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Summary

We study control algorithms that stop power grid cas-

cading failures by minimally shedding load (i.e., reducing

demand). The control is computed at the beginning of the

cascade and applied as the cascade unfolds on the basis

of real-time measurements; as the primary focus of this

paper we consider an environment where measurements

are noisy, missing, or erroneous.

Introduction

In a cascading failure of a power transmission system,

an initial event that disables a possibly small subset of the

grid conspires with the laws of physics to set off a sequence

of additional outages that, in the worst case, accelerates

until a large subset of the network is inoperative, resulting

in a significant loss of served power.

The mechanics of the process can be summarized as

follows: each time a component of the system fails, a new

set of power flows takes hold in the remaining network,

following the laws of physics and automatic control actions.

Should the new flows, for example, exceed the rating of a

given line, then that line will likely fail in the near future.

In an adverse scenario this gives rise to a vicious cycle

which constitutes the cascade (see e.g., [4, 7]). To protect

against a cascade, [6] discusses the design of a robust power

transmission system. Control strategies for stopping an

ongoing cascade are discussed in [7, 8, 11]. The work in

this abstract builds on the model in [5] by incorporating

stochastics; in particular, we model real-time measurement

errors.

We consider algorithms that shed load (demand) and

curtail supply (generation) as a function of observations

taken in real time, with the goal of arresting the cascade

with a minimum of demand lost. As a novel contribution,

we explicitly model “noise” that would naturally arise in

the collection of real-time data. That task relies on a

system termed SCADA (“Supervisory control and data

acquisition”) which is physically different from the power

transmission system. Under normal operation some of

this data is estimated using one of several possible state

estimators (see e.g., [9, 12]); in the event of a dangerous

cascade, it is quite likely that the measurements conveyed

by this system would become susceptible to errors, delays,

or loss due to rapidly changing conditions, transients, and

possibly even failure of the measurement equipment.

Building on work in [5] we focus on control algorithms

that are computed soon after the onset of the cascade,

and we assume an initially slow-moving cascade so that

at the start of the process there is sufficient time (e.g.,

minutes) to compute an appropriate control algorithm;

once computed, the control will be applied as the cascade

unfolds.

In devising a load-shedding schedule to respond to a

potential cascade, one must decide when, where, and by

how much demand is to be shed. Our method can be

viewed as a data-driven approach for computing such ac-

tions – it is data-driven because it relies on the knowledge

of the initial event, and on the real-time measurements

performed to apply the control. Moreover our algorithm

seeks to handle measurement error – we explicitly assume

that measurements can be incorrect, and yet we look for a

control that minimizes lost demand subject to (effectively)

a norm constraint on the errors. To this effect, in this

abstract we rely on a method akin to the Sample Average

Approximation Method [10] to generate, a priori, an ap-

propriate sample of measurement error sequences, and to

optimize a control over that set of sequences.

Models for Power Flows, Cascades, and Controls

We consider the linearized approximation model for the

power grid [2, 3]. In the linearized approximation (or DC

approximation) model we are given a directed graph G

with n nodes and m arcs (corresponding, respectively, to

buses and lines). The physics of power flow transmission
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is described by two systems of equations,

Nf = β, NTφ−Xf = 0, (1)

Here N denotes the node-arc incidence matrix of G [1], β

is an n-vector indicating (net) supply at each bus, X =

diag{xij}, and where for each line (i, j), xij > 0 is the

reactance. The vector f indicates power flows; the vector

φ indicates phase angles. See, e.g., [2, 3].

We consider a cascade and control actions over a dura-

tion of T discrete time-steps. As the cascade progresses

and control actions are taken, the (functioning) power

grid graph changes due to line outages. In this work, we

focus on a deterministic outage rule

line j becomes outaged if fj > uj . (2)

We denote Gt the power grid at the beginning of time-

step t. The cascade and control operations are described

in Framework 1, where we assume that in step 4 the grid

measurements are obtained with a non-deterministic error

bounded by some b ≥ 0.

Framework 1 Cascade Control

Input: a power grid with graph G. Set G1 = G.

1: Compute control algorithm

2: For t = 1, 2, . . . , T − 1 . controlled time-step t of

the cascade

3: Set f t = vector of power flows in Gt

4: Obtain grid measurements

5: Apply control

6: Set gt = vector of resulting power flows in Gt

7: Set Ot = set of lines of Gt that become outaged

in time-step t
8: Set Gt+1 = Gt −Ot

9: Adjust loads and generation in Gt

10: Termination (time-step T ). If any island of GT has

line overloads, proportionally shed demand in that

island until all line overloads are eliminated.

Control Methods

We use an affine-law-based control. We will compute

triples st, bt, ct, for t = 1, . . . , T , and at time step t, we

will scale all demands in each component (or “island”) K

of Gt by the common multiplier 0 ≤ λtK ≤ 1 defined by

the expression

λrK
.
= min{1, [bt + st(ct − κ̂tK)]+}, (3)

where κ̂tK is the observed maximum line overload of any

line in component K. We will write κ̂tK = κtK + εtK , where

κtK is the actual (or exact) and εtK is the error. We assume

εtK is a random variable with distribution P and that εt1K1

and εt2K2 are i.i.d. for every t1, t2,K1,K2.

Assume without loss of generality that initially the grid

is connected (there is one component) and let ε be the

vector of all errors over the T rounds. Denote by Y A(ε, β)

the yield that a control algorithm A obtains for a power

grid with initial demand vector β and measurements er-

rors ε, at the end of the termination step. Note that

Y A(ε, β) is a random variable. Our goal is to develop a

control algorithm A that either maximizes the expected

yield EP (Y A(ε, β)) or provides certain lower bound guar-

antee for it. Such control algorithm will provide an efficient

way to cope with a cascade and its nondeterministic affects

on the accuracy of collected grid measurements.
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