
111

Requet: Real-Time QoE Metric Detection for Encrypted
YouTube Tra�ic

CRAIG GUTTERMAN, Electrical Engineering, Columbia University
KATHERINE GUO, Nokia Bell Labs
SARTHAK ARORA, Computer Science, Columbia University
TREY GILLILAND, Computer Science, Columbia University
XIAOYANG WANG, Nokia Bell Labs
LES WU, Nokia Bell Labs
ETHAN KATZ-BASSETT, Electrical Engineering, Columbia University
GIL ZUSSMAN, Electrical Engineering, Columbia University

As video tra�c dominates the Internet, it is important for operators to detect video Quality of Experience
(QoE) in order to ensure adequate support for video tra�c. With wide deployment of end-to-end encryption,
traditional deep packet inspection-based tra�c monitoring approaches are becoming ine�ective. This poses a
challenge for network operators to monitor user QoE and improve upon their experience. To resolve this issue,
we develop and present a system for REal-time QUality of experience metric detection for Encrypted Tra�c,
Requet, that is suitable for network middlebox deployment. Requet uses a detection algorithm we develop to
identify video and audio chunks from the IP headers of encrypted tra�c. Features extracted from the chunk
statistics are used as input to a Machine Learning (ML) algorithm to predict QoE metrics, speci�cally, bu�er
warning (low bu�er, high bu�er), video state (bu�er increase, bu�er decay, steady, stall), and video resolution.
We collect a large YouTube dataset consisting of diverse video assets delivered over various WiFi and LTE
network conditions to evaluate the performance. We compare Requet with a baseline system based on previous
work and show that Requet outperforms the baseline system in accuracy of predicting bu�er low warning,
video state, and video resolution by 1.12⇥, 1.53⇥, and 3.14⇥, respectively.

CCS Concepts: • Information systems→Multimedia streaming; • Networks→ Network performance
analysis; • Computing methodologies→ Classi�cation and regression trees;

Additional Key Words and Phrases: Machine Learning, HTTP Adaptive Streaming

ACM Reference Format:
Craig Gutterman, Katherine Guo, Sarthak Arora, Xiaoyang Wang, Les Wu, Ethan Katz-Bassett, Gil Zussman.
2019. Requet: Real-Time QoE Metric Detection for Encrypted YouTube Tra�c. ACM Trans. Multimedia Comput.
Commun. Appl. 37, 4, Article 111 (December 2019), 27 pages. https://doi.org/10.1145/3304109.3306226

A preliminary version of this paper appeared in ACM MMSys 2019 [22].

Authors’ addresses: Craig Gutterman, Electrical Engineering, Columbia University; Katherine Guo, Nokia Bell Labs; Sarthak
Arora, Computer Science, Columbia University; Trey Gilliland, Computer Science, Columbia University; Xiaoyang Wang,
Nokia Bell Labs; Les Wu, Nokia Bell Labs; Ethan Katz-Bassett, Electrical Engineering, Columbia University; Gil Zussman,
Electrical Engineering, Columbia University.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and the
full citation on the �rst page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Copyright held by the owner/author(s). Publication rights licensed to Association for Computing Machinery.
1551-6857/2019/12-ART111
https://doi.org/10.1145/3304109.3306226

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 37, No. 4, Article 111. Publication
date: December 2019.

111:2 C. Gu�erman et al.

(a) (b)
Fig. 1. Amount of data received (KB), amount of data sent (KB), and bu�er level (sec) for two sessions over a
20 sec window (100 ms granularity): (a) 720p, (b) 144p.

1 INTRODUCTION
Video has monopolized Internet tra�c in recent years. Speci�cally, the portion of video over mobile
data tra�c is expected to increase from 60% in 2016 to 78% by 2021 [2]. Content providers, Content
Delivery Networks (CDNs), and network operators are all stakeholders in the Internet video sector.
They want to monitor user video Quality of Experience (QoE) and improve upon it in order to ensure
user engagement. Content providers and CDNs can measure client QoE metrics, such as video
resolution by using server-side logs [8, 21]. Client-side measurement applications can accurately
report QoE metrics such as player events and video quality levels [36, 50].
Traditionally, Deep Packet Inspection (DPI) enabled operators to examine HTTP packet �ows

and extract video session information to infer QoE metrics [7, 12]. However, to address security and
privacy concerns, content providers are increasingly adopting end-to-end encryption. A majority of
YouTube tra�c has been encrypted since 2016 [4] with a combination of HTTPS (HTTP/TLS/TCP) [9,
18, 40] and QUIC (HTTP/QUIC/UDP) [15, 25]. Similarly, since 2015 Net�ix has been deploying
HTTPS for video tra�c [10]. In general, the share of encrypted tra�c is estimated to be over 80%
in 2019 [5].

Although the trend of end-to-end encryption does not a�ect client-side or server-side QoE moni-
toring, it renders traditional DPI-based video QoE monitoring ine�ective for operators. Encrypted
tra�c still allows for viewing packet headers in plain text. This has led to recent e�orts to use
Machine Learning (ML) and statistical analysis to derive QoE metrics for operators. These works
either provide o�ine analysis for the entire video session [16, 37] or online analysis using both
network and transport layer information with separate models for HTTPS and QUIC [35].
Previous research developed methods to derive network layer features from IP headers by

capturing packet behavior in both directions: uplink (from the client to the server) and downlink
(from the server to the client) [26, 35, 37]. However, determining QoE purely based on IP header
information is inaccurate. To illustrate, Fig. 1 shows a 20 sec portion from two example sessions
from our YouTube dataset, described in §4, where each data point represents 100 ms. Both examples
exhibit similar patterns in the downlink direction while in the uplink direction, tra�c spikes are
much higher in Fig. 1(b) than in Fig. 1(a). However, Fig. 1(a) shows a 720p resolution with the
bu�er decreasing by 15 secs, whereas Fig. 1(b) shows a 144p resolution with the bu�er increasing
by 20 secs.

Given this challenge, our objective is to design features from IP header information that utilize
patterns in the video streaming algorithm. In general, video clips stored on the server are divided
into a number of segments or chunks at multiple resolutions. The client requests each chunk by
individually sending an HTTP GET request to the server. Existing work using chunks either

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 37, No. 4, Article 111. Publication
date: December 2019.

Requet: Real-Time QoE Metric Detection for Encrypted YouTube Tra�ic 111:3

infers QoE for the entire session [31] rather than in real-time, or lacks insight on chunk detection
mechanisms from network or transport layer data [16, 28, 42].

To improve on existing approaches that use chunks, we develop Requet, a system for REal-time
QUality of experience metric detection for Encrypted Tra�c designed for tra�c monitoring in
middleboxes by operators. Requet is devised for real-time QoE metric identi�cation as chunks are
delivered rather than at the end of a video session. Requet is designed to be memory e�cient for
middleboxes, where the memory requirement is a key consideration. Fig. 2 depicts the system
diagram for Requet and necessary components to train the QoE models as well as evaluate its
performance. Requet consists of the ChunkDetection algorithm, chunk feature extraction, and ML
QoE prediction models. The data acquisition process involves collecting YouTube tra�c traces
(Trace Collection) and generating ground truth QoE metrics as labels directly from the player (Video
Labeling). Packet traces are fed into Requet’s ChunkDetection algorithm to determine audio and
video chunks. The chunks are then used during the Feature Extraction process to obtain chunk-
based features. The chunk-based features from the training data along with the corresponding
QoE metrics are used to generate QoE prediction models. For evaluation, tra�c traces from the
testing dataset are fed into the trained QoE models to generate predicted QoE metrics. Accuracy is
measured by comparing the predicted QoE metrics and the ground truth labels.
Recent studies have shown that (i) stall events have the largest negative impact on end user

engagement and (ii) higher average video playback bitrate improves user engagement [8, 17].
Motivated by these �ndings, Requet aims to predict the current video resolution and events that
lead to QoE impairment ahead of time. This allows operators to proactively provision resources
[13, 39]. Requet predicts low bu�er level which allows operators to provision network resources
to avoid stall events [26]. Requet predicts four video states: bu�er increase, bu�er decay, steady,
and stall. Furthermore, Requet predicts current video resolution during a video session in real-time.
Speci�cally, Requet predicts video resolution on a more granular scale (144p, 240p,360p, 480p, 720p,
1080p), while previous work predicts only two or three levels of video resolution for the entire
video session [16, 31, 35].

We make the following contributions:
• Collect packet traces of 60 diverse YouTube video clips resulting in amixture of HTTP/TLS/TCP
and HTTP/QUIC/UDP tra�c. The traces are collected in two distinct settings with the �rst
set collected from a laptop web browser over WiFi networks from three service providers,
two in the United States and one in India, and the second set collected from the YouTube
App on an Android mobile device over LTE cellular networks. This is in contrast to most
prior works which rely on simulation or emulation [26, 35, 46] (see §4).

• Design Requet components
– Develop ChunkDetection, a heuristic algorithm to identify video and audio chunks from IP
headers (see §3).

– Analyze the correlation between audio and video chunk metrics (e.g., chunk size, duration,
and download time) and various QoE metrics, and determine fundamental chunk-based
features useful for QoE prediction. Speci�cally, design features based on our observation
that audio chunk arrival rate correlates with the video state (see §5).

– Develop ML models to predict QoE metrics in real-time: bu�er warning, video state, and
video resolution (see §6).

• Evaluate Requet performance
– Demonstrate drastically improved prediction accuracy using chunk-based features versus
baseline IP layer features commonly used in prior work [26, 35, 37, 47]. For the setting of a
web browser over WiFi networks, Requet predicts low bu�er warning with 92% accuracy,
video state with 84% accuracy, and video resolution with 66% accuracy, representing an

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 37, No. 4, Article 111. Publication
date: December 2019.

111:4 C. Gu�erman et al.

ChunkDetection

Model
Training

ChunkDetection Feature Extraction
QoE

Prediction
Models

Feature Extraction

Measure
Accuracy

Training

Evaluation

Requet

Video
Labeling

Video
Labeling

Video
Labeling

Data Acquisition

Trace Collection

Trace Collection
Packet
Traces

Packet
Traces

QoE Metrics

QoE Metrics

Fig. 2. System Diagram: Data acquisition and Requet components: ChunkDetection, feature extraction, and
QoE prediction models.

improvement of 1.12⇥, 1.53⇥, and 3.14⇥, respectively, over the existing baseline system.
Furthermore, Requet delivers a 91% accuracy in predicting low (144p/240p/360p) or high
resolution (480p/720p/1080p) in both the web browser over WiFi setting and the YouTube
App over LTE setting (see §6).

– Demonstrate that Requet trained in a lab environment works on unseen clips with varying
lengths from di�erent operators in multiple countries. This evaluation is more diverse than
prior work [16, 26, 35, 46] (see §6).

