
STALLION: Video Adaptation Algorithm
for Low-Latency Video Streaming

Craig Gutterman†, Brayn Fridman†, Trey Gilliland‡, Yusheng Hu†, Gil Zussman†

†Electrical Engineering, Columbia University, New York, NY
‡Computer Science, Columbia University, New York, NY

ABSTRACT
As video tra�c continues to dominate the Internet, interest in near-
second low-latency streaming has increased. Existing low-latency
streaming platforms rely on using tens of seconds of video in the
bu�er to o�er a seamless experience. Striving for near-second la-
tency requires the receiver to make quick decisions regarding the
download bitrate and the playback speed. To cope with the chal-
lenges, we design a new adaptive bitrate (ABR) scheme, Stallion,
for STAndard Low-LAtency vIdeo cONtrol. Stallion uses a slid-
ing window to measure the mean and standard deviation of both
the bandwidth and latency. We evaluate Stallion and compare it
to the standard DASH DYNAMIC algorithm over a variety of net-
working conditions. Stallion shows 1.8x increase in bitrate, and 4.3x
reduction in the number of stalls.

CCS CONCEPTS
• Information systems→Multimedia streaming;

KEYWORDS
HTTP adaptive streaming, DASH, low-latency
ACM Reference Format:
Craig Gutterman, Brayn Fridman, Trey Gilliland, Yusheng Hu, Gil Zuss-
man. 2020. STALLION: Video Adaptation Algorithm for Low-Latency
Video Streaming. In 11th ACM Multimedia Systems Conference (MMSys’20),
June 8–11, 2020, Istanbul, Turkey. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3339825.3397044

1 INTRODUCTION
Video has dominated Internet tra�c in recent years. Recently, there
has been an increased usage of live video streaming, and it is ex-
pected to grow to 13% of total Internet tra�c by 2021 [3]. Due to the
spread of COVID-19 and encouragement to “shelter in place”, there
has been an increase in live streaming of over 10% from Q4 2019 to
Q1 2020 for Twitch, Facebook Gaming, and YouTube Gaming [6].
To o�er clients a high quality of experience, it is essential for live
streaming services to minimize the video streaming live latency. Live
latency is de�ned here as the time between when the video was

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
MMSys’20, June 8–11, 2020, Istanbul, Turkey
© 2020 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-6845-2/20/06. . . $15.00
https://doi.org/10.1145/3339825.3397044

captured to the time it is displayed on the user device. On-demand
streaming services usually rely on tens of seconds of video to be
stored on the client bu�er. This gives the service time to adapt to
changes in network conditions while still o�ering a good quality of
experience (QoE). On the contrary, live streaming requires much
lower live latency, resulting in a reduced bu�er on the client device.
The service needs to adapt quickly to network changes while also
o�ering a high video resolution and minimizing the number of stall
events.

Amajority of streaming services rely on HTTP Adaptive Stream-
ing (HAS) to deliver video over the Internet. One of themost popular
techniques is Dynamic Adaptive Streaming over HTTP (DASH) or
MPEG-DASH [23, 25]. For HAS, each video is divided into shorter
segments of video. The segment length is the number of seconds of
video for each segment and is usually a few seconds of video. Each
of the segments is encoded in multiple resolutions and bitrates. The
client player uses an adaptive bitrate (ABR) algorithm to dynami-
cally request segments with the objective of maximizing the QoE.
DASH ABR algorithms are either bu�er-based (e.g., BOLA [22]),
throughput-based (e.g., Oboe [8]) or hybrid (e.g., DYNAMIC [21]).
One of the main issues with these algorithms is that they are not
designed to work for low-latency streaming.

For near-second low-latency streaming, there is only a second
or two of video bu�ered on the user device. Therefore, the client
player needs to ensure the timely delivery of the next video seg-
ment. Unstable network conditions can result in �uctuations to the
throughput and the latency (time between a request and response).
Unexpected reductions in the throughput or an increase in the
latency will add delay and could result in the video stalling.

