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Why do we need an accurate EDFA model?
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* Tighter margins for less regeneration/higher

spectral efficiency/lower cost
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ML Model for SDN Controllers
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Problem statement

* Purpose of having an accurate EDFA model:
» Better predict optical channel power
* Better predict end-to-end Quality of Transmission
* Better network planning, e.g. improved Gaussian Noise (GN) model

 Difficulties of building an EDFA model:

* Gainis dynamic: gain spectrum depends on input channel loading
* Hard to find a pure mathematical formula based on physics
e Empirical formula is not accurate

e |deal EDFA model:

* Given input power spectrum and EDFA settings (e.g. gain, tilt,
middle stage loss, etc.), find output power spectrum

e func edfa_model(input_spectrum: List[float], edfa_settings: Dict)
-> output_spectrum: List[float]
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Two models: Analytical vs. ML
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Analytical ML

* Simple model “ = » Slow data capture process(~20k)

* Fast characterization “& * Complex training process

* Quick calculation =& .

Quick calculation =

* Dynamic range is limited * Dynamic range is wide &

Accuracy is limited
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Hybrid Machine Learning (HML)
Modeling
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EDFA input spectrum,

Gain spectrum by analytical Output Vector [P.,] foriin[1,90] #iisindex of the 90 NNs

model Transfer Func. [ReLU, Linear, RelU, Linear, ReLU]
Training Target Min{MSE}

Output of model: Training Method Stochastic Gradient Descent (SGD)
Batch Size (m) m =60

EDFA output spectrum ,

. . Learning Rate («) Q' = 0.00025

(or equivalently gain spectrum)

Training Time > 15000 iterations
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Experiment Setup

We take the data from previous results, as we reported in S. Zhu, et al., ECOC 2018.

« Characterize single channel and fully
loaded gain profile for EDFA.

» Capture frue value of input and output
spectrum.

» Capture ML training data, validation data,
test data.
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Accuracy of prediction given abundant
training data and unlimited training time
(12000 samples and 25000 iterations)
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Accuracy of prediction given abundant
training data and limited training time
(12000 samples and 5000 iterations)
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less time than ML.
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Prediction error vs. number of training samples

Comparison of training sample size
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* HML shows ability of achieve same level of accuracy with less training data.

* Infigure: 33 % reduction with target MSE of 0.134 dB / 3 % in linear scale).

* Note: The target MSE value of 0.134 dB is very close to measurement error of
typical power reading device (0.1 ~ 0.2 dB).
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Comparison: error convergence speed

Comparison of convergence speed
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 HML shows ability of achieve same level of accuracy with less time.
(37 % reduction with target MSE of 0.2 dB /5 % in linear scale)
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Conclusion

1. HML has the following advantages:
a. Quicker convergence and use less training data
b. Reduce max prediction error

2. Both HML and ML can achieve a good prediction
accuracy. Both have MSE error below 0.2 dB, which
iIs close to typical error of optical power
measurement. HML accelerates the training
process and reduces the size of training data.
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Hybrid Machine Learning EDFA Model

Thank you!
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