2 BACKGROUND & PROBLEM STATEMENT
2.1 Adaptive BitRate Streaming Operation
A majority of video tra�c over the Internet today is delivered using HTTP Adaptive Streaming
(HAS) with its dominating format being Dynamic Adaptive Streaming over HTTP (DASH) or
MPEG-DASH [45, 52]. In Adaptive BitRate (ABR), a video asset or clip is encoded in multiple
resolutions. Encoding is controlled by multiple parameters and a given resolution is associated with
a �xed setting for quantization, which is then coarsely related to an average bandwidth determined
by the source video. A clip with a given resolution is then divided into a number of segments or
chunks of variable length, a few seconds in playback time [33]. Typically video clips are encoded
with Variable Bitrate (VBR) encoding and are restricted by a maximum bitrate for each resolution.
An audio �le or the audio track of a clip is usually encoded with Constant Bitrate (CBR). For
example some of the YouTube audio bitrates are 64, 128, and 192 Kbps [49].
At the start of the session, the client retrieves a manifest �le which describes the location of

chunks within the �le containing the clip encoded with a given resolution. There are many ABR
variations across and even within video providers [33]. ABR is delivered over HTTP(S) which
requires either TCP or any other reliable transport [19]. The ABR algorithm can use concurrent
TCP or QUIC/UDP �ows to deliver multiple chunks simultaneously. A chunk can either be video or
audio alone or a mixture of both.

2.2 Video States and Playback Regions
The client employs a playout bu�er or client bu�er, whose maximum value is bu�er capacity, to tem-
porarily store chunks to absorb network variation. To ensure smooth playback and adequate bu�er
level the client requests a video clip chunk by chunk using HTTP GET requests, and dynamically
determines the resolution of the next chunk based on network condition and bu�er status.1

When the bu�er level is below a low threshold, the client requests chunks as fast as the network
can deliver them to increase the bu�er level. We call this portion of ABR operation the bu�er
�lling stage. In this stage, bu�er level can increase or decrease. Once the bu�er level reaches a high
1The �eld of ABR client algorithm design is an active research area [24, 34].

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 37, No. 4, Article 111. Publication
date: December 2019.

Requet: Real-Time QoE Metric Detection for Encrypted YouTube Tra�ic 111:5

(a) (b)

(c) (d)

(e) (f)

Fig. 3. Behavior of a 10-min session in 100 ms windows: (a) amount of data received (MB), (b) average
download bitrate (Mbps) over the past 60 sec, (c) bu�er level, (d) playback region, (e) video state, (f) video
resolution.

threshold, the client aims to maintain the bu�er level in the range between the threshold and bu�er
capacity. One example of a client strategy is to request chunks as fast as they are consumed by
the playback process, which is indicated by the video playback bitrate for the chunk [47]. We call
this portion the steady state stage. The playback stalls when the bu�er is empty before the end of
the playback is reached. After all chunks have been downloaded to the client bu�er, there is no
additional tra�c and the bu�er level decreases. From the perspective of bu�er level, an ABR session
can experience four exclusive video states: bu�er increase, bu�er decay, steady state, and stall.
Orthogonally, from the perspective of YouTube video playback, a session can contain three

exclusive regions: bu�ering, playing, and paused. Bu�ering region is de�ned as the period when the
client is receiving data in its bu�er, but video playback has not started or is stopped. Playing region
is de�ned as the period when video playback is advancing regardless of bu�er status. Paused region
is de�ned as the period when the end user issues the command to pause video playback before the
session ends. In playing region, video state can be in either bu�er increase, decay, or steady state.
Fig. 3 shows the behavior of a 10-min session from our dataset in §4 in each 100 ms window

with (a) the amount of data received (MB), (b) download throughput (Mbps) for the past 60 sec, (c)
bu�er level (sec), (d) occurrence of three playback regions, (e) occurrence of four video states, and
(f) video resolution. At the start of the session and after each of the three stall events, notice that
video resolution slowly increases before settling at a maximum level.

2.3 QoE Metrics and Prediction Challenges
This subsection describes the QoE metrics that we reference and the challenges in predicting these
metrics. We focus on metrics that the operator can use to infer user QoE impairments in real-time.
Speci�cally, we use three QoE metrics: bu�er warning, video state and video quality. We do not
focus on start up delay prediction, as it has been extensively studied in [26, 31, 35].
The �rst QoE metric we aim to predict is the current video state. The four options for video

state are: bu�er increase, bu�er decay, stall, or steady state. This metric allows for determining
when the video level of the user is in the ideal situation of steady state. Video state also recognizes
occurrences of bu�er decay and stall events, when the operator may want to allocate more resources
towards this user given that there are enough resources and the user is not limited by the data plan.

The bu�er warningmetric is a binary classi�er for determining if the bu�er level is below a certain
threshold Bu�Warningthresh (e.g., under 20 sec). This enables operators to provision resources in
real-time to avoid potential stall events before they occur. For example, at a base station or WiFi
AP, ABR tra�c with bu�er warning can be prioritized.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 37, No. 4, Article 111. Publication
date: December 2019.

111:6 C. Gu�erman et al.

Another metric used is the current video resolution. Video encoders consider both resolution and
target video bitrate. Therefore, it is possible to associate a lower bitrate with a higher resolution.
One can argue bitrate is a more accurate indicator of video quality. However, higher resolutions for
a given clip often result in higher bitrate values. The YouTube client reports in real-time resolution
rather than playback bitrate. Therefore, we use resolution as an indicator of video quality.
ABR allows the client to dynamically change resolution during a session. Frequent changes in

resolution during a session tend to discourage user engagement. Real-time resolution prediction
enables detection of resolution changes in a session. However, this prediction is challenging as
download bitrate to video resolution does not follow a 1-to-1 mapping. In addition, a video chunk
received by the client can either replace a previous chunk or be played at any point in the future.
Under the assumption that playback typically begins shortly (in the order of seconds) after the user
requests a clip, one can associate the average download bitrate with video quality, since higher
quality requires higher bitrate for the same clip. However, this is not true in a small time scale
necessary for real-time prediction. Network tra�c reveals the combined e�ect of bu�er trend
(increase or decay) and video playback bitrate which correlates to resolution. During steady state,
video’s download bitrate is consistent with playback bitrate. However, when a client is in non-steady
state, one cannot easily di�erentiate between the case in which a higher resolution portion is
retrieved during bu�er decay state (Fig. 1(a)), and the case in which a lower resolution portion
is retrieved during bu�er increase state (Fig. 1(b)). Both of these examples exhibit similar tra�c
patterns, however the behavior of QoE metrics is dramatically di�erent.

3 CHUNK DETECTION
The fundamental delivery unit of ABR is a chunk [27]. Therefore, identifying chunks instead of
relying on individual packet data can capture important player events. Our approach is to explore
the fundamental principle of HAS which is to transmit media in the unit of video and audio chunks.
The behavior of chunks over the transmission network is directly associated with the HAS protocol
and behavior of the client bu�er. This method is able to derive QoE metrics as long as one can (i)
detect chunks and (ii) build models associating IP level tra�c information with client bu�er level.
Therefore, this method is immune to changes to HAS as long as chunks can be detected from IP
level tra�c.

Speci�cally, the occurrence of a chunk indicates that the client has received a complete segment
of video or audio, resulting in increased bu�er level in playback time. An essential component of
Requet in Fig. 2 is its ChunkDetection algorithm to identify chunks from encrypted tra�c traces.
Features are extracted from the chunks and used as the input to the ML QoE prediction models.
Existing work using chunks either studies per-session QoE metrics [31] instead of predicting QoE
metrics in real-time, or lacks insight in chunk detection mechanisms [16, 28, 42]. In general, there
are two approaches of identifying chunks, (i) identify a packet with non-zero payload from the
client to the server as an HTTP request [31] and (ii) use an idle period (e.g., 900 ms is used to
separate chunks in a �ow of Net�ix tra�c [30]).

In this section, we �rst describe metrics capturing chunk behavior. We then develop ChunkDetec-
tion, a heuristic algorithm using chunk metrics to identify individual audio and video chunks from
IP level traces. Requet uses ChunkDetection to detect chunks from multiple servers simultaneously
regardless of the use of encryption or transport protocol. It relies purely on source/destination IP
address, port, protocol, and payload size from the IP header.

3.1 Chunk Metrics
We de�ne the following metrics for a chunk based on the timestamp of events recorded on the end
device (as shown in Fig. 4).

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 37, No. 4, Article 111. Publication
date: December 2019.

Requet: Real-Time QoE Metric Detection for Encrypted YouTube Tra�ic 111:7

…

Chunk Duration

Slack Time Download Time TTFB

Time

Start Time

Get Request

Download Packet

Fig. 4. Definition of chunk metrics (video or audio).

Algorithm 1 Audio Video Chunk Detection Algorithm
1: procedure C����D��������
2: Initialize ÆAudio and ÆV ideo for each IP �ow I
3: for each uplink packet p with IP �ow I do
4: if uplink(p) and (packetlen�th(p) > GETthresh then)
5: c [GetT imestamp,GetSize , DownStar t ,
6: DownEnd ,GetProtocol , I]
7: AV f la� DetectAV(c)
8: if AV f la� == 0 then
9: Append c to ÆAudio
10: else if AV f la� == 1 then
11: Append c to ÆV ideo
12: else
13: Drop c
14: GetT imestamp t ime(p)
15: GetSize packetlen�th(p)
16: DownFla� 0
17: if downlink (p) and (packetlen�th(p) > Downthresh then)
18: if DownFla� == 0 then
19: DownFla� = 1
20: DownStar t t ime(p)
21: DownEnd t ime(p)
22: DownSize+ = packetlen�th(p)

• Start_Time - The timestamp of sending the HTTP GET request for the chunk.
• TTFB - Time To First Byte, de�ned as the time duration between sending an HTTP GET
request and the �rst packet received after the request.

• Download_Time - The time duration between the �rst received packet and the last received
packet prior to the next HTTP GET request.

• Slack_Time - The time duration between the last received packet and the next HTTP GET
request.

• Chunk_Duration - The time duration between two consecutive HTTP GET requests. The
end of the last chunk in a �ow is marked by the end of the �ow. Note that a di�erent concept
called “segment duration” is de�ned in standards as playback duration of the segment [6].
For a given chunk, Chunk_Duration equals “segment duration” only during steady state.

• Chunk_Size - The amount of received data (sum of IP packet payload size) during Down-
load_Time from the IP address that is the destination of the HTTP GET request marking the
start of the chunk.

Note, for any chunk, the following equation holds: Chunk_Duration = sum(TTFB, Down-
load_Time, Slack_Time).

