Open-Access Full-Duplex Wireless in the ORBIT and COSMOS Testbeds

Manav Kohli*, Tingjun Chen, Jackson Welles*, Mahmood Baraani Dastjerdi*, Jakub Kolodziejski†, Michael Sherman†, Ivan Seskar†, Harish Krishnaswamy*, and Gil Zussman*

*Electrical Engineering, Columbia University; † WINLAB, Rutgers University September 25, 2020

Introduction

- Demand for wireless testbeds has increased need for well-controlled wireless experimentation
- ORBIT testbed established in 2005: an open-access testbed for users in academia and industry
- New demand for an outdoor testbed for research into technologies such as mmWave and 5G
- PAWR COSMOS testbed currently being deployed in New York City to support open-access experimentation in a realistic, city-scale environment
- Opportunity for experimentation with custom hardware, e.g. full-duplex wireless

- D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran, H. Kremo, R. Siracusa, H. Liu, and M. Singh, "Overview of the ORBIT radio grid testbed for evaluation of next-generation wireless network protocols," in *Proc. IEEE Wireless Communications and Networking Conference*, 2005.
- D. Raychaudhuri, I. Seskar, G. Zussman, T. Korakis, D. Kilper, T. Chen, J. Kolodziejski, M. Sherman, Z. Kostic, X. Gu, H. Krishnaswamy, S. Maheshwari, P. Skrimponis, and C. Gutterman, "Challenge: COSMOS: A City-Scale Programmable Testbed for Experimentation with Advanced Wireless," in *Proc. ACM MobiCom* '20, 2020.

- ORBIT and COSMOS testbeds
- Full-Duplex (FD) Wireless
 - IC-Based Full-Duplex Wireless
 - Design of the Integrated Full-Duplex Radios
- The Integrated Gen-1 Narrowband FD Radio ORBIT
- The Integrated Gen-2 Wideband FD Radio COSMOS
- Experiments
 - Example experiment: Real-time Packet Reception Ratio

ORBIT and COSMOS testbeds

- Full-Duplex (FD) Wireless
 - IC-Based Full-Duplex Wireless
 - Design of the Integrated Full-Duplex Radios
- The Integrated Gen-1 Narrowband FD Radio ORBIT
- The Integrated Gen-2 Wideband FD Radio COSMOS
- Experiments
 - Example experiment: Real-time Packet Reception Ratio

ORBIT Testbed Overview

- The ORBIT grid consists of an array of several hundred wireless nodes
- Nodes may be orchestrated to perform a wide range of wireless experiments
- Indoor location allows for a well-controlled experimental environment
- Nodes can be outfitted with custom hardware
- Enables remotely-accessible wireless experimentation in an indoor environment

ORBIT grid architecture

• D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran, H. Kremo, R. Siracusa, H. Liu, and M. Singh, "Overview of the ORBIT radio grid testbed for evaluation of next-generation wireless network protocols," in *Proc. IEEE Wireless Communications and Networking Conference*, 2005.

COSMOS Testbed Overview

- COSMOS aims to address the needs of next-generation wireless communications:
 - Low latency (<5ms) and ultra-high bandwidth (multi-Gb/s)
 - Abundant compute resources
 - Real-time applications
 - Real-world investigation of urban environments
- Enablers:
 - 10s of 64 element mmWave arrays
 - 10s of miles of Manhattan dark fiber
 - B5G edge cloud base stations
 - Edge compute
 - Integration of custom hardware

COSMOS' multi-layered computing architecture

• D. Raychaudhuri, I. Seskar, G. Zussman, T. Korakis, D. Kilper, T. Chen, J. Kolodziejski, M. Sherman, Z. Kostic, X. Gu, H. Krishnaswamy, S. Maheshwari, P. Skrimponis, and C. Gutterman, "Challenge: COSMOS: A City-Scale Programmable Testbed for Experimentation with Advanced Wireless," in *Proc. ACM MobiCom* '20, 2020.