Prior algorithms incorporated into DASH only rely on using
the bu�er level as well as the mean (either sliding window or ex-
ponential weighted moving average (EWMA)) of throughput and
latency. These statistics are insu�cient for dealing with �uctuations
of throughput and latency during playback. To deal with variable
network conditions, near-second streaming requires additional in-
formation about the variations in the throughput and latency on a
per segment basis.

Therefore, we propose an ABR algorithm that incorporates stan-
dard deviation of the network measures. We present Stallion, for
STAndard Low-LAtency vIdeo cONtrol. We design a throughput-
based system that incorporates the standard deviation of these
throughput and latency measures. Stallion uses a sliding window
to measure the mean and standard deviation of both the bandwidth
and latency.

We implement Stallion in the modi�ed dash.js reference player
provided by the ACM MMSys’20 Grand Challenge [4]. This player
is modi�ed from the standard DASH player [2] to pre-request low

MMSys’20, June 8–11, 2020, Istanbul, Turkey C. Gu�erman et al.

latency segments. This enables the player to request the segments
before they are available on the server.

To evaluate the performance of Stallion, we compared it against
DYNAMIC [21] with the 5 network pro�les provided by [4]. Our
results show that Stallion outperforms DYNAMIC. In particular,
it achieves higher QoE with a 1.8x increase in bitrate, and 4.3x
reduction in the number of stalls. The code for Stallion is available
for testing by the reviewers at [7].

The rest of this paper is organized as follows. Section 2 provides
background on ABR algorithms. Section 3 presents our preliminary
�ndings on low-latency streaming. It then continues to describe
the system and implementation of Stallion. Section 4 describes our
experimental setup. It then discusses the QoE evaluation and the
network traces used for evaluation. In addition, we compare the
performance of Stallion and DYNAMIC. Section 5 concludes and
discusses future directions.

2 BACKGROUND AND RELATEDWORK
HTTP Adaptive Streaming (HAS) is being used by a majority of
streaming services to deliver video over the internet. One of the
most common formats is Dynamic Adaptive Streaming over HTTP
(DASH) or MPEG-DASH [23, 25].

HAS encodes a video in multiple resolutions and bitrates. Each
encoding is then divided into a number of segments of variable
length (usually a few seconds of video) [17]. Clips are either encoded
with Variable Bitrate (VBR) encoding or with Constant Bitrate
(CBR).

Details that the client can download from local servers are given
in a DASH Media Presentation Description (MPD) �le. For each
segment request, an HTTP GET request is sent to the server. In
response to the GET request from the client the server sends the
requested segment. This allows the video player of the client to
dynamically request segments based on the ABR algorithm. The
client maintains a bu�er to temporarily store segments of the video.
This is used to ensure a smooth playback. A stall event occurs when
no segments are stored in the bu�er.

While a majority of services use HAS, each has its own method
of ABR streaming [17]. ABR requires either TCP or another reliable
transport [12] and is usually delivered over HTTP(S). The ABR
algorithms rely on statistics such as throughput, bu�er health, or a
hybrid (throughput and bu�er) to determine the optimal segment
to request. Throughput is measured for each segment to estimate
bandwidth. Thus, the player can switch to a segment with a lower
bitrate when the estimated bandwidth or bu�er is low to avoid
stalling. If the bandwidth becomes available at a future time, the
player can switch back to a higher bitrate to provide a better user
experience. Below we provide further details about the di�erent
types of ABR algorithms.

Bu�er-based: Bu�er-based ABR algorithms rely on using the
bu�er level to determine the optimal bitrate of the requested seg-
ment. BOLA [22] is an ABR algorithm that uses bu�er occupancy to
designate the bitrate of the next segment. As the bu�er occupancy
grows, higher bitrate segments are preferred. One drawback of
BOLA is that it usually performs better with higher bu�er levels
[21]. BBA [14] selects the bitrate with the goal of minimizing stalls
and keeping the bu�er occupancy level above a certain threshold.

When the level exceeds 15 sec, it switches to the highest available
bitrate.