3.2 Chunk Detection Algorithm
We explore characteristics of YouTube audio and video chunks. Using the web debugging proxy
Fiddler [3], we discovered that audio and video are transmitted in separate chunks, and they do
not overlap in time for either HTTPS or QUIC. For both protocols we notice at most one video or
audio chunk is being downloaded at any given time. Each HTTP GET request is carried in one IP

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 37, No. 4, Article 111. Publication
date: December 2019.

111:8 C. Gu�erman et al.

Table 1. Chunk Notation

Symbol Semantics
GETthresh pkt length threshold for request (300 B)
Downthresh pkt length threshold for downlink data (300 B)
GetT imestamp timestamp of GET request
GetSize pkt length of GET request
DownStar t timestamp of �rst downlink packet of a chunk
DownEnd timestamp of last downlink packet of a chunk
DownSize sum of the payload of downlink packets of a chunk
GetProtocol IP header protocol �eld
DetectAV sorts chunk into audio chunk, video chunk or no

chunk based on GetSize , DownSize , GetProtocol
ÆAudio audio chunks for an IP �ow
ÆV ideo video chunks for an IP �ow

(a) (b)

Fig. 5. Individual video/audio chunks in a 10-min session with highest resolution (V:1080p, A:160kbps). (a)
Chunk Size, (b) Get Request Size.

packet with IP payload size above 300 B. Smaller uplink packets are HTTP POST requests regarding
YouTube log events, or TCP ACKs.

We propose a heuristic chunk detection algorithm in Algorithm 1 using notations in Table 1.
ChunkDetection begins by initializing each IP �ow with empty arrays for both audio and video
chunks. This allows for the chunk detection algorithm to collect chunks from more than one server
at a time.
ChunkDetection initially recognizes any uplink packet with a payload size above 300 B as an

HTTP GET request (line 4). This threshold may vary depending on the content provider. For
YouTube, we note that GET requests over TCP are roughly 1300 bytes, while GET requests over
UDP are roughly 700 bytes. For each newGET request theGetTimestamp, andGetSize , are recorded
(lines 14-16). After detecting a GET request in an IP �ow, chunk size is calculated by summing
up payload size of all downlink packets in the �ow until the next GET is detected (lines 17-22).
The last downlink packet in the group between two consecutive GET requests marks the end of a
chunk download. The chunk download time then becomes the di�erence in timestamp between
the �st and the last downlink packet in the group. 2
Once the next GET is detected, ChunkDetection records GetTimestamp, GetSize , download

start time DownStart , download end time DownEnd , the protocol usedGetProtocol , download size
DownSize , and the IP �ow I of the previous chunk (line 5). This allows for the calculation of chunk
duration and slack time using the timestamp of the next GET. GET request size and chunk size are
used in DetectAV (line 7) to separate data chunks into audio chunks, video chunks, or background
tra�c (lines 8-11). DetectAV uses the heuristic that HTTP GET request size for audio chunks is
slightly smaller than request size for video chunks consistently. Figs. 5 and 6 plot the HTTP GET
request size and subsequent audio/video chunk size in a high (1080p) and a low (144p) resolution
session, respectively. It is evident from Figs. 5(b), and 6(b) that the HTTP GET request size for

2ChunkDetection does not �ag TCP retransmission packets, therefore can overestimate chunk size when retransmission
happens. ChunkDetection also assumes chunks do not overlap in time in a given IP �ow. If it happens, the individual chunk
size can be inaccurate, but the average chunk size over the period with overlapping chunks is still accurate.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 37, No. 4, Article 111. Publication
date: December 2019.

Requet: Real-Time QoE Metric Detection for Encrypted YouTube Tra�ic 111:9

(a) (b)
Fig. 6. Individual video/audio chunks in a 10-min session with lowest resolution (V:144p, A:70kbps). (a) Chunk
Size, (b) Get Request Size.

audio chunks is slightly smaller than that for video chunks. Through the examination of encrypted
YouTube HTTP GET requests for video and audio using Fiddler, we discover that this di�erence is
due to the additional �elds used in HTTP GET requests for video content which do not exist for
audio content. Furthermore, as can be seen in Fig. 5(a), the video chunk size at higher resolution
levels is consistently larger than the audio chunk size. However, as can be seen in Fig. 6(a), the video
chunk size at lower resolution levels can be similar to or even smaller than the audio chunk size. We
can conservatively set the low threshold for chunk size to be 80 KB for our dataset. Furthermore, if
download size is too small (< 80 KB), DetectAv recognizes that the data is neither an audio or video
chunk, and the data is dropped (lines 12-13). This allows ChunkDetection to ignore background
YouTube tra�c.

4 DATA ACQUISITION
As shown in Fig. 2, data acquisition provides data for training and evaluation for Requet QoE
prediction models, including tra�c trace collection, derivation of QoE metrics as ground truth
labels associated with tra�c traces. We describe additional details about the publicly available
dataset in Appendix B. We collect data in two distinct settings, one using YouTube from a browser
on a laptop over WiFi networks (“Browser-WiFi”), and the other using YouTube App on an Android
smartphone over LTE cellular networks (“App-LTE”). We name the datasets Browser-WiFi and
App-LTE, respectively. The data is collected over two di�erent time periods to illustrate Requet’s
performance, since the underlying protocol of YouTube may vary on di�erent devices, over di�erent
networks, and over time [33].

4.1 Trace Collection from Browser over WiFi
For the �rst set of experiments, we design and implement a testbed (shown in Fig. 7(a)) to capture
a diverse range of YouTube behavior over WiFi. We watch YouTube video clips using the Google
Chrome browser on a Macbook Air laptop. We connect the laptop to the Internet via an Access
Point (AP) using IEEE 802.11n. A shell script simultaneously runs Wireshark’s Command Line
Interface, Tshark [1], and a Javascript Node server hosting the YouTube API.
The YouTube IFrame API environment collects information displayed in the “Stats for Nerds”

window. From this API wemonitor: video playback region (‘Playing’, ‘Paused’, ‘Bu�ering’), playback
time since the beginning of the clip, amount of video that is loaded, and current video resolution.
From these values we determine the time duration of the portion of the video clip remaining in the
bu�er. We collect information once every 100 ms as well as during any change event indicating
changes in video playback region or video resolution. This allows us to record any event as it
occurs and to keep detailed information about playback progress.
We have two options to collect network level packet traces in our setup, on the end device or

on the WiFi AP. Collecting traces at the AP would limit the test environment only to a lab setup.
Therefore, we opt to collect traces via Wireshark residing on the end device. This ensures that the
YouTube client data is synchronized with Wireshark traces and the data can be collected on public
and private WiFi networks. Our traces record packet timestamp, size, as well as the 5-tuple for
IP-header (source IP, destination IP, source port, destination port, protocol). Our dataset contains

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 37, No. 4, Article 111. Publication
date: December 2019.

111:10 C. Gu�erman et al.

(a) (b)
Fig. 7. Experimental setup for our trace collection. (a) WiFi experiments conducted in the lab on a laptop, (b)
Cellular experiments on an android cellphone.

delivery over HTTPS (9% GET requests) and QUIC (91% GET requests). We do not use any transport
level information. In addition, we record all data associated with a Google IP address. The IP header
capture allows us to calculate total number of packets and bytes sent and received by the client in
each IP �ow during a given time window.
To generate traces under varying network conditions, we run two categories of experiments:

static and movement. For static cases, we place the end device in a �xed location for the entire
session. However, the distance from the AP varies up to 70 feet or multiple rooms away. For
movement cases, we walk around the corridor (up to 100 feet) in our o�ce building with the end
device, while its only network connection is through the same AP.
We select 60 YouTube clips representing a wide variety of content types and clip lengths. Each

clip is available in all 6 common resolutions from YouTube, namely 144p, 240p, 360p, 480p, 720p
and 1080p. We categorize them into four groups, where groups A and B are medium length clips (8
to 12 min),C are short clips (3 to 5 min), and D are long clips (25-120 min). Table 2 lists the number
of unique clips in the group, along with the length of each clip and the session length, that is, the
duration for which we record the clip from its start.

For group A, we collect 425 sessions in both static (over 300) and movement cases (over 100) in a
lab environment in our o�ce building. All remaining experiments are conducted in static cases. For
clips in group B, we collect traces in an apartment setting in the US (set B1 with 60 sessions) and in
India (set B2 with 45 sessions) re�ecting di�erent WiFi environments. We collect traces in set C
and D from the lab environment, where each set contains more than 25 sessions. Overall, there are
over 10 sessions for each clip in group A and B and 6 sessions for each clip in group C and D.
Clips in both groups A and B range from 8 to 12 min in length. In each session we play a clip

and collect a 10-min trace from the moment the client sends the initial request. We choose this
range of length in order for the client to experience bu�er increase, decay and steady state. Shorter
clips with a length close to bu�er capacity (e.g., 2 min) can sometimes never enter steady state,
even when given abundant network bandwidth. In general, when there is su�cient bandwidth to
support the clip’s requirement, a clip can be delivered in its entirety before the end of the playback
happens. On the contrary, when available network bandwidth is not enough to support the clip’s
requirement, a clip may experience delayed startup and even stall events.
We collect traces over 6 months from Jan. through June 2018, with video resolution selection

set to “auto”. This means the YouTube client is automatically selecting video resolution based on
changes in network conditions. For each session, we set an initial resolution to ensure that all
resolution levels have enough data points.
Each group includes a diverse set of clips in terms of activity level. It ranges from low activity

types such as lectures to high activity types such as action sequences. This fact can be seen in the
wide range of video bitrates for any given resolution. Fig. 8 shows the average playback bitrate for
each video resolution for each clip in our dataset. All clips are shown in scatter plots, while clips in
group A are also shown with box plots.3 One can see that the average video playback bitrate spans
3For all box plots in the paper, the middle line is the median value. The bottom and top line of the box represents Q1
(25-percentile) and Q3 (75-percentile) of the dataset respectively. The lower extended line represents Q1 � 1.5IQR , where
IQR is the inner quartile range (Q3-Q1). The higher extended line represents Q3 + 1.5IQR .

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 37, No. 4, Article 111. Publication
date: December 2019.

Requet: Real-Time QoE Metric Detection for Encrypted YouTube Tra�ic 111:11

Table 2. Clip distribution in our dataset.

Group Clip Session No. of Unique
Length Length Clips

A 8 � 12 min 10 min 40
B 8 � 12 min 10 min 10
C 3 � 5 min 5 min 5
D 25 � 120 min 30 min 5

Fig. 8. Average playback bitrate vs. video resolution for clips in our dataset. Clips in all four groups are shown
in sca�er plots, while clips in group A are also shown with box plots.

overlapping regions. Therefore, this cannot provide a perfect indication of the video resolution
even if the entire session is delivered with a �xed resolution.
In our dataset, we notice that YouTube bu�er capacity varies based on video resolution. For

example, it is roughly 60, and 120 sec for 1080p and 144p, respectively.
We collect data for each YouTube video session in the Chrome browser as the sole application on

the end device. We record all packets between the client and any Google server. The client contacts
roughly 15 to 25 di�erent Google servers per session. We examine the download throughput (see
Fig. 3(a) and 3(b) for example) further by looking at the most commonly accessed server IP addresses
for each session sorted by the total bytes received. Our observation is that, during a session, the
majority of tra�c volume comes from a single to a few servers.