COSMOS Testbed Deployment Vision

- West Harlem, area: ~1 sq. mile
- Phased approach:
 - May 2019: Pilot completion
 - Sept. 2019: FCC Innovation Zone
 - June 2020: Generally available
 - During 2021: Phase 1 completion
- Fiber optic connection from most sites
- Fiber optic connection to Rutgers, NYU Datacenter at 32 Ave. of the Americas, GENI, Internet2, etc.

- Two sandboxes (Rutgers, Columbia)
 - Internal environments for controlled experimentation

Open-Access Custom Hardware and Experiments

- Development of the COSMOS testbed driven by deployment of custom hardware
- Pilot experiment: Full-Duplex (FD) Wireless

(Columbia, COSMIC & WiMNeT groups)

- FlexICoN project: design and evaluate algorithms and protocols across various layers of the network stack for IC-based full-duplex nodes
- Goals:
 - Make our customized hardware openlyaccessible to researchers
 - Demonstrate successful integration of customized experimental hardware into ORBIT and COSMOS

Gen-1 canceller box

Gen-1 narrowband full-duplex radio integrated into ORBIT

Gen-2 canceller box

Gen-2 wideband full-duplex radio integrated into COSMOS

- ORBIT and COSMOS testbeds
- Full-Duplex (FD) Wireless
 - IC-Based Full-Duplex Wireless
 - Design of the Integrated Full-Duplex Radios
- The Integrated Gen-1 Narrowband FD Radio ORBIT
- The Integrated Gen-2 Wideband FD Radio COSMOS
- Experiments
 - Example experiment: Real-time Packet Reception Ratio

Full-Duplex Wireless

- Legacy half-duplex (HD) wireless systems separate transmission and reception in either:
 - Time: Time Division Duplex (TDD)
 - Frequency: Frequency Division Duplex (FDD)
- (In-band) Full-duplex (FD) wireless: simultaneous transmission and reception on the same frequency channel

Full-Duplex Wireless

- Benefits of FD wireless:
 - Increased system throughput and reduced latency
 - More flexible use of the wireless spectrum
- One of the main challenges: self-interference (SI)
 - Transmitted signal is billions of times (109 or 90 dB) stronger than the received signal
 - Requires extremely powerful SI cancellation (SIC) across antenna, RF, and digital domains

Prior Work

- Surveys of FD wireless systems [Sabharwal et al. 2014, Kolodziej et al. 2019]
- Time-domain delay line-based wideband RF cancellers: each fixed delay line associated with one amplitude control [Bharadia et al. 2013], or one amplitude and phase control [Korpi et al. 2016]
- Tx and Rx antenna pairs used to achieve Tx/Rx isolation at the antenna interface [Choi et al. 2010, Radunovic et al. 2010, Jain et al. 2011]
- FD phased array with narrowband analog Tx beamforming [Aryafar & Haddad, 2018]
- FD relays for wireless networks [Shaboyan et al. 2020]
- Analysis of FD rate gains in wireless networks [Nguyen et al. 2014, Wang et al. 2017]
- FD systems predominantly evaluated in simulation or lab-based testbeds [*Hsu et al.* 2017, *Chen et al.* 2017]

Compact Full-Duplex Wireless

- Delay line-based cancellers [Bharadia et al. 2013, Korpi et al. 2016] difficult to implement in compact integrated circuits (IC)s due to space constraints
- FlexICoN project: two generations of compact, IC-based RF SI cancellers: narrowband 1stgeneration (Gen-1) and wideband 2nd-generation (Gen-2), suitable for **handheld devices**
- Gen-1 and Gen-2 RF SI cancellers both implemented as ICs

Gen-2 die photograph

- J. Zhou, A. Chakrabarti, P. Kinget and H. Krishnaswamy, "Low-noise active cancellation of transmitter leakage and transmitter noise in broadband wireless receivers for FDD/co-existence," IEEE J. Solid-State Circuits, vol. 49, no. 12, pp. 3046–3062, Dec. 2014
- J. Zhou, T. Chuang, T. Dinc, and H. Krishnaswamy, "Integrated Wideband Self-Interference Cancellation in the RF Domain for FDD and Full-Duplex Wireless", *IEEE J. Solid-State Circuits*, vol. 50, no. 12, pp. 3015–3031, 2015.

