A Single Antenna Full-Duplex Radio using A Non-Magnetic, CMOS Circulator with In-built Isolation Tuning

Aravind Nagulu, **Tingjun Chen**, Gil Zussman, Harish Krishnaswamy Electrical Engineering, Columbia University

IEEE ICC'19 Workshop on Full-Duplex Communications for Future Wireless Networks

May 24, 2019

Full-Duplex Wireless

- Legacy half-duplex wireless systems separate transmission and reception in either:
 - Time: Time Division Duplex (TDD)
 - Frequency: Frequency Division Duplex (FDD)
- (Same channel) Full-duplex communication: simultaneous transmission and reception on the same frequency channel

Full-Duplex Wireless

- Benefits of full-duplex wireless:
 - Increased system throughput and reduced latency
 - More flexible use of the wireless spectrum and energy efficiency
- Viability is limited by self-interference
 - Transmitted signal is billions of times (10^9 or 90dB) stronger than the received signal
 - Requiring extremely powerful self-interference cancellation

How much is 90dB?

Self-interference (SI)

Desired signal

The Columbia FlexICoN Project

- <u>Full-Duplex</u> Wireless: From <u>Integrated</u> <u>Circuits</u> to <u>Networks</u> (FlexICoN)
 - FD transceiver/system development, algorithm design, experimental evaluation
 - Focus on IC-based implementations (in collaboration w/ the CoSMIC lab led by Prof. Harish Krishnaswamy)
 - Integration of full-duplex capability in the ORBIT and COSMOS testbeds

Full-duplex radios

implemented in RFIC

(Columbia)

Full-duplex radios using off-the-shelf components (e.g., Stanford)

A programmable 1st-generation full-duplex node installed in the open-access ORBIT testbed

- T. Chen, J. Zhou, M. Baraani Dastjerdi, J. Diakonikolas, H. Krishnaswamy, and G. Zussman, "Demo abstract: Full-duplex with a compact frequency domain equalization-based RF canceller," in *Proc. IEEE INFOCOM'17*, 2017.
- <u>T. Chen</u>, M. Baraani Dastjerdi, G. Farkash, J. Zhou, H. Krishnaswamy, and G. Zussman, "Open-access full-duplex wireless in the ORBIT testbed," arXiv:1801.03069v2 [cs.NI], May 2018. Demo at IEEE INFOCOM'18. Tutorials and code available online at ORBIT/COSMOS wiki and GitHub

Full-Duplex Wireless in the ORBIT Testbed

Two example demonstrations

Real-time RF canceller configuration

Packet-level full-duplex communication

- <u>T. Chen</u>, J. Zhou, M. Baraani Dastjerdi, J. Diakonikolas, H. Krishnaswamy, and G. Zussman, "Demo abstract: Full-duplex with a compact frequency domain equalization-based RF canceller," in *Proc. IEEE INFOCOM'17*, 2017.
- <u>T. Chen</u>, M. Baraani Dastjerdi, G. Farkash, J. Zhou, H. Krishnaswamy, and G. Zussman, "Open-access full-duplex wireless in the ORBIT testbed," arXiv:1801.03069v2 [cs.NI], May 2018. Demo at IEEE INFOCOM'18. Tutorials and code available online at ORBIT/COSMOS wiki and GitHub

The Columbia FlexICoN Project

- <u>Full-Duplex</u> Wireless: From <u>Integrated</u> <u>Circuits</u> to <u>Networks</u> (FlexICoN)
 - FD SISO radios, phased arrays, and MIMO radios
 - Scheduling in heterogenous networks with both HD and FD users

2nd-generation wideband full-duplex nodes

An 8-element IC-based FD phased array

- T. Chen, M. Baraani Dastjerdi, J. Zhou, H. Krishnaswamy, and G. Zussman, "Wideband full-duplex wireless via frequency-domain equalization: Design and experimentation," in *Proc. ACM MobiCom'19 (to appear)*, 2019.
- <u>T. Chen</u>, M. Baraani Dastjerdi, H. Krishnaswamy, and G. Zussman, "Wideband full-duplex phased array with joint transmit and receive beamforming: Optimization and rate gains," in *Proc. ACM MobiHoc'19 (to appear)*, 2019.
- <u>T. Chen</u>, J. Diakonikolas, J. Ghaderi, and G. Zussman, "Hybrid scheduling in heterogeneous half- and full-duplex wireless networks," in *Proc. IEEE INFOCOM'18*, 2018.
- M. Baraani Dastjerdi, N. Reiskarimian, <u>T. Chen</u>, G. Zussman, and H. Krishnaswamy, "Full duplex circulator-receiver phased array employing self-interference cancellation via beamforming," in *Proc. IEEE Radio Frequency Integrated Circuits Symposium (RFIC'18)*, 2018.