4.2 Trace Collection from YouTube Android App over Cellular
Testing on a mobile device connected to a laptop computer allows us to easily connect to cellular
networks which enables testing outside of a lab environment over a cellular network. For the
second set of experiments, we design and implement a data acquisition environment (shown in
Fig. 7(b)) to capture YouTube video playback statistics and encrypted network packet data on an
Android device over a cellular network. We use a rooted Motorola Moto G6 smartphone connected
to the Internet via Google Fi’s cellular networks. A shell script autonomously sets up the testing
environment using Android Debugging Bridge (ADB), collects packet data through tcpdump, and
collects video playback statistics through the YouTube Android App.

The YouTube App allows for collection of video playback statistics through its “Stats for Nerds”
window. This window allows us to easily monitor audio and video resolution, bu�er health, and
video playback region (“Playing”, “Paused”, and “Bu�ering”). We copy the information provided by
that window every 1 sec to a clipboard log using ClipStack which can then be easily exported from
the device.
Because we do not have access to data going through the cellular network, we opt to collect

network tra�c data on the phone using tcpdump for Android. We conduct tests in multiple cellular
conditions such as in a car driving on the highway, on a Columbia University shuttle bus around
upper Manhattan, in a backpack walking up and down the streets of New York City, and during
lectures. We collect this set of cellular data over 7 months from June through Dec. 2019. Again, we
use the 40 unique medium length clips in group A (8 to 12 min in length). The dataset consists of
over 250 video sessions with resolution ranging from 144p to 1080p.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 37, No. 4, Article 111. Publication
date: December 2019.

111:12 C. Gu�erman et al.

(a) (b) (c)
Fig. 9. Chunk metrics for all audio chunks in set A in Browser-WiFi se�ing. (a) chunk size, (b) chunk duration,
(c) download time.

5 REQUET ML FEATURE DESIGN
We develop the ML QoE metric prediction models for Requet by using packet traces and associated
ground truth labels (§4). We describe in detail in Appendix A our heuristic algorithm for the video
state labeling process to associate each time window with one of the four video states: bu�er
increase, bu�er decay, steady state, and stall. As shown in Fig. 2, Requet uses its ChunkDetection
component (§3) to convert traces into chunks, followed by its Feature Extraction component to
extract associated features.

We develop ML models using Random Forest (RF) to predict user QoE metrics [23]. We build the
RF classi�er in Python using the sklearn package. We con�gured the model to have 200 estimators
with the entropy selection criterion and the maximum number of features per tree set to auto.
We choose RF for the following reasons. (i) ML classi�cation algorithms based on decision trees
have shown better results in similar problems [16, 30, 35, 37, 47, 51] with RF showing the best
performance among the class [30, 47, 51]. (ii) On our dataset, Feedforward Neural Network and RF
result in roughly equal accuracy. (iii) RF can be implemented with simple rules for classi�cation in
real-time, well suited for real-time resource provisioning in middleboxes.

Each session in our dataset consists of (i) IP header trace and (ii) QoE metric ground truth labels
generated by our video labeling process in data acquisition (§4). Requet’s ChunkDetection (§3.2)
transforms the IP header trace into a sequence of chunks along with the associated chunk metrics
(§3.1). The goal of Requet QoE models is to predict QoE metrics using chunk metrics. To train
such ML models, it is critical to capture application behavior associated with QoE metrics using
chunk-based features. In this section, we analyze chunk behavior in our dataset (§5.1), explore
how to capture such behavior in chunk-based features (§5.2), and explain how to generate baseline
features used in prior work that are oblivious to chunk information (§5.3).

5.1 Chunk Analysis
We apply the ChunkDetection algorithm (Algorithm 1) of Requet to all sessions from the 40 clips in
set A in our dataset in both Browser-WiFi and App-LTE settings.
We examine the correlation between various chunk metrics (audio or video, chunk size, chunk

duration, e�ective rate which we de�ne as chunk size over chunk duration, TTFB, download time,
and slack time) to QoE metrics (bu�er level, video state, and resolution). In most cases of our
dataset, for a given session, audio and video chunks are transmitted from one server. However, in
some cases audio and video tra�c comes from di�erent servers. In other cases, the server switches
during a session. These �ndings are consistent with existing YouTube tra�c studies [36].

5.1.1 Chunk Analysis in Browser-WiFi Se�ing. We list the distribution of audio and video chunks
along with video state at the end of chunk download in Table 3. Most of the chunks arrive during
steady or bu�er increase states. An extremely small fraction (4% audio and 9% video) are associated
with stall or bu�er decay states. They represent two possible scenarios: (i) bandwidth is limited and

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 37, No. 4, Article 111. Publication
date: December 2019.

Requet: Real-Time QoE Metric Detection for Encrypted YouTube Tra�ic 111:13

(a) (b) (c)
Fig. 10. Chunk metrics for all video chunks in setA in Browser-WiFi se�ing. (a) chunk size, (b) chunk duration,
(c) download time.

Table 3. % of chunks in each state (Set A
Browser-WiFi).

Resolution Video State
Stall Decay Steady Increase

Audio 1.2 2.8 40.9 55.1
Video 3.7 5.9 47.6 42.8

Table 4. % of chunks in each state (Set A
App-LTE).

Resolution Video State
Stall Decay Steady Increase

Audio 2.7 4.0 52.3 41.0
Video 3.6 6.8 49.6 40.0

there are not enough chunks arriving to increase bu�er level substantially or (ii) bu�er is about to
transition into increase state.

Figs. 9 and 10 show the box plots for chunk duration, size, and download time for audio and video
chunks respectively. Each plus sign represents an outlier. TTFB re�ects the round trip time from the
client to the server, and has a median value of 0.05 sec. This accounts for a tiny portion of chunk
duration (median value � 5 sec). We can safely simplify the relationship between various chunk
metrics to (slack time = chunk duration - download time). Notice that slack time and e�ective rate
are derivable from chunk duration, size, and download time. The latter three are the key metrics
used in our feature selection for ML models.

Audio is encoded with CBR, however our examination of HTTP requests using Fiddler [3] reveal
that in the four video states (steady, bu�er increase, decay and stall), audio chunk size decreases in
the same order. This implies that audio chunk playback time also decreases in the same order. This
behavior is consistent across all resolution levels (Fig. 9(a)) and indicates that audio chunk size
exhibits a strong correlation with video state. Across all resolution levels, Fig. 9(b) shows median
audio chunk duration in steady and bu�er increase state is roughly 30 and 10 sec respectively, but
does not exhibit clear pattern in stall and bu�er decay states. Fig. 9(c) shows audio chunk download
time in steady and bu�er increase states are similar in value, both smaller than that of stall state,
which is smaller than that of bu�er decay state. The longer download time is an indication that
the network bandwidth is limited. This is a useful insight that current bandwidth alone can not
reveal. For example, a speci�c throughput can be associated to a low resolution with the bu�er
increasing or a higher resolution with the bu�er decreasing. All three audio chunk metrics are
clearly correlated with video state.

Fig. 10 shows video chunk statistics. There is a large overlap across di�erent resolutions and video
states in chunk size (Fig. 10(a)) and chunk duration (Fig. 10(b)). It reveals that without knowing
video state, it would be di�cult to determine video resolution, chunk size, and chunk duration. For
example, these statistics are very similar for a 240p chunk in bu�er increase state and a 720p chunk
in bu�er decay. Using audio chunk statistics to identify video state is critical in separating these
two cases.
For video chunks, our examination of HTTP requests using Fiddler also shows that for a clip

with a given resolution, steady state chunk size is larger than that in the remaining three states.
Fig. 10(a) further shows that median video chunk size increases as resolution increases from 144p

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 37, No. 4, Article 111. Publication
date: December 2019.

111:14 C. Gu�erman et al.

(a) (b) (c)

Fig. 11. Chunk metrics for all audio chunks in set A in App-LTE se�ing. (a) chunk size, (b) chunk duration, (c)
download time.

(a) (b) (c)
Fig. 12. Chunk metrics for all video chunks in set A in App-LTE se�ing. (a) chunk size, (b) chunk duration, (c)
download time.

to 480p and stays roughly the same around 2 MB from 480p to 1080p. Fig. 10(b) shows median
chunk duration in steady state is similar for 144p, 240p, and 360p, in the range of 35 � 45 sec,
and decreases from 25 sec for 480p to 5 sec for 1080p. To obtain a higher e�ective rate for higher
resolutions the chunk size levels o�, but to compensate chunk duration decreases. Fig. 10(c) shows
that median chunk download time exhibits larger values in stall or bu�er decay state, smaller and
similar values in steady or bu�er increase state. This is expected as with limited bandwidth, a
session may experience bu�er decay or even stall. Both bu�er decay and stall periods exhibit larger
chunk download times. However, during bu�er increase, retrieving smaller chunks faster than
steady state results in similar download time as steady state. During steady and bu�er increase
state, chunk size and duration combined provide some indication of resolution levels. However,
during stall and bu�er decay state, no indication can be easily seen from the three metrics.

To summarize, our key observations are as follows: (i) Without knowing video state it would be
di�cult to di�erentiate between the two cases: (a) Higher resolution clip in bu�er decay and (b)
Lower resolution clip in bu�er increase. (ii) Audio chunk statistics exhibit strong association with
video state. (iii) Video chunk size increases and eventually levels o� as resolution increases. At the
same time, video chunk duration is higher for lower resolution levels and decreases as resolution
level increases.

5.1.2 Chunk Analysis in App-LTE Se�ing. Similar to the Browser-WiFi setting, most of the chunks
in the App-LTE setting arive during steady or bu�er increase states.
For the App-LTE setting, Figs. 11 and 12 show the box plots for chunk duration, size, and

download time for audio and video chunks respecitvely. Each plus sign represents an outlier.
Across all resolution levels, Fig. 11(b) shows that median audio chunk duration is roughly 10 sec

in steady state and 5 sec in bu�er increase state. However, there is no clear pattern in stall or bu�er
decay states. Audio chunk size is consistent across all resolution levels (Fig. 11(a)) and is usually
around 70KB or 170KB. These patterns are considerably di�erent from the Browser-WiFi setting in
Fig. 9.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 37, No. 4, Article 111. Publication
date: December 2019.