Throughput-based: Throughput-based ABR algorithms collect
and calculate all the transmission information between the server
and the client to estimate the available throughput. The estimated
throughput is then used to determine the optimal bitrate for the
next video segment. Oboe [8] aims to ensure good user QoE by en-
abling auto tuning con�guration parameters of the ABR algorithm
based on the current network state. Additional throughput-based
algorithms include FESTIVE [15] and PANDA [16].

Hybrid-based: Hybrid-based ABR algorithms combine both
bu�er-based and throughput-based approaches. DYNAMIC [21] is a
hybrid algorithm that is built into the o�cial DASH reference player.
It uses a version of BOLA for its bu�er-based algorithm (when the
bu�er is high) as well as a throughput rule for its throughput-based
algorithm (when the bu�er is low or empty). Additional hybrid
based algorithms include ELASTIC [11] and MPC [26]. Penseive
[18] utilized reinforcement learning for generating optimal ABR
algorithms. The neural network model is based on the data from
client players. Penseive gradually learns to make better ABR de-
cisions through reinforcement in the form of reward signals that
re�ect video QoE for past decisions. HotDASH [20] also uses rein-
forcement learning for its decision engine as well as prefetching of
video segments.

Recently there has been additional research focusing on ABR
algorithms speci�cally designed to deal with low-latency streaming.
LOLYPOP [19] is designed for low-delay video streaming and uses
TCP throughput predictions on times scales of 1 to 10 sec. ACTE
[9] uses a sliding window to estimate bandwidth and uses a linear
adaptive �lter to predict future bandwidth.

Content providers are not the only companies who have a stake
in the live video streaming sector. Extensive research e�orts have
been dedicated to monitoring and inferring QoE related video sta-
tistics from encrypted video tra�c [13, 24]. This information could
allow service providers to prioritize clients to improve their video
QoE [10].

3 STALLION SYSTEM DESIGN
The goal of ACM MMSys’20 Grand Challenge is to use the dash.js
reference player to create an ABR algorithm for near-second low-
latency live streams. We were provided the dash.js reference player
modi�ed to pre-request low latency segements [4]. The low latency
server delivers segments with length of 0.5 sec.

We use this player to observe the performance of DYNAMIC in
low latency scenarios. We then develop Stallion, a throughput-based
ABR algorithm that is designed to operate e�ectively in low-latency
settings with unstable network conditions.

3.1 Preliminary Low-Latency DASH Findings
We use the dash.js player provided in [4] to test the performance
of ABR algorithms. Additionally, we implemented an automated
systemwhere we can log the performance of the player, and analyze
its performance. The system diagram in Fig. 1(a) shows the major
components used for testing. The ABR controller uses statistics
from the network and bu�er level to determine the bitrate of the
next segment.

STALLION: Video Adaptation Algorithm
for Low-Latency Video Streaming MMSys’20, June 8–11, 2020, Istanbul, Turkey

Client

ABR
Controller

Streaming
Server

Segment
Request

Video
Segment

ABR
Decision

Video
Player

Network
And

Buffer
Statistics

Logger

(a)

ABR Controller

Stallion Switch
History

Dropped
Frame

(b)

Figure 1: (a) The dash.js player given with modi�cations to
switch ABR algorithm and log results, (b) Stallion ABR con-
troller containing the Stallion, Swith History and Dropped
Frame rules.

The default ABR algorithm for DASH is DYNAMIC [21]. This
controller contains the DYNAMIC which has a collection of ABR
rules including ThroughputRule, BolaRule, Insu�cientBu�erRule,
SwitchHistoryRule, and DroppedFramesRule. The hybrid model dy-
namically chooses either the BOLA or Throughput rule depending
on the bu�er level. The three remaining rules are also used to o�er
an option of quality requested. The lowest of the 4 qualities is the
�nal chosen quality.

The network pro�les provided by [4] and described in Section
4.2 are used to test the initial performance. One of the preliminary
�ndings is that if the bu�er is low, the throughput rule is usually
chosen instead of BOLA. In addition, the ultimate decision is usually
the result of the insu�cient bu�er rule being chosen because the
bu�er is usually less than 0.5 sec.