Wideband Full-Duplex Wireless

- Frequency-domain equalization (FDE) based canceller: The SI channel can be emulated in the *frequency domain* using reconfigurable RF bandpass filters (BPFs) with amplitude and phase controls. Multiple FDE taps used to enable wideband operation
 - Suitable for compact IC-based implementations
 - Each FDE tap has four variables: BPF center frequency, BPF quality factor, amplitude, and phase
- Currently the only example of an FDE-based RF SI canceller

Audio Equalizer

• J. Zhou, T. Chuang, T. Dinc, and H. Krishnaswamy, "Integrated Wideband Self-Interference Cancellation in the RF Domain for FDD and Full-Duplex Wireless", *IEEE J. Solid-State Circuits*, vol. 50, no. 12, pp. 3015–3031, 2015.

- ORBIT and COSMOS testbeds
- Full-Duplex (FD) Wireless
 - IC-Based Full-Duplex Wireless
 - Design of the Integrated Full-Duplex Radios
- The Integrated Gen-1 Narrowband FD Radio ORBIT
- The Integrated Gen-2 Wideband FD Radio COSMOS
- Experiments
 - Example experiment: Real-time Packet Reception Ratio

Design of the Integrated Full-Duplex Radios

- Successful FD communication needs at least 90 dB of self-interference cancellation (SIC) across the RF and digital domains
- We emulate the IC-based FD cancellers on a printed circuit board (PCB) to provide an easy interface to the SDR
 - Also provides better noise figure and lower DC power consumption than the IC-based canceller

RF SI Canceller PCB

and components

Software-defined radio (SDR)

Remote-access compute

Design of the Gen-1/Gen-2 Canceller Boxes

Gen-1 canceller box integrated in the ORBIT testbed

Gen-2 canceller box integrated in the COSMOS testbed

- ORBIT and COSMOS testbeds
- Full-Duplex (FD) Wireless
 - IC-Based Full-Duplex Wireless
 - Design of the Integrated Full-Duplex Radios
- The Integrated Gen-1 Narrowband FD Radio ORBIT
- The Integrated Gen-2 Wideband FD Radio COSMOS
- Experiments
 - Example experiment: Real-time Packet Reception Ratio

Gen-1 Narrowband RF SI Canceller

- Emulates the narrowband RFIC canceller on a PCB
- The canceller PCB has two tunable components
 - Phase shifter is controlled by an 8-bit DAC, giving full 360 degree tuning range
 - Attenuator has 7-bit control and 31.5 dB tuning range
- Both components programmed through the SUB-20 API

0.8mm
1.5mm
Chip photo

Self-Interference Cancellation (SIC) measurement

Integration in ORBIT Testbed

Integration with ORBIT

 The integrated Gen-1 FD radio at node11-10 is remotely accessible to experimenters through the ORBIT grid console

Gen-1 RF canceller box with USRP N210 SDR integrated in ORBIT

The ORBIT grid array

- ORBIT and COSMOS testbeds
- Full-Duplex (FD) Wireless
 - IC-Based Full-Duplex Wireless
 - Design of the Integrated Full-Duplex Radios
- The Integrated Gen-1 Narrowband FD Radio ORBIT
- The Integrated Gen-2 Wideband FD Radio COSMOS
- Experiments
 - Example experiment: Real-time Packet Reception Ratio

Gen-2 Wideband RF SI Canceller

- The Gen-2 PCB also emulates the narrowband Gen-1 canceller. The experimenter can select this path by configuring the RF Switch on the PCB
- Two Gen-2 RF canceller boxes are integrated with USRP2 SDRs and a compute node in COSMOS Sandbox 2

Performance of canceller PCB when the circulator is (a) terminated by 50Ω and (b) connected to an antenna

• T. Chen, M. Baraani Dastjerdi, J. Zhou, H. Krishnaswamy, and G. Zussman, "Wideband compact full-duplex wireless via frequency-domain equalization: Design and experimentation," in *Proc. ACM MobiCom'19*, 2019.