Requet: Real-Time QoE Metric Detection for Encrypted YouTube Tra�ic 111:15

Fig. 12 shows video chunk statistics in the App-LTE setting. Again, the pattern is drastically
di�erent than the pattern in the Browser-WiFi setting in Fig. 10. Fig. 12(a) shows that across di�erent
states in the same resolution, the chunk size is much more consistent. In addition there is a clear
pattern of increasing chunk size as the resolution increases. The video chunk duration results
(Fig. 12(b)) show that video chunks arrive roughly every 10 sec during steady state and roughly
every 5 sec during bu�er increase state. This video chunk arrival behavior is similar to that of the
audio chunks in the same dataset. Fig. 12(c) shows, with a �xed resolution, median video chunk
download times exhibit larger values in stall or bu�er decay state, and smaller values in steady
or bu�er increase state. This is expected, since with a �xed chunk size, a larger chunk duration is
associated with limited bandwidth, which can cause a session to deplete its bu�er (enter bu�er
decay state) or even stall.

5.2 Chunk-based Features in Requet
Requet identi�es chunks using Algorithm 1 executed over all �ows during a YouTube session. For
each audio or video chunk, it records the following seven chunk metrics: protocol used to send
the GET request, start time, TTFB, download time, slack time, chunk duration, and chunk size.
However, it does not record the server IP address from which the chunk is delivered to the end
device as it has no relationship with our QoE metrics.
Results from §5.1 show that the most important metrics for both audio and video are chunk

size, duration, and download time. Chunk arrival is not a uniform process in time and therefore,
the number of chunks in a time window vary. This would require a variable number of features.
Instead, Requet uses statistics of chunk metrics in di�erent time windows. Speci�cally, for the 20
windows representing the immediate past 10, 20, ..., 200 sec, it records total number of chunks,
average chunk size and download time for each time window, resulting in 60 features each for audio
and video, and a total of 120 features.4 Regarding video resolution, Requet only makes predictions
upon receiving a video chunk. Therefore, beyond the 120 features, it further includes the 7 features
associated with the video chunk. By only collecting data on a per chunk basis, Requet requires a
minimal amount of storage of 7 �elds per chunk in the middlebox. Figs. 11(b) and 12(b) show that
chunks in the dataset arrive on average once every 5 sec. The sliding window based features in
Requet make it ideal for middleboxes with a memory requirement of 1016 bytes for the 127 features
(assuming each feature requires a maximum of 8 bytes).

5.3 Baseline Features
For the baseline system, we remove Requet’s ChunkDetection algorithm in Fig. 2 and the associated
features. We replace Requet and design a baseline system with a set of features that are commonly
used in prior work [26, 35, 37, 47]. Speci�cally, we select features that are used in more than one of
these prior works and use time window based features. We collect basic IP level features in terms
of �ow duration, direction, volume (total bytes), burstiness, as well as transport protocol. For each
100 ms window, we calculate the total number of uplink and downlink packets and bytes, and
include a one-hot vector representation of the transport protocols used for each IP address.5 The
�ve features for transport protocol are QUIC, TCP with TLS, TCP without TLS, no packets in that
interval, or other. After examining the total downlink bytes of the top 20 �ows in a session in our
dataset, we decide to include tra�c from the top 3 servers in our feature set. The remaining �ows
have signi�cantly smaller tra�c volume and therefore represent background tra�c in a session
4We use the past 200sec history as YouTube bu�er rarely increases beyond 3 min.
5In natural language processing, a one-hot vector is a 1xN matrix (vector) used to distinguish each word in a vocabulary
from every other word in the vocabulary. The vector consists of 0s in all cells with the exception of a single 1 in a cell used
uniquely to identify the word. In our case, each IP address is treated as a word.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 37, No. 4, Article 111. Publication
date: December 2019.

111:16 C. Gu�erman et al.

and do not deliver video or audio tra�c. By doing so, we e�ectively eliminate the tra�c that is
unrelated to our QoE metrics. In addition, we include the total number of uplink/downlink bytes
and packets from the top 20 servers for the session.

We calculate the average throughput and the total number of packets in the uplink and downlink
direction during a set of time intervals to capture recent tra�c behavior. Speci�cally, we use six
intervals immediately proceeding the current prediction window, and they are of length 0.1, 1, 10,
60, 120, and 200 sec.

Furthermore, during these six windows, we record the percentage of 100ms slots with any tra�c
in uplink and downlink separately. These two features are added to determine how bursty the
tra�c is during the given time window. In addition to the four features for the total network tra�c
for all servers contacted during the session, the features for each of the top three servers are:

• total bytes in past 100 ms in uplink/downlink
• total number of packets in past 100 ms in uplink/downlink
• transport protocol (5 features)
• for each of the windows of length 1, 10, 60, 120, and 200 sec:
– average throughput in uplink/downlink
– total number of packets in uplink/downlink
– % of 100 ms slots without any tra�c in uplink/downlink

To summarize, for each time window, there are up to 4 + 3 ⇥ (4 + 5 + 5 ⇥ 6) = 121 features for
the baseline system.

6 EVALUATION
We evaluate the performance of Requet in both the Browser-WiFi setting and the App-LTE setting.
For the Browser-WiFi setting we compare the accuracy in predicting each QoE metric of Requet
versus the baseline system. Both systems predict the current QoE metrics every 5 sec, except
for Requet which predicts resolution every chunk. Since the collected network tra�c transport
payload is encrypted, we are unable to evaluate Requet against previous works that use deep packet
inspection. Data collected as described in §4 is used for training, validation, and testing. Out of
the four sets of traces in our dataset (§4.1), we use group A, the largest one to train both systems
to predict each QoE metric in real-time. We follow the same testing procedure to evaluate the
performance of Requet in the App-LTE setting. We then compare the performance di�erences of
Requet in both settings.
We extend the evaluation of Requet in the Browser-WiFi setting by testing Requet on smaller

groups B, C , and D. Subsequently, we use groups B1 and B2 to determine how training in the lab
environment works on clips with similar length but with di�erent service providers and wireless
network conditions. B1 and B2 are experiments in residential WiFi settings in the US and India,
respectively. We also use group A as the training set for evaluating shorter clips (group C) and
longer clips (group D) in the same lab environment as group A.
For group A, we conduct 4-fold cross validation on the 40 clips. Speci�cally, we divide the 40

clips into four exclusive sets each with ten unique clips. In each fold, we �rst train a model for each
QoE metric using RF with features from 30 clips (three of the four sets). We then test the model on
the ten clips from the remaining set. We report each model’s average performance over the four
folds.

The bu�er warning model produces two prediction possibilities. It indicates whether the bu�er
level is below the threshold Bu�Warningthresh or not. The video state model produces four states
and the resolution model produces six resolution levels.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 37, No. 4, Article 111. Publication
date: December 2019.

Requet: Real-Time QoE Metric Detection for Encrypted YouTube Tra�ic 111:17

Table 5. Bu�er warning performance with data in group A.

Type Baseline Browser-WiFi Requet Browser-WiFi Requet App-LTE
Precision Recall Precision Recall Precision Recall

BfW 51.0 11.1 79.0 68.7 88.4 79.7
NBfW 86.0 98.1 94.1 96.5 98.5 99.2

Accuracy 84.9 92.0 97.8

Table 6. Video state performance with data in group A.

Type Baseline Browser-WiFi Requet Browser-WiFi Requet App-LTE
Precision Recall Precision Recall Precision Recall

Stall 31.1 7.6 70.4 51.9 92.2 86.3
Buf. Decay 32.0 16.3 78.0 78.7 65.7 25.2
Buf. Increase 64.1 57.6 80.2 84.2 88.1 95.8
Steady 57.6 80.2 90.7 92.2 89.6 90.2

Accuracy 55.4 84.2 88.2

We report accuracy of each model as the ratio of the number of correct predictions over total
number of predictions. For each label a model predicts, we further report: (i) precision de�ned as
the ratio of true positives to total positives, that is, the percentage of correct predictions out of all
positive predictions of a label, and (ii) recall de�ned as the ratio of correct predictions to total true
occurrences of a label, that is, the percentage of a label correctly predicted.

6.1 Bu�er Warning Prediction
The �rst metric we examine is bu�er warning. We set the threshold for bu�er level warning,
Bu�Warningthresh, to be 20 secs. This provides ample time to provision enough bandwidth before
an actual stall occurs.
For this metric, each time window in our dataset is labeled with either “no bu�er warning”

(NBfW) or “bu�er warning” (BfW). In group A, signi�cantly more chunks are labeled with NBfW
(84%) than BfW (16%). The results in Table 5 show that in the Browser-WiFi setting both baseline
and Requet perform well for this task, with accuracy reaching 85% and 92%, respectively. We see
that precision and recall for NBfW are higher than those for BfW in both baseline and Requet.
Given the current label is BfW, Requet provides signi�cantly higher probability of predicting BfW
correctly with recall of 68% over 11% for the baseline. This is because Requet uses chunk features
to detect the case when no chunks have recently arrived. However, it is di�cult for the baseline
system to identify such cases due to the lack of chunk detection. For example, baseline can not
di�erentiate packets as being part of a chunk or background tra�c.

In the App-LTE setting, Requet shows slightly improved performance compared to Browser-WiFi.
Requet achieves a recall of 79.9% for BfW and 99.2% for NBfW. This results in a total accuracy
of 97.8%. For the Browser-WiFi dataset, the download time and TTFB of the most recent chunk,
the video chunk count and the average video chunk size of a variety of windows are signi�cant
features that are used in the RF model for bu�er warning prediction. For the App-LTE dataset, the
download time and TTFB of the most recent chunk, the video chunk count, and the audio chunk
count of a variety of windows are signi�cant features that are used in the RF model for bu�er
warning prediction.

6.2 Video State Prediction
The results of video state prediction are shown in Table 6. In the Browser-WiFi setting, Re-
quet achieves overall accuracy of 84%, compared to 55% for baseline, representing a 53% im-
provement. Requet also outperforms baseline in precision and recall for each state.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 37, No. 4, Article 111. Publication
date: December 2019.

111:18 C. Gu�erman et al.

Table 7. Video resolution performance with data in group A.

Type Baseline Browser-WiFi Requet Browser-WiFi Requet App-LTE
Precision Recall Precision Recall Precision Recall

144p 13.0 7.6 80.6 79.9 87.8 86.2
240p 14.6 10.1 68.7 64.3 74.0 81.8
360p 14.1 9.9 49.2 64.4 74.0 79.4
480p 24.7 33.3 64.9 63.8 73.7 57.2
720p 24.5 30.3 60.6 54.5 80.3 83.4
1080p 22.2 20.1 75.0 76.9 91.9 89.4

Accuracy 21.8 66.9 80.6

Stall, bu�er decay, bu�er increase and steady state appear in 3.7%, 5.9%, 42.8% and 47.6% of
chunks in group A respectively (Table 3). The precision and recall for both systems increase in the
same order of stall, bu�er decay, bu�er increase and steady.