2nd-Generation Wideband (Compact) Full-Duplex Node

NI LabVIEW

- OFDM PHY w/ 20MHz real-time RF BW
- Modulation schemes: from BPSK to 64QAM
- TX power: +10dBm
- RX noise floor: -85dBm
- Overall SIC: 95dB
- RF SIC: 52dB
- Digital SIC: 43dB
- Adaptive RF canceller configuration

NI USRP SDR

Magnetic Circulator

<u>T. Chen</u>, M. Baraani Dastjerdi, J. Zhou, H. Krishnaswamy, and G. Zussman, "Wideband full-duplex wireless via frequency-domain equalization: Design and experimentation," in *Proc. ACM MobiCom'19 (to appear)*, 2019.

- 50% duty cycle square waves with time period T_m
- Right-hand side switches are delayed with respect to left-hand side switched by $T_m/4$
- Delay of the transmission line is $T_m/4$

• Operation in the *forward* direction

• The signal in the forward direction experiences just the delay of the transmission line

• Operation in the *reverse* direction

• The signal in the reverse direction experiences the delay of the transmission line w/ an additional sign flip

• This structure provides perfect matching and lossless transmission with non-reciprocal phase shift of 180° across infinite bandwidth

Converting the Gyrator into a Circulator

- A $3\lambda/4$ ring is wrapped around the gyrator to realize a circulator with non-reciprocal wave propagation
- A. Nagulu, A. Alu, and H. Krishnaswamy, "Fully-Integrated Non-Magnetic 180nm SOI Circulator with >1W P1dB, >+50dBm IIP3 and High Isolation Across 1.85 VSWR." in *Proc. IEEE Radio Frequency Integrated Circuits Symposium (RFIC'18)*, 2018. Best Student Paper Award 1st place

Performance Measurements

- ~100x smaller in size than a ferrite magnetic coaxial circulator
- Measured insertion losses of 2.1 dB and 2.9 dB, and isolation >40 dB
- Measured TX-ANT IP_{1dB} > +30.66 dBm (i.e., 1 Watt of Tx power), TX-ANT IIP3 is +50 dBm
- A. Nagulu, A. Alu, and H. Krishnaswamy, "Fully-Integrated Non-Magnetic 180nm SOI Circulator with >1W P1dB, >+50dBm IIP3 and High Isolation Across 1.85 VSWR." in *Proc. IEEE Radio Frequency Integrated Circuits Symposium (RFIC'18)*, 2018. Best Student Paper Award 1st place

A Full-Duplex Radio Prototype with a CMOS Circulator

- A QPSK signal with 10 MSa/s sampling rate at +15 dBm TX power level
- An overall SIC of 95—100 dB is achieved

A Real-Time Full-Duplex Wireless Link Demo

• Up to 20 MHz real-time OFDM PHY using the GNU Radio software with customized DSP blocks (in C++) and packet-level demodulation and decoding

Summary

- The Columbia FlexICoN project and the open-access full-duplex radio in the ORBIT testbed
- Design and implementation of a non-magnetic, CMOS circulator with high isolation and high power handling, and its integration with a software-defined radio
- Future directions:
 - Development of efficient tuning algorithms for the CMOS circulator and its performance evaluation
 - Integration of the wideband RF canceller in the COSMOS testbed
 - Development of more advanced example experiments using the testbed (novel digital SIC algorithms, PHY layer security, evaluation of capacity gains, etc.)

Open-access FD radio

Gen-2 wideband FD radio

The city-scale PAWR COSMOS testbed in NYC

Thank you!

tingjun@ee.columbia.edu

http://www.ee.columbia.edu/~tc2668

Aravind Nagulu, Tingjun Chen, Gil Zussman, Harish Krishnaswamy "A Single Antenna Full-Duplex Radio using A Non-Magnetic, CMOS Circulator with In-built Isolation Tuning".

