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Optical transmission systems with high spectral efficiency require accurate quality of transmission estimation
for optical channel provisioning. However, the wavelength-dependent gain effects of erbium-doped fiber ampli-
fiers (EDFAs) complicate precise optical channel power prediction and low-margin operation. In this work, we
examine supervised machine learning methods using multiple artificial neural networks (ANNs) to build models
for gain spectra prediction of optical transmission line EDFAs under different operating conditions. Channel-
loading configurations and channel input power spectra are used as an a posteriori knowledge data feature for
model training. In a hybrid learning approach, estimated gain spectra calculated by an analytical model are
added as an a priori input data feature to further improve the EDFA ANN model performance in terms of pre-
diction accuracy, training time, and quantity of training data. Using these methods, the root mean square error
and maximum absolute error of the predicted channel output power can be as low as 0.144 dB and 1.6 dB,
respectively. © 2021 Optical Society of America

https://doi.org/10.1364/JOCN.417584

1. INTRODUCTION

The rapidly growing traffic and ultra-low latency demands in
5G networks, stemming from various applications and services,
such as mobile edge cloud computing, augmented/virtual real-
ity, and self-driving vehicles, require increased capacity of the
underlying optical networks. As a result, advanced modulation
formats, such as 400 Gb/s dual-polarization quadrature phase-
shift keying (DP-QPSK) and 800 Gb/s dual-polarization 32
quadrature amplitude modulation (DP-32QAM), are used
to increase the optical fiber channel capacity. In addition,
optically amplified transparent optical networks, in which
the signals are kept in the optical domain as much as possible,
reduce dependence on higher latency and higher cost optical–
electrical–optical conversion and electronic processing along
the signal path [1].

However, higher-order modulation formats need tight
quality-of-transmission (QoT) control to maintain error-
free operation in optical transmission. Transparent optical
networks contend with physical impairments, such as fiber
nonlinearities, dispersion, and optical amplifier (OA) noise,
which degrades the QoT [2]. The QoT of the optical signal
needs to be estimated before an optical channel is provisioned.
Generally, QoT models are based on a physical model that
tracks the signal power, linear noise, and nonlinear noise levels
for an end-to-end light path, to estimate the optical signal-to-
noise ratio (OSNR), generalized OSNR (gOSNR), Q factor,

or bit error rate (BER). The accuracy of the QoT model is a
key factor in determining the engineering margins that must
be achieved to ensure error-free operation. These margins
typically account for the difference between the actual QoT
and the recoverable error-free signal threshold for the forward
error correction (FEC) coding, plus the uncertainties in the
QoT estimation and other factors. Larger margins are taken
into account for the estimation error either from the QoT
model itself or the input parameters to the model [3,4]. Thus,
reducing uncertainties in the QoT estimation is an important
strategy for achieving low-margin operation.

The erbium-doped fiber amplifier (EDFA) is one of the
most widely used OAs in optical transmission systems [5].
EDFAs can have a strong impact on QoT estimation because
their gain spectrum determines the power levels of each indi-
vidual channel in a transmission fiber. The launched channel
power spectrum in each fiber span is the main factor in deter-
mining the magnitude of nonlinear fiber impairments. In
addition, amplified spontaneous emission noise from the
EDFAs is the main determinant of the OSNR. In general,
system design must balance these two effects, increasing power
to improve the OSNR, while reducing it to avoid nonlinear
fiber impairments. This leads to an optimal launch channel
power for each signal, depending on its modulation properties
and other performance requirements. Furthermore, the optical
channel power excursions induced by EDFA dynamic gain
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effects require active control in each node to maintain channel
powers near the desired design point. Therefore, the ability to
accurately predict the output channel power spectrum of each
EDFA is a critical factor with potential to enable low-margin
optical networks.

There are many studies on the characterization of dynamic
EDFA wavelength-dependent gain effects. Gain-flattening
filters are used in wideband line EDFAs, but significant
wavelength-dependent gain, often as high as ±1 dB, can per-
sist over the full range of operating conditions. Furthermore,
spectral hole burning and other nonlinear gain effects, as well
as intentional gain tilt can also contribute to this gain variation.
Numerical models exist to account for the detailed transient
time-dependent effects and nonlinear gain phenomena [6].
However, the steady-state wavelength dependent gain effects in
constant gain-controlled amplifiers can be characterized using
analytical models including different levels of detail [7,8]. Due
to their computational efficiency, these models are attractive
for use in QoT estimation during channel-provisioning oper-
ations. Each of these models, including the full numerical
treatment, are dependent on the detailed data of the internal
(inaccessible to users) and external (accessible to users) ampli-
fier characteristics. Lookup tables of the amplifier properties
under different operating conditions can be developed for
particular design operating points, but the full range of poten-
tial operating conditions across all of the different channel
configurations and gain settings [9] are problematic to test
exhaustively. Recently, machine-learning-based modeling has
been studied in optical networks [10]. Deep neural networks
were used to reduce network margins through end-to-end
OSNR prediction [11]. Rather than using inaccurate EDFA
characterization data, this work considers amplifiers as black-
boxes and instead learns the end-to-end behavior. Several
studies using machine learning have focused on amplifier
models for dynamic channel power estimation and power
divergence prediction in EDFAs [12–15] and Raman ampli-
fiers [16,17]. Machine learning (ML) efficiently makes use
of extensive data collection on the amplifiers in a lab setting
(e.g., prior to deployment) to determine a more accurate, but
computationally simple model for use in QoT estimation.
However, these ML models are built solely from a posteriori
knowledge abstracted by the models themselves. Existing a
priori knowledge such as mathematical and physical equations
that can include lightweight or heavyweight relationships
between individual data features is ignored.