Even with the insu�cient bu�er rule being chosen, there were
frequent stalls as there was not su�cient time to adjust to changes
in the network conditions. The stalls led to an increase in the live
playback latency. The playback rate is increased when the live-
latency delay is greater than the target latency. In an e�ort to
minimize the live latency delay, the playback controller increases
the playback rate. Increasing the playback rate when the bu�er is
already low results in additional stalls. The DYNAMIC rules had a
di�cult time estimating the available bandwidth and therefore the
segment bitrate was lower than the optimal bitrate supported by
the network conditions.

3.2 Stallion Implementation
The constraints that were given by the Grand Challenge were that
the segment duration, the segment chunk size, and the segment
request behavior could not be changed. The observations in 3.1 in-
�uenced the design of Stallion. Beyond the design of a custom rule
Stallion.js, we modi�ed additional functionality of ThroughputHis-
tory.js, PlaybackController.js, AbrController.js, and index.html. The
resulting ABR controller for Stallion is represented in Fig. 1(b). In

addition to the Stallion rule, we use the Switch History and Dropped
Frame rules that were also used in DYNAMIC.

The �rst parameter that needs to be initially set is the target
latency of the ABR algorithm. The initial setting of target latency of
the near-second low-latency DASH player is 1 sec. After 1 segment
(0.5 sec) of playback, the next segment should be sent to the client.
Consequently, the next segment needs to be downloaded before
the current one is playing or otherwise a stall will occur. This
gives a minimal amount of time to deal with any unstable network
conditions. Therefore, we update the initial target latency of the
DASH player to 1.5 sec. This leaves 1 additional segment in the
bu�er of the client and additional time for the DASH player to adapt
to network conditions.

Based on our observations, we noted issues with the video play-
back rate control. When the playback falls behind the target latency,
the controller attempts to catch up to the target latency by increas-
ing the playback rate. This occurs even when the bu�er is low
(but not completely stalled). Increasing the playback rate when the
bu�er is lowwould likely only increase the number of stalls, thereby
increasing the latency further. We make the following modi�cation
to improve the performance for low latency. When the player has a
latency greater than the target latency, the playback rate will only
increase if the bu�er level is greater than 0.6 sec.

Unstable network conditions result in client bandwidth �uctua-
tions during playback. Relying only on the mean of the throughput
and latency leaves out details in the statistics of the network pattern
that can be bene�cial when determining the optimal video segment
to request. Therefore, we develop a custom throughput-based rule,
Stallion, that relies on the use of the standard deviations of both
latency and throughput to make a safe estimate for our bitrate se-
lection. Fig. 1(b) shows the Stallion ABR controller containing the
Stallion rule, along with the Switch History and Dropped Frame
rules.

The throughput, Thr s , of sample s is measured by taking the
download size and dividing it by the download time. Each latency
sample, Ls , is measured by the time the request is sent to the time
the �rst packet of the segment is delivered. The �rst data points
needed are the average throughput, ¯Thrn , and the average latency,
L̄n . These metrics are already built in ThroughputHistory.js. The
sliding window sample mean is calculated over a maximum of
n = 10 samples.

In addition, we add methods to ThroughputHistory.js (part of
the Network and Bu�er Statistics in Fig. 1(a)) to calculate the sam-
ple standard deviation of both the throughput and latency for the
sliding window. The sample standard deviation of the throughput
is represented as �Thrn . The sample standard deviation of the la-
tency is represented as �Ln . These data points are used to assign
safe estimates for the bitrate and latency. Accordingly, we set:

ˆBitrate = ¯Thrn � zThr�
Thr
n

ˆLatenc� = ¯Thrn + zL�Ln
These two estimates are then used in abrCon-

troller.getQualityForBitrate() to determine the highest possible
segment bitrate that can be requested given the constraints of

MMSys’20, June 8–11, 2020, Istanbul, Turkey C. Gu�erman et al.

