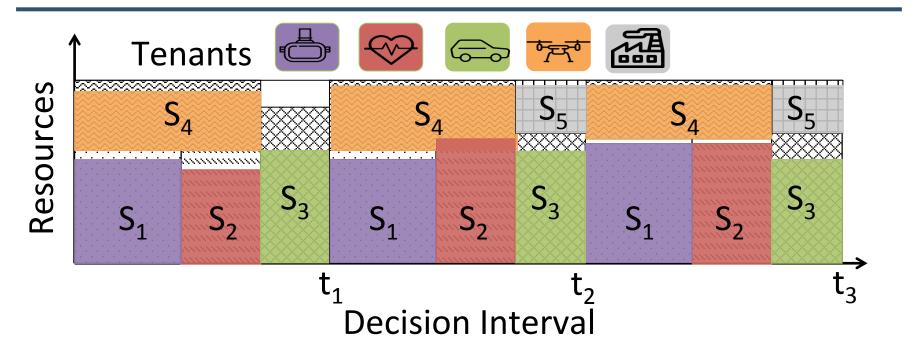
Each application has different service requirements



Network Slicing –physical network logically divided to deliver services



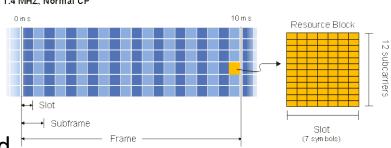
RAN Broker



Over Provision
Decreased Revenue

RAN Broker

RAN Broker


Goal: Accurate Prediction Model

Outline

- Background and Motivation
- Radio Access Network Resource Utilization
 - New Metric-REVA
- Prediction model
 - X-LSTM
- Evaluation
- Conclusion and Future Work

Radio Access Network (current 4G terminology)

- Bearer IP packet flow with a defined QoS between the gateway and User Equipment (UE)
- Resources
 - Bandwidth divided into physical resource blocks (PRBs) of 180 kHz
 - Resource blocks assigned every 1 millisecond
- QoS Class Identifiers (QCI)
 - Guaranteed Bit Rate Traffic (GBR)
 - Voice Over IP
 - Non Guaranteed Bit Rate (non-GBR)
 - Email, ftp, www, streaming applications

QCI	Bearer Type	Priority	Packet Delay	Packet Loss	Example
1	GBR	2	100 ms	10-2	VoIP call
2		4	150 ms	10 ⁻³	Video call
3	CDIN	3	50 ms		Online Gaming (Real Time)
4		5	300 ms	10 ⁻⁶	Video streaming
5	Non-GBR	1	100 ms		IMS Signaling
6		6	300 ms		Video, TCP based services e.g. email, chat, ftp etc
7		7	100 ms	10 ⁻³	Voice, Video, Interactive gaming
8		8	300 ms	10-6	Video, TCP based services e.g. email,
9		9	300 1115	10	chat, ftp etc

Alternative Radio Access Network Utilization Metrics

Metric

- Aggregate percent of available PRB utilization per second
- Aggregate throughput of all bearers
- Metrics based upon latency or throughput of individual bearers
- Number of users served by the RAN

Issue

- Single greedy application can utilize close to 100% of the PRBs, but the RAN is not congested
- Single greedy user with good channel condition can have high throughput
- Low throughput or high latency may result from poor channel conditions or application usage characteristics
- Does not take into account RAN resource consumption by individuals

Objective of new metric (REVA)

- A function of the available resources that is independent of:
 - Channel conditions of the bearers
 - The application behavior and throughput needs of individual user bearers
 - Transport protocol
 - Bearer throughput or round trip time
- The average number of PRBs used by the bearers that attempt to obtain more than their maximal fair share of PRBs
- Method for precise and direct computation of available throughput per bearer

$$R(b_i) = \overline{PRB_i} * C(b_i)$$

 $\overline{PRB_i}$, is average PRBs for bearer i $C(b_i)$, is the average nubmer of bits per PRB for bearer i b_i , bearer channel conditions $R(b_i)$, wireless throughput avaiable for bearer i