Gen-2 Wideband RF SI Canceller

- The Gen-2 board has a total of 11 tunable components:
 - 3x attenuators (ATT)
 - 3x phase shifters (PS) controlled via 3x DAC (DAC)
 - 2x center frequency capacitors (CF)
 - 2x quality factor capacitors (QF)
 - 1x RF switch (SW)

Gen-2 RF canceller box

Component	Values
Attenuator (ATT)	0 – 127 (7-bit)
Phase Shifter (DAC)	0 – 255 (8-bit)
Centre Frequency (CF)	0 – 15 (4-bit)
Quality Factor (QF)	0 – 31 (5-bit)
RF Switch (SW)	0, 1 (1-bit)

• T. Chen, M. Baraani Dastjerdi, J. Zhou, H. Krishnaswamy, and G. Zussman, "Wideband compact full-duplex wireless via frequency-domain equalization: Design and experimentation," in *Proc. ACM MobiCom'19*, 2019.

Integration with COSMOS

• The integrated Gen-2 FD radios are **remotely accessible** to experimenters through the COSMOS network and Sandbox 2 console

Gen-2 RF canceller box with USRP2 SDR integrated in COSMOS Sandbox 2

- ORBIT and COSMOS testbeds
- Full-Duplex (FD) Wireless
 - IC-Based Full-Duplex Wireless
 - Design of the Integrated Full-Duplex Radios
- The Integrated Gen-1 Narrowband FD Radio ORBIT
- The Integrated Gen-2 Wideband FD Radio COSMOS
- Experiments
 - Example experiment: Real-time Packet Reception Ratio

Logging into COSMOS and Accessing the FD Radios

- Focus on COSMOS for the rest of presentation
 - Instructions for ORBIT are very similar and available at the link below
- Login to COSMOS Sandbox 2 over SSH
- Once logged into COSMOS Sandbox 2, SSH into the FD Compute Node
- GNU Radio experiments are run from the FD Compute Node

A full tutorial for using the integrated Gen-1 and Gen-2 FD radios can be found at this link:

https://wiki.cosmos-lab.org/wiki/Tutorials/Wireless/FullDuplex

Experiments

- Developed a set of customized out-of-tree (OOT) blocks for GNU Radio
 - Designed to work with the built-in OFDM PHY layer blocks
- The OOT blocks are programmed in C++, allowing for real-time performance
- Developed OOT blocks include:
 - A block for performing digital SIC on the received signal
 - A block for configuring the canceller PCB via the SUB-20 controller
- Experiments are a baseline: researchers may use them for other experimentation scenarios

Example GNU Radio flowgraph with customized OOT blocks highlighted in green

Conclusion

- Integrated a narrowband Gen-1 FD radio in the ORBIT testbed, and two wideband Gen-2 FD radios in the COSMOS testbed
- Provide example experiments, which may be used by others as a basis for further experimentation on FD
- Integration of FD radios serves as a blueprint for future integration of custom hardware in COSMOS
- In the near future, we will integrate the Gen-2 FD radios in COSMOS with higher performance USRP 2974s
- We will also integrate the Gen-2 FD radios with the COSMOS servers, allowing for a greater range of possible experiments

Tutorial and open-source hardware and software

- The full tutorial for accessing the Gen-1 and Gen-2 FD radios and running these experiments: https://wiki.cosmos-lab.org/wiki/Tutorials/Wireless/FullDuplex
- The open-source hardware and software can be accessed at: https://github.com/Wimnet/flexicon_orbit
- Further details about the Gen-1 and Gen-2 FD radios may be found at: https://flexicon.ee.columbia.edu/gen-1-open-access
 https://flexicon.ee.columbia.edu/gen-2-open-access

Thank you!

https://cosmos-lab.org

https://flexicon.ee.columbia.edu

mpk2138@columbia.edu

http://wimnet.ee.columbia.edu/people/current-members/manav-kohli/