However, baseline achieves below 40% in precision and recall for both the stall and bu�er decay
states. This implies that during these two states, network tra�c does not have a signi�cant pattern
for baseline to discover. Furthermore, during steady state there can be gaps of 30 sec or longer. A
long gap also occurs when bu�er is in decay state. Baseline features cannot separate bu�er decay
from steady state.
Examination of the Requet model reveals that audio chunk count for each 20 sec window is an

important feature to predict video state. For example, if there are a few audio chunks in the past 20
sec it is likely that bu�er is increasing, and if there are no audio chunks in the past 120 sec it is
likely to be in stall state. This explains the relatively high performance of Requet .

In the App-LTE setting, Requet achieves an overall accuracy of 88.2%. Compared to the Browser-
WiFi dataset, Requet in the App-LTE setting achieves an improved performance in predicting the
stall state, but is worse in predicting bu�er decay.

For the App-LTE dataset the download time and TTFB of the most recent chunk, and the number
of video chunks in the time range from 60 to 200 sec are signi�cant features that are used in the RF
model for state prediction. For the Browser-WiFi dataset the download time and TTFB of the most
recent chunk, the number of video chunks in the time range from 60 to 200 sec, and the average
chunk size are signi�cant features that are used in the RF model for state prediction.

6.3 Video Resolution Prediction
It is extremely challenging for baseline to predict video resolution even with history of up to 200
sec. Overall accuracy is only 22%, slightly better than randomly picking one out of six choices.

As seen in Fig. 8, there is a large overlap of average playback bitrates of video clips of di�erent
resolutions due to varying activity levels in the video content. Without any knowledge about the
content of the video or the video state, it is extremely di�cult if not impossible to associate a chunk
given its playback bitrate with the resolution it is encoded with. Furthermore, without knowing
video state there is a large overlap in video chunk size and chunk duration across resolutions as
seen in Fig. 10.

By using both audio and video chunks, Requet achieves a 66% accuracy for predicting resolution
(six levels) in the Browser-WiFi setting. This result demonstrates that Requet is able to enhance video
resolution prediction. By narrowing down the options in resolution to three: small (144p/240p),
medium (360p/480p), and large (720p/1080p), Requet achieves an accuracy of 87%. If the number
of options is reduced to two: small (144p/240p/360p) and large (480p/720p/1080p) the accuracy
improves to 91%.
The accuracy of Requet in the App-LTE setting is 80.6%. Requet in the App-LTE setting has

improved performance compared to in the Browser-WiFi setting in predicting all resolutions except

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 37, No. 4, Article 111. Publication
date: December 2019.

Requet: Real-Time QoE Metric Detection for Encrypted YouTube Tra�ic 111:19

(a) (b)

(c) (d)

(e) (f)

Fig. 13. Accuracy of Requet models trained with group A. (a) Precision of video state, (b) Precision of video
resolution, (c) Precision of stall warning, (d) Recall of video state, (e) Recall of video resolution, (f) Recall of
stall warning.

480p, where it has di�culties di�erentiating 480p from 360p. This can be caused by the dataset
having more data points during 360p as well as having similar video chunk sizes for these two
resolutions.

For both datasets, the most important features are those features related to the most recent chunk
as well as the average video chunk size.

6.4 Performance Comparison of Browser-WiFi vs. App-LTE
The performance of Requet in the App-LTE setting is considerably greater than in the Browser-WiFi
setting. As shown in Tables 5, 6, and 7, the accuracy for predicting bu�er warning, video state, and
video resolution in the Browser-WiFi setting is 92.0%, 84.2%, and 66.9%, respectively. While the
accuracy for predicting bu�er warning, video state, and video resolution in the App-LTE setting
is 97.8%, 88.2%, and 80.6%, respectively. The only exception to this is when predicting the bu�er
decay state, the accuracy is higher in the Browser-WiFi setting.
There are two potential reasons for the higher accuracy in the App-LTE setting. First, across

di�erent states in the same resolution, the chunk size is more consistent in the App-LTE setting.
Second, the network conditions are more stable in the App-LTE setting, due to generally good
service coverage in our test area. However, in the Browser-WiFi setting, arti�cially varying network
conditions are created from movement experiments during the data collection stage. More stable
network conditions naturally lead to less variation in video states once steady state is entered.

6.5 Extended Test over WiFi Networks
Up to this point we have reported results from our systems trained with part of group A and tested
on di�erent clips in group A in both the Browser-WiFi setting and the App-LTE setting. Next, we
use group A in the Browser-WiFi setting as the training data for Requet and evaluate with groups
B1, B2, C , and D. We test Requet on 10 clips from groups B1 and B2 for residential WiFi settings
in the US and India, respectively, to see how they perform on unseen clips of similar length and
unseen WiFi environments. In addition, we use the same lab WiFi environment in group A, to
test Requet on 5 clips of shorter length of 5 min in group C and longer length of 25 min in group

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 37, No. 4, Article 111. Publication
date: December 2019.

111:20 C. Gu�erman et al.

D. Fig. 13 reports the average precision and recall of these four tests along with the 4-fold cross
validation results from group A.

Depending on the environment and QoE metric, performance of these extended sets of tests
either improves or deteriorates compared with results from group A reported earlier in this section.
For example, groups B1, B2, and C have improved precision and recall in predicting stall and bu�er
decay states. Group D shows lower precision in predicting bu�er decay, but higher recall for both
stall and bu�er decay. Improved precision and recall results appear for predicting bu�er threshold
warning.

Accuracy for video resolution varies from experiment to experiment. Surprisingly, group B2 has
the highest overall accuracy of 70% when training with group A. This is in part due to that there
were zero 480p events collected in group B2. This resolution level has lower precision than 144p,
240p, and 1080p (see Table 7), and is extremely di�cult for the other test sets to predict as well.
Most precision and recall results for other sets are better than group A with a few exceptions.

This could be due to the fact that group A includes movement experiments, while the other groups
only contain static ones. A video session naturally exhibits di�erent behavior in di�erent types
of environments. In addition, we plan to improve our prediction models by studying how the
imbalance in data samples impacts the precision and recall of each model.

7 RELATEDWORK
Traditional tra�c monitoring systems rely on DPI to understand HTTP request and reply messages.
The systems use meta-data to understand ABR and infer video QoE metrics. The MIMIC system
estimates average bitrate, re-bu�ering ratio and bitrate switches for a session by examining HTTP
logs [32]. Comparatively, BUFFEST builds ML classi�ers to estimate bu�er level based either on the
content of HTTP requests in the clear or on unencrypted HTTPS requests by a trusted proxy [26].
HighSee identi�es HTTP GET requests and builds a linear Support Vector Machine (SVM) [14]
model to identify audio, video, and control chunks to separate audio, video and control �ows [20].

For encrypted tra�c, proposals fall into two categories. The �rst category builds session models
o�ine by detecting HTTP requests as in eMIMIC [31], while the second category builds ML models
to predict QoE metrics either o�ine or online.

O�line Models: The o�ine approach uses entire video session tra�c to generate features to
classify the session into classes. YouQ classi�es a session into two to three QoS classes [37]. The
system in [16] builds models to roughly put a session into three categories in terms of stall events
(“non-stall”, “0-1 stalls”, or “2-or-more stalls”), or three classes based on average quality level. The
system in [38] captures IP level tra�c information (which is suitable for both TLS and QUIC tra�c)
and feeds ML models to predict per-session Mean Opinion Score (MOS) (2 or 3 classes), longest
resolution (“sd” vs. “hd”), and stalling occurrences (“yes” vs. “no”). Using simulation, [48] builds
ML models to predict average bitrate, quality variation, and three levels of stall ratio (no, mid,
severe) for entire sessions using post processing. Comparatively, [29] classi�es a session into two
categories (with or without stall events) based on cell-related information collected at the start of a
video session.

Focusing on the newly proposed Network Data Analytics Function in the 5G architecture, [43]
associates network QoS metrics with the MOS for each video session using ML models. Rather
than using actual network traces, the evaluation of the ML models is purely based on simulation.

Online Models: The online approach uses tra�c from the past time window in the session to
generate features to predict QoE metrics speci�c to that time window. ViCrypt [44] develops ML
models to predict stall events both in real-time and for the entire video session based on network
level information for separate TCP and UDP �ows. On the other hand, [51] builds ML models to
purely predict video resolution in real-time using network level information as features. The focus

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 37, No. 4, Article 111. Publication
date: December 2019.

Requet: Real-Time QoE Metric Detection for Encrypted YouTube Tra�ic 111:21

of the study is on feature selection and benchmarking of di�erent ML models. Similarly, [30] simply
focuses on prediction of bu�er level using features based on network level information. It only
predicts two states – “bu�ering” and “stable” and discards any transition period in between (that is,
without including these data in training or testing of ML models), while Requet predicts video state
based on bu�er status in much �ner granularity (with four exclusive states: bu�er increase, bu�er
decay, steady state and stall) without discarding any data. The system in [35] develops features
based on both network and transport level information in a 10 sec time window to build separate
classi�ers for HTTPS and QUIC tra�c to infer startup delay (below or above a given threshold),
stall event occurrence, and video quality level (“low” and “high”). This system uses features based
on packet level information and collects data for time windows of 100 ms. This has a relatively
large memory requirement compared to Requet which only requires network data collected on a
per chunk basis.

The system in [11] uses network and application level features to infer startup delay and resolu-
tion. Similar to Requet , they also identify video chunks.

Flow Identi�cation: Identifying video �ows from encrypted tra�c is orthogonal to the QoE
detection problem for given ABR �ows. It is an example of the broad encrypted tra�c classi�cation
problem. The Silhouette system [28] detects video chunks (also named Application Data Units)
from encrypted tra�c in real-time for ISP middleboxes using video chunk size, payload length,
download rate threshold values. The real-time system in [41] identi�es Net�ix videos using TCP/IP
header information including TCP sequence numbers. This approach relies on a “�nger print”
database built from a large number of video clips hosted by Net�ix. The �nger print is unique for
each video title, therefore it is ine�ective in classifying new video titles not previously seen. The
system in [47] classi�es an encrypted Youtube �ow every 1sec interval into HAS or non-HAS �ows
in real-time. For a HAS �ow, it further identi�es the bu�er states of the video session into �lling,
steady, depleting and unclear. The high accuracy to predict bu�er state is partly due to the fact that
the entire dataset contains only 3 clips with multiple sessions for each clip. This system also uses a
feature based on the standard deviation of packet size, which is not feasible for implementation in
middleboxes due to the memory requirement.