Definitions

- Active Bearer: Are bearers for a non-GBR QCI that use on average Υ PRBs per second
- Very Active (VA) Bearer: Are bearers for a non-GBR QCI that continuously attempt to obtain more than a maximal fair share of PRBs that are available from the scheduler for a given duration of time
- Less Active (VA) Bearer: Are active bearers for a non-GBR QCI that are not VA
- δ: Fraction of control plane PRBs

REVA

- REVA determines the number of PRBs that a Very Active (VA) bearer at a given QCI can obtain
- Algorithm
 - Compute available PRB rate per QCI of the slice
 - For each QCI, classify the slice bearers into Less Active (LA) and VA
 - Iteratively eliminate bearers that use less than their fair share of the remaining resources
 - Continue until
 - No additional LA bearers are added
 - 0 or 1 non-LA bearers remain

- 20 UEs served by 10 MHz slice (50000 PRBs/sec)
- $\delta = 0.02$
- Each UE has single downlink bearer at QCI 9

Fair Share	2450
------------	------

- 20 UEs served by 10 MHz slice (50000 PRBs/sec)
- $\delta = 0.02$
- Each UE has single downlink bearer at QCI 9

Previous Fai Share	r 2450	
PRBs Used for 20 UEs		
5000	3000	
4900	180	
4800	180	
4700	180	
4600	180	
4500	180	
4400	180	
4300	180	
4200	180	
3000	180	

- 20 UEs served by 10 MHz slice (50000 PRBs/sec)
- $\delta = 0.02$
- Each UE has single downlink bearer at QCI 9

Bearers 11-20 use less than their fair share

Previous Fai	r
Share	2450
PRBs Used	for 20 UEs
5000	3000
4900	180
4800	180
4700	180
4600	180
4500	180
4400	180
4300	180
4200	180
3000	180
Fair Chara	4207

Fair Share	4307
------------	------

- 20 UEs served by 10 MHz slice (50000 PRBs/sec)
- $\delta = 0.02$
- Each UE has single downlink bearer at QCI 9

Previous Fai	r	
Share	4307	
PRBs Used for 20 UEs		
5000	3000	
4900	180	
4800	180	
4700	180	
4600	180	
4500	180	
4400	180	
4300	180	
4200	180	
3000	180	

- 20 UEs served by 10 MHz slice (50000 PRBs/sec)
- $\delta = 0.02$
- Each UE has single downlink bearer at QCI 9

Bearers 7-20 use less than their fair share

Previous Fai	
Share	4307
PRBs Used	for 20 UEs
5000	3000
4900	180
4800	180
4700	180
4600	180
4500	180
4400	180
4300	180
4200	180
3000	180
Fair Chans	4607

Fair Share	4697
------------	------

- 20 UEs served by 10 MHz slice (50000 PRBs/sec)
- $\delta = 0.02$
- Each UE has single downlink bearer at QCI 9

Previous Fai Share	r 4697	
PRBs Used for 20 UEs		
5000	3000	
4900	180	
4800	180	
4700	180	
4600	180	
4500	180	
4400	180	
4300	180	
4200	180	
3000	180	

- 20 UEs served by 10 MHz slice (50000 PRBs/sec)
- $\delta = 0.02$
- Each UE has single downlink bearer at QCI 9

Bearers 5-20 use less than their fair share

Previous Fai Share	r 4697
PRBs Used for 20 UEs	
5000	3000
4900	180
4800	180
4700	180
4600	180
4500	180
4400	180
4300	180
4200	180
3000	180

4845

Fair Share

- 20 UEs served by 10 MHz slice (50000 PRBs/sec)
- $\delta = 0.02$
- Each UE has single downlink bearer at QCI 9

Previous Fai Share	r 4845
PRBs Used	for 20 UEs
5000	3000
4900	180
4800	180
4700	180
4600	180
4500	180
4400	180
4300	180
4200	180
3000	180

- 20 UEs served by 10 MHz slice (50000 PRBs/sec)
- $\delta = 0.02$
- Each UE has single downlink bearer at QCI 9

Bearers 3-20 use less than their fair share

Previous Fair		
Share	4845	
PRBs Used for 20 UEs		
5000	3000	
4900	180	
4800	180	
4700	180	
4600	180	
4500	180	
4400	180	
4300	180	
4200	180	
3000	180	