ˆBitrate and ˆLatenc�. The goal of this function is determine the
maximal bitrate of the next segment that can be delivered during
a segment duration. The latency is subtracted from the fragment
duration to determine the dead time. The remaining time is the
amount of time during the segment duration that can be used to
download. This time is then multiplied with ˆBitrate to determine
the actual realizable bitrate. The segment with the highest bitrate
less than the realizable bitrate is the bitrate chosen by Stallion.

The bitrate chosen by the Stallion rule is then accompanied by
the results of the Switch History and Dropped Frames rules. The
�nal quality is chosen by �nding the minimum quality of active
rules. The complete code for our implementation can be found at
[7].

4 EVALUATION
We develop a testing and logging framework to measure the per-
formance of the proposed ABR algorithm vs. a baseline system.
The evaluation of the algorithms is done by using a variety of net-
work pro�les with unstable network conditions. We describe the
relevant metrics used for evaluation along with the calculation of
the QoE metric. Finally, we use these components to compare the
performance of Stallion and DYNAMIC.

4.1 Experimental Setup
As ABR streaming is comprised of many components working
together to optimize playback quality, each component relies on
observations about the current network conditions available to the
client. To measure the performance and provide us with feedback
on how ABR modi�cations impact the playback experience, we
write various metrics throughout the framework to a log �le. With
this log �le, we measure the performance of each ABR algorithm on
the playback quality. The testing script runs through multiple runs
of each network trace. Further details about the network traces are
described in Sec. 4.2.

To su�ciently test our modi�cations, we develop an automated
script to run through multiple tests of our modi�ed player on each
network testing pro�le. This script saves the test log �le and results
JSON �le from each individual test. They are then used to measure
the performance throughout the entire experiment.

The video used for testing is Big Buck Bunny [1]. Each video is
encoded in 3 bitrates of 200 Kbps, 600 Kbps, and 1000 Kbps. The
associated video qualities of these bitrates are 360p, 480p, and 720p,
respectively.

All experiments were conducted on an Apple Macbook Pro lap-
top with a 2.8 GhZ Intel Core I7 with 16 GB of RAM. Both the server
and the dash player were run on the laptop. The dash.js player ran
in Google Chrome browser.

4.2 Network Traces
There are 5 network pro�les which are used for testing. The details
of the 5 networking patterns can be seen in Table 1. Each network
pro�le has a network pattern that is repeated once per experiment.

The �rst network pro�le is Cascade. This pattern lasts for roughly
150 seconds with 30 second intervals at network data rates of 1200
Kbps, 800 Kbps, 400 Kbps, 800 Kbps, and back to 1200 Kbps. The
second network pro�le is Intra Cascade. This pro�le contains a

Table 1: Network pro�les from ACMMMSys’20 Grand Chal-
lenge

Notation Time Duration (sec) Data Rate (Kbps)

Cascade (30,30,30,30,30) (1200,800,400,
800,1200)

Intra Cascade (15,15,15,15,15,15,15,15,15) (100,800,600,400,
200,400,600,800,1000)

Spike (10,10,10) (1200,300,800)
Slow Jitters (5,5,5,5,5,5) (500,1200,500,1200,

500,1200)
Fast Jitters (0.25,5,0.1,1,0.25,5) (500,1200,500,1200,

500,1200)

Table 2: Parameters for QoE function

Notation Meaning

s A segment
Rs Reward of Segment bitrate (Kbps)
E REbu�ering time (seconds)
L Live latency (seconds)
P Playback Speed
S Total number of segments
� Bitrate reward factor (0.5 sec)
� Rebu�ering penalty factor

(=Rs for 1000 Kbps)
� Live Latency penalty factor

(if L 1.1 sec then = 0.005, otherwise = 0.01)
� Playback speed penalty factor

(=Rs for 200 Kbps)
µ Bitrate switch penalty factor (0.02 sec)

pattern with 9 steps of 200 Kbps for 15 seconds each. The steps
begin at 1000 Kbps going down to 200 Kbps, and then back up to
1000 Kbps. The third pro�le is labeled as Spike. This pro�le has 3
steps lasting 10 sec each: 1200 Kbps, 300 Kbps, and 800 Kbps. The
fourth pro�le has a pattern that is 30 seconds and switches between
500 Kbps and 1200 Kbps every 5 sec. The �fth pro�le tested is Fast
Jitters, with a network pattern of 11.6 seconds. The data rates of
this pro�le are 500 Kbps, 1200 Kbps, 500 Kbps, 1200 Kbps, 500 Kbps,
and 1200 Kbps with durations of 0.25 sec, 5 sec, 0.1 sec, 1 sec, 0.25
sec, and 5 sec, respectively.