8 CONCLUSION AND FUTUREWORK
We present Requet, a system for REal-time QUality of experience metric detection for Encrypted
Tra�c. We focus on three QoE metrics (1) bu�er warning, (2) video state, and (3) video quality, as
they are crucial in allowing network level resource provisioning in real-time. We design a video
state labeling algorithm to automatically generate ground truth labels for ABR tra�c data.
Requet consists of the ChunkDetection algorithm, chunk feature extraction, and ML QoE pre-

diction models. Our evaluation using YouTube tra�c collected over WiFi networks demonstrates
Requet using chunk-based features exhibit signi�cantly improved prediction power over the baseline
system using IP-layer features.
We demonstrate that the Requet QoE models trained on one set of clips exhibit similar perfor-

mance in di�erent network environments with a variety of previously unseen clips with various
lengths. In addition, by testing with both the Browser on WiFi and the YouTube Application on
LTE settings we validate that Requet performs well even for di�erent streaming algorithms.

A current limitation of Requet is that it is based on YouTube and needs to be trained separetly for
each streaming algorithm. Therefore, one direction of our future work includes building a generic
model for a wide range of networks and client algorithms for ABR. We plan to evaluate additional
services such as Disney+ and Net�ix. Another direction of our future work includes using software
de�ned networking to utilize Requet and investigate the QoE improvements achieved via resource

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 37, No. 4, Article 111. Publication
date: December 2019.

111:22 C. Gu�erman et al.

scheduling. We aim to study the joint e�ect of operator optimization and content provider video
optimization mechanisms.

ACKNOWLEDGMENTS
This work was supported in part by NSF grants CNS-1650685, CNS-1413978, and DGE 16-44869.

REFERENCES
[1] About wireshark. https://www.wireshark.org/about.html.
[2] Cisco visual networking index: Global mobile data tra�c forecast update, 2016–2021. https://www.cisco.com/c/en/us/

solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html.
[3] Telerik �ddler, the free web debugging proxy. https://www.telerik.com/�ddler.
[4] How Google is making YouTube safer for its users, Fortune. http://fortune.com/2016/08/02/

google-youtube-encryption-https/, Aug. 2016.
[5] Encrypted tra�c analytics, Cisco white paper. https://www.cisco.com/c/dam/en/us/solutions/collateral/

enterprise-networks/enterprise-network-security/nb-09-encrytd-traf-anlytcs-wp-cte-en.pdf, 2019.
[6] 3GPP. Transparent end-to-end Packet-switched Streaming Service (PSS). TS 26.234, 3rd Generation Partnership Project

(3GPP), June 2010.
[7] V. Aggarwal, E. Halepovic, J. Pang, S. Venkataraman, and H. Yan. Prometheus: toward quality-of-experience estimation

for mobile apps from passive network measurements. In Proc. ACM HotMobile, Feb. 2014.
[8] A. Ahmed, Z. Sha�q, H. Bedi, and A. R. Khakpour. Su�ering from bu�ering? detecting QoE impairments in live video

streams. In Proc. IEEE ICNP, Oct. 2017.
[9] J. Amann, O. Gasser, Q. Scheitle, L. Brent, G. Carle, and R. Holz. Mission accomplished?: HTTPS security after diginotar.

In Proc. ACM IMC, Nov. 2017.
[10] L. Armasu. Net�ix adopts e�cient HTTPS encryption for its video streams. https://www.tomshardware.com/news/

net�ix-e�cient-https-video-streams,32420.html, Aug. 2016.
[11] F. Bronzino, P. Schmitt, S. Ayoubi, G. Martins, R. Teixeira, and N. Feamster. Inferring streaming video quality from

encrypted tra�c: Practical models and deployment experience. June 2020.
[12] P. Casas, M. Seufert, and R. Schatz. YOUQMON: a system for on-line monitoring of YouTube QoE in operational 3G

networks. SIGMETRICS Performance Evaluation Review, 41(2):44–46, 2013.
[13] G. Cofano, L. De Cicco, T. Zinner, A. Nguyen-Ngoc, P. Tran-Gia, and S. Mascolo. Design and experimental evaluation

of network-assisted strategies for http adaptive streaming. In Proc. ACM MMSys, June 2016.
[14] C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273–297, 1995.
[15] Y. Cui, T. Li, C. Liu, X. Wang, and M. Kühlewind. Innovating transport with QUIC: design approaches and research

challenges. IEEE Internet Computing, 21(2):72–76, 2017.
[16] G. Dimopoulos, I. Leontiadis, P. Barlet-Ros, and K. Papagiannaki. Measuring video QoE from encrypted tra�c. In Proc.

ACM IMC, Nov. 2016.
[17] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A. Ganjam, J. Zhan, and H. Zhang. Understanding the impact of

video quality on user engagement. In Proc. ACM SIGCOMM, Aug. 2011.
[18] Z. Durumeric, Z. Ma, D. Springall, R. Barnes, N. Sullivan, E. Bursztein, M. Bailey, J. A. Halderman, and V. Paxson. The

security impact of HTTPS interception. In Proc. NDSS, Feb. 2017.
[19] R. T. Fielding and J. F. Reschke. Hypertext transfer protocol (HTTP/1.1): message syntax and routing. RFC, 7230:1–89,

2014.
[20] S. Galetto, P. Bottaro, C. Carrara, F. Secco, A. Guidolin, E. Targa, C. Narduzzi, and G. Giorgi. Detection of video/audio

streaming packet �ows for non-intrusive QoS/QoE monitoring. In IEEE Int. Workshop on Measurement and Networking,
Sept. 2017.

[21] T. A. Guarnieri, I. Drago, A. B. Vieira, Í. Cunha, and J. M. Almeida. Characterizing QoE in large-scale live streaming.
In Proc. IEEE GLOBECOM, Dec. 2017.

[22] C. Gutterman, K. Guo, S. Arora, X. Wang, L. Wu, E. Katz-Bassett, and G. Zussman. Requet: real-time qoe detection for
encrypted YouTube tra�c. In Proc. of ACM MMSys, June 2019.

[23] T. K. Ho. Random decision forests. In Proc. IEEE Conf. Document analysis and recognition, 1995.
[24] T. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson. A bu�er-based approach to rate adaptation: evidence

from a large video streaming service. In Proc. ACM SIGCOMM, Aug. 2014.
[25] A. M. Kakhki, S. Jero, D. R. Cho�nes, C. Nita-Rotaru, and A. Mislove. Taking a long look at QUIC: an approach for

rigorous evaluation of rapidly evolving transport protocols. In Proc. ACM IMC, Nov. 2017.
[26] V. Krishnamoorthi, N. Carlsson, E. Halepovic, and E. Petajan. BUFFEST: predicting bu�er conditions and real-time

requirements of HTTP(S) adaptive streaming clients. In Proc. ACM MMSys, June 2017.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 37, No. 4, Article 111. Publication
date: December 2019.

Requet: Real-Time QoE Metric Detection for Encrypted YouTube Tra�ic 111:23

[27] W. Law. Ultra-Low-Latency STreaming Using Chunked-Encoded and Chunked-Transferred CMAF. Technical report,
Akamai, Oct. 2018.

[28] F. Li, J. W. Chung, and M. Claypool. Silhouette: Identifying youtube video �ows from encrypted tra�c. In Proc. ACM
NOSSDAV, June 2018.

[29] Y. Lin, E. M. R. Oliveira, S. B. Jemaa, and S. Elayoubi. Machine learning for predicting QoE of video streaming in
mobile networks. In Proc. IEEE ICC, May 2017.

[30] S. C. Madanapalli, H. H. Gharakheili, and V. Sivaraman. Inferring Net�ix user experience from broadband network
measurement. In Proc. IEEE TMA, June 2019.

[31] T. Mangla, E. Halepovic, M. Ammar, and E. Zegura. eMIMIC: estimating http-based video QoE metrics from encrypted
network tra�c. In Proc. IEEE TMA, June 2018.

[32] T. Mangla, E. Halepovic, M. H. Ammar, and E. W. Zegura. MIMIC: using passive network measurements to estimate
http-based adaptive video QoE metrics. In Proc. IEEE TMA, June 2017.

[33] A. Mansy, M. H. Ammar, J. Chandrashekar, and A. Sheth. Characterizing client behavior of commercial mobile video
streaming services. In Proc. ACM MoVid, Mar. 2014.

[34] H. Mao, R. Netravali, and M. Alizadeh. Neural adaptive video streaming with pensieve. In Proc. ACM SIGCOMM, Aug.
2017.

[35] M. H. Mazhar and Z. Sha�q. Real-time video quality of experience monitoring for HTTPS and QUIC. In Proc. IEEE
INFOCOM, Apr. 2018.

[36] A. Mondal, S. Sengupta, B. R. Reddy, M. J. V. Koundinya, C. Govindarajan, P. De, N. Ganguly, and S. Chakraborty.
Candid with YouTube: adaptive streaming behavior and implications on data consumption. In Proc. NOSSDAV, June
2017.

[37] I. Orsolic, D. Pevec, M. Suznjevic, and L. Skorin-Kapov. YouTube QoE estimation based on the analysis of encrypted
network tra�c using machine learning. In Proc. IEEE Globecom Workshops, Dec. 2016.

[38] I. Orsolic, M. Suznjevic, and L. Skorin-Kapov. YouTube QoE estimation from encrypted tra�c: Comparison of test
methodologies and machine learning based models. In Tenth International Conference on Quality of Multimedia
Experience, QoMEX 2018, Cagliari, Italy, May 29 - June 1, 2018, pages 1–6. IEEE, 2018.

[39] S. Petrangeli, T. Wu, T. Wauters, R. Huysegems, T. Bostoen, and F. De Turck. A machine learning-based framework for
preventing video freezes in http adaptive streaming. Journal of Network and Computer Applications, 2017.

[40] A. Razaghpanah, A. A. Niaki, N. Vallina-Rodriguez, S. Sundaresan, J. Amann, and P. Gill. Studying TLS usage in
android apps. In Proc. ACM CoNEXT, Dec. 2017.

[41] A. Reed and M. Kranch. Identifying HTTPS-protected net�ix videos in real-time. In Proc. CODASPY, Mar. 2017.
[42] P. Schmitt, F. Bronzino, R. Teixeira, T. Chattopadhyay, and N. Feamster. Enhancing transparency: Internet video quality

inference from network tra�c. In Proc. TPRC46, 2018.
[43] S. Schwarzmann, C. C. Marquezan, M. Bosk, H. Liu, R. Trivisonno, and T. Zinner. Estimating video streaming qoe in

the 5g architecture using machine learning. In Proc. ACM MobiCom Internet-QoE Workshop, Oct. 2019.
[44] M. Seufert, P. Casas, N. Wehner, L. Gang, and K. Li. Features that matter: Feature selection for on-line stalling prediction

in encrypted video streaming. In Proc. IEEE INFOCOM Network Intelligence: Machine Learning for Networking Workshop,
May 2019.

[45] T. Stockhammer. Dynamic adaptive streaming over HTTP -: standards and design principles. In Proc. ACM MMSys,
Feb. 2011.