Fair Share

- 20 UEs served by 10 MHz slice (50000 PRBs/sec)
- $\delta = 0.02$
- Each UE has single downlink bearer at QCI 9

Previous Fai Share	r 4940	
PRBs Used for 20 UEs		
5000	3000	
4900	180	
4800	180	
4700	180	
4600	180	
4500	180	
4400	180	
4300	180	
4200	180	
3000	180	

- 20 UEs served by 10 MHz slice (50000 PRBs/sec)
- $\delta = 0.02$
- Each UE has single downlink bearer at QCI 9

Bearers 2-20 use less than their fair share

Bearer 1 uses more than it's fair share

Previous Fair Share		4940	
PRBs Used for 20 UEs			
5000	3000		
4900	180		
4800	180		
4700	180		
4600	180		
4500	180		
4400	180		
4300	180		
4200	180		
3000	180		
Fair Share		4980	

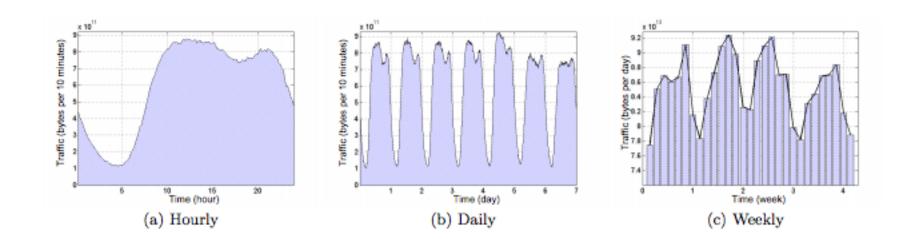
Outline

- Background and Motivation
- Radio Access Network Resource Utilization
 - REVA
- Prediction model
 - X-LSTM
- Evaluation
- Conclusion and Future Work

Time Series Forecasting

Broker has history of T decision intervals of the series

$$\langle y_{t-1} \rangle = (y_{t-1}, y_{t-2}, \dots, y_{t-T})$$


Objective: Predict tens of seconds using multistep prediction

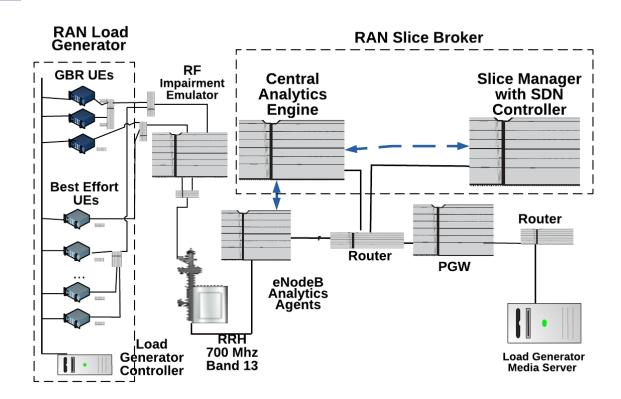
$$\widehat{y_t}, \widehat{y_{t+1}}, \dots, \widehat{y_{t+s-1}} = f(\langle y_{t-1} \rangle) + \varepsilon_t$$

- Approaches
 - Autoregressive Integrated Moving Average model (ARIMA)
 - Recurrent Neural Networks
 - Long Short-Term Memory (LSTM)

Problem: Do not generalize well for multistep prediction

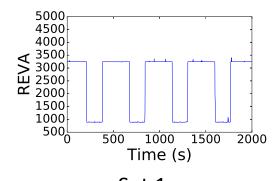
Temporal Patterns of Cellular Traffic

Can we improve prediction accuracy by making predictions at multiple timescales?

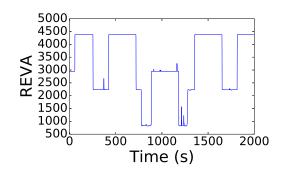

H. Wang, F. Xu, Y. Li, P Zhang, and D Jin, "Understanding mobile traffic patterns of large scale cellular towers in urban environment," in *Proc. ACM IMC'15*.