4.3 QoE Model
We focus on 5 metrics for our evaluation criteria. The �rst criteria
is the average selected bitrate (Kbps). The second metric is average
live latency. The live latency is measured as the amount of time
betweenwhen the original videowas ‘created’ until it is played back.
The third criteria is the average number of bitrate switches. While
higher bitrates are in general better for the QoE of the user, bitrate
switches have a negative impact on the user’s viewing experience.
The �fth metric is stall duration. The longer the stall duration, the
higher the negative impact on the user’s experience.

The QoE model used for evaluation is based on the document
provided by [5]. We use the per-segment QoE for evaluation. For the
low latency model, segment duration is 0.5 sec. A list of notations
for QoE function can be found in Table 2. Overall, the QoE model
is calculated as:

STALLION: Video Adaptation Algorithm
for Low-Latency Video Streaming MMSys’20, June 8–11, 2020, Istanbul, Turkey

(a) (b)

(c) (d)

(e) (f)

Figure 2: Performance comparison of DYNAMIC and Stallion for each network pro�le: (a) Average bitrate, (b) Average live
latency, (c) Number of playback rate switches, (d) Absolute Playback Error, (e) Stall Duration(sec), (f) QoE. For each box plot,
the middle red line is the median value. The bottom of the box represents Q1 (25-percentile) and the top of the box represents
Q3 (75-percentile) of the dataset, respectively. The lower extended line represents Q1-1.5IQR, where IQR is the inner quartile
range (Q3-Q1). The higher extended line represents Q3 + 1.5IQR.

QoE =
S’
s=1

(�Rs � �Es � �Ls � � |1 � Ps |) �
S�1’
s=1

µ |Rs+1 � Rs |

To make all the rewards on the same scale we set the reward for
speci�c bitrates (Kbps) as:

Rs = lo�10(
Bitrate
100

)

4.4 Results
We evaluate the low-latency performance of Stallion against the
DYNAMIC ABR controller. We tune the parameters of zThr and zL
to optimize the performance of Stallion . The �nal rule tested in the
paper has zThr set to 1 and zL set to 1.25. Each ABR algorithm was
run 20 times on each network pro�le. Fig. 2 shows the results of

these tests. We further discuss the results for each QoE metric and
the total QoE as follows:

Bitrate: One of the primary objectives of an ABR algorithm is to
maximize the bitrate of the video playing. For all 5 network pro�les,
DYNAMIC has a median bitrate less than 300 Kbps. The median
bitrate for Stallion is greater for every network pro�le tested. In 4
of the 5 pro�les, there was at least a 150 Kbps increase in average
bitrate. Overall, the average bitrate increased from 290 Kbps to 530
Kbps, a 1.8x increase in average bitrate.

Average live latency: For DYNAMIC, the target latency is set
to 1 sec, while it is set to 1.5 for Stallion. The average live latency
for DYNAMIC is less than 1.5 sec in all network pro�les except
Intra. The worst performing network pro�le for Stallion is Spike.
The median live latency is 1.8 sec for Spike, while the rest of the
network pro�les are slightly above 1.5 sec.

MMSys’20, June 8–11, 2020, Istanbul, Turkey C. Gu�erman et al.

Number of playback rate switches:We analyze the stability
of the playback based on the number of playback rate switches.
The performance for both ABR algorithms tested is approximately
the same for Spike and Fast Jitters. There are approximately 2
additional switches in Stallion compared to DYNAMIC for Cascade,
Slow Jitters, and Intra. Each ABR algorithm has a median number
of switches less than 10 for each network pro�le.