[46] D. Tsilimantos, T. Karagkioules, and S. Valentin. Classifying �ows and bu�er state for YouTube’s HTTP adaptive
streaming service in mobile networks. CoRR, abs/1803.00303, June 2018.

[47] D. Tsilimantos, T. Karagkioules, and S. Valentin. Classifying �ows and bu�er state for youtube’s HTTP adaptive
streaming service in mobile networks. In Proc. ACM MMSys, June 2018.

[48] V. Vasilev, J. Leguay, S. Paris, L. Maggi, and M. Debbah. Predicting QoE factors with machine learning. In Proc. IEEE
ICC, May 2018.

[49] N. Vogt. Youtube audio quality bitrate used for 360p, 480p, 720p, 1080p, 1440p, 2160p. https://www.h3xed.com/
web-and-internet/youtube-audio-quality-bitrate-240p-360p-480p-720p-1080p, 2015.

[50] F. Wamser, M. Seufert, P. Casas, R. Irmer, P. Tran-Gia, and R. Schatz. YoMoApp: A tool for analyzing QoE of YouTube
HTTP adaptive streaming in mobile networks. In Proc. European Conf. on Networks and Communications (EuCNC),
June 2015.

[51] S. Wassermann, M. Seufert, P. Casas, L. Gang, and K. Li. I see what you see: Real time prediction of video quality from
encrypted streaming tra�c. In Proc. ACM MobiCom Internet-QoE Workshop, Oct. 2019.

[52] N.Weil. The state ofMPEG-DASH 2016. http://www.streamingmedia.com/Articles/Articles/Editorial/Featured-Articles/
The-State-of-MPEG-DASH-2016-110099.aspx.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 37, No. 4, Article 111. Publication
date: December 2019.

111:24 C. Gu�erman et al.

Algorithm 2 Video State Labeling Algorithm
1: procedure V����S����L�������
2: Initialize � , � ,Tsmooth,Tslope
3: for every t do
4: Calculate B̂t median[Bt�Tsmooth , ..., Bt+Tsmooth]

5: Calculatemt
B̂t+Tslope�B̂t�Tslope

2Tslope
6: if B̂t  � then
7: Statet Stall
8: else if ��  mt  � and B̂t > Buf fSS then
9: Statet = Steady State
10: else if mt < 0 then
11: Statet Bu�er Decay
12: else
13: Statet Bu�er Increase
14: SmoothState(State)

Table 8. Notation Summary

Symbol Semantics Defaults
� Stall threshold 0.08 sec
� Bu�er slope boundary for 0.15 sec

sec
Steady State

Tsmooth Time window for smoothing bu�er 15 sec
Tslope Time window to determine bu�er 5 sec

slope
Buf f SS Minimum bu�er level to be 10 sec

in steady state
Thr SS Minimum time window to 15 sec

stay in steady state
MinT imeSS Time window to look for quick 10 sec

changes out of steady state
MinT ime stall Time window to look for quick 10 sec

changes out of stall state

A VIDEO STATE LABELING
A goal for predicting video QoE in real-time inside the network is to enable real-time resource
provisioning to prevent stalls and decreases in video resolution. To enable this prediction, accurate
labeling of video state is critical. The four exclusive video states (bu�er increase, decay, stall and
steady state) accurately capture the variations in bu�er level. They can be used in combination
with actual bu�er level to predict dangerous portions of ABR operation that may lead to QoE
degradation. For example, when the bu�er level is close to 0, a stall event is likely to happen in the
near future. Increasing network capacity for the session may prevent a stall.

As shown in §2, playback regions reported by the client ignore bu�er level changes, and cannot
be used to generate video states. Prior work uses manual examination which is time consuming
and can be inaccurate [47]. We opt to automate the process by developing the de�nition of video
states based on bu�er level variation over time followed by our video state labeling algorithm. We
de�ne the four video states as follows:
(1) Bu�er Increase: Bu�er level is increasing. It has a slope greater than � per sec over time

window Tslope.
(2) Steady State: Bu�er level is relatively �at. The slope of bu�er level is between �� and +�

sec
sec over time window Tslope. To be in steady state the slope needs to be in this range for
greater than ThrSS sec.

(3) Bu�er Decay: Bu�er level is decreasing with a slope less than �� sec
sec over time window

Tslope.
(4) Stall: Bu�er level is less than or equal to � .

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 37, No. 4, Article 111. Publication
date: December 2019.

Requet: Real-Time QoE Metric Detection for Encrypted YouTube Tra�ic 111:25

We execute our video state labeling algorithm in Algorithm 2 for each time instance t when
bu�er information is recorded (every 100 ms) to determine video state for a session according to
our de�nition.

As a chunk arrives at the client, bu�er level increases by chunk length in sec. During playback,
bu�er level decreases by 1 sec for every sec of playback. Looking at short windows or the wrong
point of a window would incorrectly determine that bu�er is decreasing. We use a smoothing
function to derive a more accurate bu�er slope. Speci�cally, we use a moving median �lter over a
window around t de�ned by [t �Tsmoooth, t +Tsmooth]. We examine the rate of change of the bu�er
slope over a window around t de�ned by [t �Tslope, t +Tslope].

In order to avoid rapid changes of stall state, we set � to 0.08 sec. This value ensures that small
variations in and out of stall state are consistently labeled as being in stall state. If the bu�er level
is above Bu f f SS and has a slope between �� and � sec

sec , then we label it as steady state. If these
speci�cations are not met and the slope is negative, we set the state to bu�er decay. If the slope is
positive, we set the state to bu�er increase.
To ensure that video state does not change rapidly due to small �uctuations of bu�er level, we

use an additional heuristic of SmoothState: steady state has to last longer than ThrSS. This allows
chunks with playback time longer than this value to arrive at the client. If there are changes out
of and then back into stall state that last less than MinTimestall we consider the entire period as
stall state. Similarly, if there are changes out of and then back into steady state that last less than
MinTimeSS, we consider the entire period steady state. For clarity, we list all symbols in Table 8, as
well as the values that we �nd to work the best empirically for our dataset.

B DATASET INFO
This appendix provides a description of the dataset acquired in §4, used for Requet chunk detection
in §3, and for evaluation in §6.
The dataset can be found in a Github Repository (https://github.com/Wimnet/RequetDataSet).

The dataset is divided into 5 group folders for data from groups A, B1, B2, C , D, along with a
summary �le named ’ExperimentInfo.txt’ for the entire dataset. Each line in the �le describes an
experiment using the following four attributes: (a) experiment number, (b) video ID, (c) initial video
resolution, and (d) length of experiment in seconds.
A group folder is further divided into two subfolders, one for PCAP �les, and the other for txt

�les. Each experiment is described by a PCAP �le and a txt �le. The PCAP �le with name in the form
of (i) 0baseline_{date}_exp_{num}.pcap 0 is for an experiment where the end device is static for the
entire duration whereas a �le with name in the form of (ii) 0mo�ement_{date}_exp_{num}.pcap 0
is for an experiment where the end device movement occurs during the experiment. The txt �le
names end with 0mer�ed .txt 0. The txt �le contains data colletect from YouTube API and summary
of PCAP trace for the experiment.

In each 0mer�ed .txt 0 �le, data is recorded for each 100 ms interval. Each interval is represented
as: [Relative Time, # Packets Sent, # Packets Received, # Bytes Sent, # Bytes Received, [Network
Info 1], [Network Info 2], [Network Info 3], [Network Info 4], [Network Info 5], ... , [Network Info
25], [Playback Info]].

Relative Timemarks the end of the interval. Relative Time is de�ned as the time since the Javascript
Node server hosting the YouTube API is started. Relative Time for the 0th interval is de�ned as 0 sec.
It is updated in intervals of 100 ms. TShark is called prior to the Javascript Node server. Therefore,
the 0th interval contains Wireshark data up to the start of the Javascript Node server.

Network Info i is represented as: [IP_Src, IP_Dst, Protocol, # Packets Sent, # Packets Received, #
Bytes Sent, # Bytes Received] for each interval. IP_Src is the IP address of the end device. The top 25
destination IP addresses in terms of total bytes sent and received for the entire session are recorded.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 37, No. 4, Article 111. Publication
date: December 2019.

111:26 C. Gu�erman et al.

For each i of the top 25 IP_Dst addresses, the Protocol associated with the higher data volume for
the interval (in terms of total number of packets exchanged) is selected, and data volume in terms
of packets and bytes for each interval is reported for the IP_Src, IP_Dst, Protocol tuple in [Network
Info i].

Playback Info is represented as: [Playback Event, Epoch Time, Start Time, Playback Progress, Video
Length, Playback Quality, Bu�er Health, Bu�er Progress, Bu�er Valid]. From the perspective of video
playback, a YouTube session can contain three exclusive regions: bu�ering, playing, and paused.
YouTube IFrame API considers a transition from one playback region into another as an event. It
also considers as an event any call to the API to collect data. The API enables the recording of an
event and of detailed information about playback progress at the time the event occurs. Epoch Time
marks the time of the most recent collection of YouTube API data in that interval. Playback Info
records events occurred during the 100 ms interval.

Each �eld of Playback Info is de�ned as follows:
• Playback Event - This �eld is a binary array with four indexes for the following states:
‘bu�ering’, ‘paused’, ‘playing’, and ‘collect data’. The ‘collect data’ event occurs every 100
ms once the video starts playing. For example, an interval with a Playback Event [1,0,0,1]
indicates that playback region has transitioned into ‘bu�ering’ during the 100 ms interval
and a ‘collect data’ event occurred.

• Epoch Time - This �eld is the UNIX epoch time in milliseconds of the most recent YouTube
API event in the 100 ms interval.

• Start Time - This �eld is the UNIX epoch time in milliseconds of the beginning of the
experiment.

• Playback Progress - This �eld reports the number of seconds the playback is at epoch time
from the start of the video playback.

• Video Length - This �eld reports the length of the entire video asset (in seconds).
• Playback Quality - This �eld is a binary array of size 9 with indices for the following states:
unlabelled, tiny (144p), small (240p), medium (360p), large (480p), hd720, hd1080, hd1440, and
hd2160. The unlabeled state occurs when the video is starting up, bu�ering, or paused. For
example, a Playback Quality [0, 1, 1, 0, 0, 0, 0, 0, 0] indicates that during the current interval,
video playback experienced two quality levels - tiny and small.

• Bu�er Health - This �eld is de�ned as the amount of bu�er in seconds ahead of current
video playback. It is calculated as:

Bu�er Health = Bu�er Progress ⇥ Video Length�
Playback Progress

• Bu�er Progress - This �eld reports the fraction of video asset that has been downloaded
into the bu�er.

• Bu�er Valid - This �eld has two possible values: True or ‘�1’. True represents when data is
being collected from the YouTube IFrame API. ‘�1’ indicates when data is not being collected
from the YouTube IFrame API during the current interval.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 37, No. 4, Article 111. Publication
date: December 2019.