X-LSTM

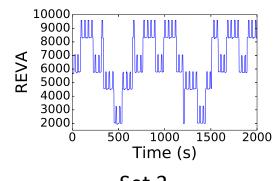
- Based on the combination of LSTM and the X-11 statistical method
- Uses multiple LSTMs, each with a different time scale
- Filter out higher temporal patterns and use the residual to make additional predictions on data with a shorter time scale


Experimental Data Acquisition

- No publically available data set with PRB distribution per bearer with <1 second granularity from deployed basestation (eNodeBs)
- Designed a lab LTE network with synthetic loads

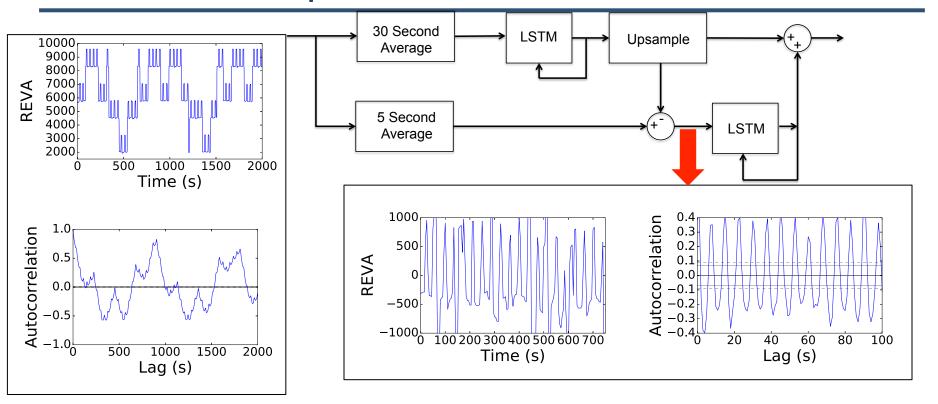


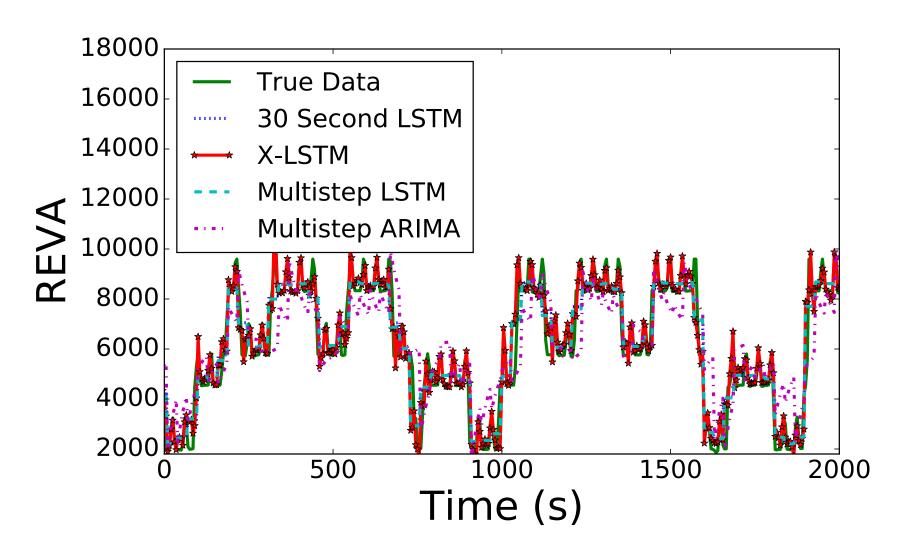
Data


- Created traffic load using 15 UE's configured for QCI 9 (non-GBR) and 3 UE's configured for QCI 3 (GBR)
- REVA calculated at the eNodeB scheduler every 1 second
- Each experiment collected for ~18 hours