Absolute PlaybackError:The absolute playback error for each
segment is calculated as |1 � Ps |. The absolute playback error is
calculated as the sum of the playback error for each video segment
of an experiment. Both Stallion and DYNAMIC perform extremely
well for Fast Jitters, as the playback rate is usually kept constant at
1. For Stallion, the absolute playback error is kept below 5 for all ex-
periments with a median of 1.37. DYNAMIC performs considerably
worse for the Cascade and Intra network pro�les.

Stall Duration: One of the main issues that can occur during
near-second low-latency playback is the number of stall events and
the length of time the video is stalled. DYNAMIC has a median
of 6 sec of stall duration while Stallion has a median of 3 sec for
the Spike pro�le. For Fast Jitters, both perform well with less than
1 second of stall duration. For Cascade, there is a large improve-
ment in stall duration, as Dynamic has a median of 22 sec, while
Stallion has a median of 3 sec. DYNAMIC has a stall duration of 5
sec, while Stallion has a stall duration of under 2 sec for the Slow
Jitters network pro�le. DYNAMIC performs the worst for the Intra
network pro�le. It has a median stall duration over 30 sec. This
network pro�le is also the worst for Stallion with a median stall
duration of 7 sec. Overall ,the average stall duration of Stallion is 3.1
sec, compared to an average stall duration of 13.3 sec for DYNAMIC.
This is a 4.3x improvement in average stall duration for Stallion.

QoE: The QoE score is calculated based on the details given in
4.3 and Table 2. The weights given can be adapted depending on the
objectives. Stallion outperformed the QoE in all network pro�les.
The pro�les that saw the biggest improvement were Cascade and
Intra.

Overall, Stallion has improved QoE for near-second low-latency
streaming. The design of Stallion that uses the information provided
by the simple second ordermetric (standard deviation) of the latency
and bitrate estimates allow it to make safer decisions. These safer
decisions allow Stallion not only to reduce the number of stalls
considerably, but also to improve the bitrate without signi�cantly
increasing the number of bitrate changes.

5 CONCLUSION
We present Stallion, an ABR controller designed for near-second
low-latency video control for the ACMMMSys’20 Grand Challenge.
The code can be found at [7]. Stallion is simple to implement and
relies on (i) a segment based sliding window of the bitrate and
latency, and (ii) the mean and standard deviation of this window to
estimate the bitrate and latency available for the next segment. We
determine that speci�cally with a near-second target latency, using
the standard deviation along with the mean gives a safer prediction
for available bandwidth and thus reduces the likelihood of stalling.

Stallion is evaluated against the DASH standard DYNAMIC over
a variety of networking conditions. Stallion shows 1.8x increase in
bitrate, and a 4.3x reduction in the number of stalls.

For future research we would like to add additional network
pro�les and to compare additional ABR algorithms. In addition, we
would like to add a machine learning based system that auto adapts
the tuning parameters of Stallion during video playback.

ACKNOWLEDGMENTS
This work was supported in part by NSF grants CNS-1910757.

REFERENCES
[1] Big buck bunny. https://peach.blender.org/.
[2] Dash industry forum (dash-if). https://reference.dashif.org/dash.js/v3.0.3/

samples/dash-if-reference-player/index.html.
[3] Cable live video usage will increase 15-fold by 2021,

cisco predicts. https://www.�ercevideo.com/cable/
live-video-usage-will-increase-15-fold-by-2021-cisco-predicts, 2017.

[4] ACM MMSys 2020 grand challenge. https://github.com/twitchtv/
acm-mmsys-2020-grand-challenge, 2020.

[5] Nqoe. https://github.com/twitchtv/acm-mmsys-2020-grand-challenge/blob/
master/NQoE.pdf, 2020.

[6] Twitch breaks various viewership records amid coron-
avirus quarantine. https://www.hollywoodreporter.com/news/
twitch-breaks-viewership-records-coronavirus-quarantine-1287894, 2020.

[7] Twitch challenge. https://github.com/Wimnet/twitch_challenge, 2020.
[8] Z. Akhtar, Y. S. Nam, R. Govindan, S. Rao, J. Chen, E. Katz-Bassett, B. Ribeiro,

J. Zhan, and H. Zhang. Oboe: auto-tuning video abr algorithms to network
conditions. In Proc. ACM SIGCOMM, pages 44–58, 2018.

[9] A. Bentaleb, C. Timmerer, A. C. Begen, and R. Zimmermann. Bandwidth predic-
tion in low-latency chunked streaming. In Proceedings of the 29th ACMWorkshop
on Network and Operating Systems Support for Digital Audio and Video, 2019.

[10] R. Bhattacharyya, A. Bura, D. Rengarajan, M. Rumuly, S. Shakkottai, D. Kalathil,
R. K. Mok, and A. Dhamdhere. Q�ow: A reinforcement learning approach to
high qoe video streaming over wireless networks. In Proc. ACM MobiHoc, 2019.

[11] L. De Cicco, V. Caldaralo, V. Palmisano, and S. Mascolo. Elastic: a client-side
controller for dynamic adaptive streaming over HTTP (DSAH). In 2013 20th
International Packet Video Workshop. IEEE, 2013.

[12] R. T. Fielding and J. F. Reschke. Hypertext transfer protocol (HTTP/1.1): message
syntax and routing. RFC, 7230:1–89, 2014.

[13] C. Gutterman, K. Guo, S. Arora, X. Wang, L. Wu, E. Katz-Bassett, and G. Zussman.
Requet: Real-time QoE detection for encrypted YouTube tra�c. In Proc. ACM
MMSys, 2019.

[14] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson. A bu�er-based
approach to rate adaptation: Evidence from a large video streaming service. In
Proc. ACM SIGCOMM, 2014.

[15] J. Jiang, V. Sekar, and H. Zhang. Improving fairness, e�ciency, and stability in
http-based adaptive video streaming with festive. In Proc. ACM CONEXT, 2012.

[16] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. C. Begen, and D. Oran. Probe and adapt:
Rate adaptation for http video streaming at scale. IEEE JSAC, 32(4):719–733, 2014.

[17] A. Mansy, M. H. Ammar, J. Chandrashekar, and A. Sheth. Characterizing client
behavior of commercial mobile video streaming services. In Proc. ACM MoVid,
2014.

[18] H. Mao, R. Netravali, and M. Alizadeh. Neural adaptive video streaming with
pensieve. In Proc. ACM SIGCOMM, 2017.

[19] K. Miller, A.-K. Al-Tamimi, and A. Wolisz. Qoe-based low-delay live streaming
using throughput predictions. ACM TOMM, 13(1):1–24, 2016.

[20] S. Sengupta, N. Ganguly, S. Chakraborty, and P. De. Hotdash: Hotspot aware
adaptive video streaming using deep reinforcement learning. In Proc. IEEE ICNP,
2018.

[21] K. Spiteri, R. Sitaraman, and D. Sparacio. From theory to practice: Improving
bitrate adaptation in the dash reference player. ACM TOMM, 15(2s):1–29, 2019.

[22] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman. Bola: Near-optimal bitrate adapta-
tion for online videos. In Proc. IEEE INFOCOM, 2016.

[23] T. Stockhammer. Dynamic adaptive streaming over HTTP -: standards and design
principles. In Proc. ACM MMSys, 2011.

[24] S. Wassermann, M. Seufert, P. Casas, L. Gang, and K. Li. Let me decrypt your
beauty: Real-time prediction of video resolution and bitrate for encrypted video
streaming. In Proc. IEEE TMA, 2019.

[25] N. Weil. The state of MPEG-DASH 2016. http://www.
streamingmedia.com/Articles/Articles/Editorial/Featured-Articles/
The-State-of-MPEG-DASH-2016-110099.aspx.

[26] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli. A control-theoretic approach for
dynamic adaptive video streaming over http. In Proc. ACM SIGCOMM, 2015.