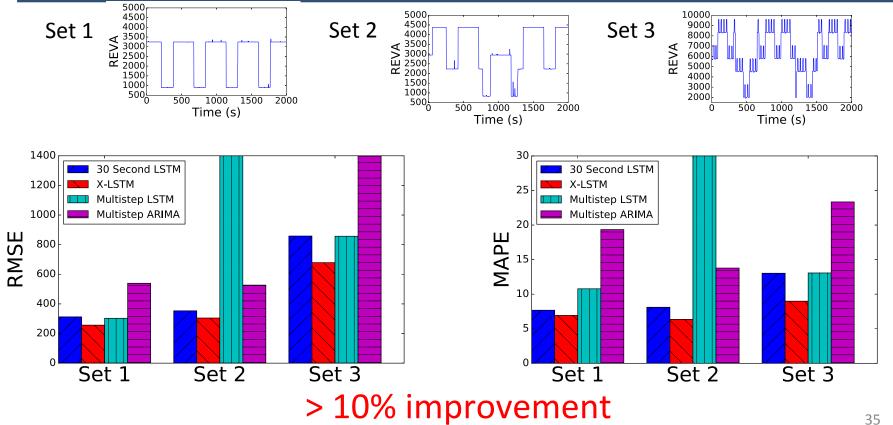
Set 1 1 periodic GBR client

Set 2 2 periodic GBR client




Set 3 3 periodic GBR client

Methods for Comparison


- Multistep ARIMA
 - Make 6 predictions at a time with a granularity of 5 second averages
- Predict 30 second averages using LSTM
- Multistep LSTM
 - Make 6 predictions at a time with a granularity of 5 second averages
- X-LSTM
 - Make 6 predictions at a time with a granularity of 5 second averages

X-LSTM Example

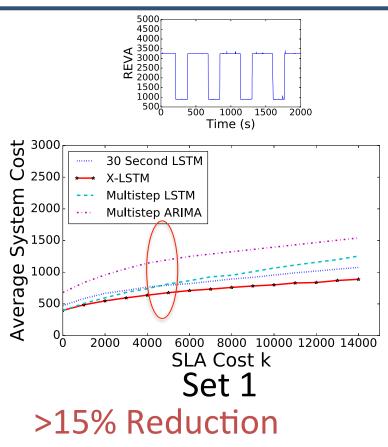
Evaluation

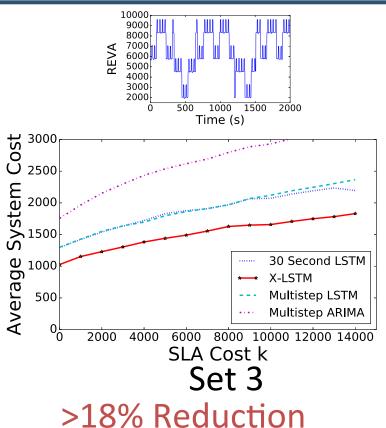
How does prediction accuracy relate to cost?

Assume

$$y_t = \mathcal{N}(\hat{y_t}, \sigma^2)$$

- SLA violation has cost k
- One sided prediction bound h
- Cost function


$$\Gamma(y_t) = \begin{cases} k, & \text{if } \widehat{y_t} + h > y_t \\ y_t - h - \widehat{y_t}, & \text{if } \widehat{y_t} + h \le y_t \end{cases}$$


Optimization problem

minimize
$$h \quad k(\widehat{y_t} + h - y_t)^+ + (y_t - h - \widehat{y_t})(y_t - h - \widehat{y_t})^+$$
minimize
$$h \quad (k + \widehat{y_t}) \left(\Phi\left(\frac{h}{\sigma}\right)\right) - h\left(1 - \Phi\left(\frac{h}{\sigma}\right)\right) + \sigma(\frac{\phi(\frac{h}{\sigma})}{1 - \Phi\left(\frac{h}{\sigma}\right)})$$

$$h \quad (k + \widehat{y_t}) \left(\Phi\left(\frac{h}{\sigma}\right)\right) - h\left(1 - \Phi\left(\frac{h}{\sigma}\right)\right) + \sigma(\frac{\phi(\frac{h}{\sigma})}{1 - \Phi\left(\frac{h}{\sigma}\right)})$$

Average System Cost

Summary

- Define new metric, REVA, that precisely measure the amount of PRBs that the RAN scheduler can allocate to Very Active bearers
- X-LSTM provides a higher degree of prediction accuracy
 - X-LSTM provides more than 10% cost reduction per slice
- Future Work
 - Evaluate on real world races
 - Develop slice admission control algorithms for the broker

Thank You!

RAN Resource Usage Prediction for a 5G Slice Broker
Craig Gutterman*, Edward Grinshpun^, Sameer Sharma^, Gil Zussman*
*Columbia University, ^Nokia Bell Labs

clg2168@columbia.edu