We have reported our EDFA artificial neural network
(ANN) models in previous conference papers [18,19]. In
this work, we describe in more detail how we developed the
ML algorithms to determine the channel configuration and
input-power-dependent EDFA gain spectra. The modular
functionality of the controller design for efficient automated
EDFA data collection is reported here along with additional
experimental details. As described in previous papers, the ANN
is built and trained to predict the gain spectrum based on the
input power spectrum and gain settings. Further, as previously
reported, we developed a hybrid machine learning (HML)
model for EDFAs, which utilizes an analytical model as an
additional input feature to achieve higher prediction accuracy,
while reducing the training complexity in both training time

and training sample size. The trained ANN model for each
individual EDFA provides a computational tool for use in
QoT estimation. Thus, by employing the ANN HML model
to characterize each amplifier prior to deployment, accurate
wavelength-dependent-gain models are made available for
improving the QoT estimation.

2. MODEL FUNDAMENTALS

This section introduces the fundamentals of the mathematical
model and artificial neural networks that we used to build the
ML EDFA output power spectrum model.

A. Wavelength Division Multiplexing Channel Gain
Models

The addition or deletion of wavelength channels can affect
channels already provisioned in the network. Most EDFAs
use automatic gain control (AGC) to maintain a constant
target gain, which relies on the total optical power gain, not the
individual channel gains. With varying channel configurations,
the total channel power gain is adjusted to reach the target level
through the AGC action. The individual channel power gain
deviates from the target due to the gain variations in the spec-
trum. As the EDFA gain changes, the wavelength-dependent
gain will tilt as the internal gain deviates from the design gain
used to create the gain-flattening filter. Thus, the gain spec-
trum varies as the channel loads and the gain settings change.
Furthermore, an internal variable optical attenuator (VOA) is
often used to change the internal gain, while maintaining the
total gain at the same level to tilt the gain spectrum. To illus-
trate this, we show in Fig. 1 the measured EDFA gain spectra
for nine different two-stage gain-flattened, AGC-controlled
dense wavelength division multiplexing (WDM) line JDS
Uniphase EDFAs (P/N 22068325, 2014 model) with the
18 dB target gain, 7 dB mid-stage loss, and −20 dBm per
channel input power. The internal VOAs of the amplifiers
were adjusted by setting the tilt parameter for each amplifier to
0 dB. Although the amplifiers are of identical make and model,
their gain profiles or gain ripple functions vary by roughly
±0.5 dB. The output of EDFA #4 is lower by 0.5 dB, and
therefore in service, the gain would be increased, modifying
the operating conditions. As a result, channel power dynamics
due to the wavelength-dependent gain of each EDFA can cause
provisioned light paths to vary in optical power [7] and result
in inaccurate quality of transmission estimation.

The EDFA gain dynamics during the AGC control can be
well characterized with accurate and detailed model parame-
ters. The gain excursion ĝ(λi) of wavelength λi from the target
AGC gain due to the input power Pj configuration in the
wavelength channels λj can be written as [7]

ĝ(λi)=
GTC

GM

[ ∑
j Pj +NI +NC∑

j Pjgjtj + gRNR + gINI

]
gm(λi) , (1)

where GTC is the target gain, gj is the residual gain ripple about
the mean gain GM, and tj is the tilt for each channel j. gm(λi) is
the original measured gain of channel λi before the new input
powers Pj are applied. The average incident noise gain ripple
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Fig. 1. Measured EDFA gain spectra at the 18 dB target gain with
a 7 dB mid-stage loss when all 90 channels are lit.

is gI, average input-referred noise gain ripple is gR (the noise
generated by the EDFA itself ), the total input noise is NI, the
total amplifier input-referred noise is NR, and the amplifier
AGC noise compensation factor is NC. Many of these factors
including gj and tj are dependent on the input channel con-
figuration through the internal amplifier gain and its nonlinear
channel power-dependent effects such as spectral hole burning
and excited state absorption [6].

Although the model Eq. (1) can characterize the dynamic
EDFA gain spectrum with a worst-case accuracy ∼0.2 dB
and within 0.1 dB under most conditions, it requires many
input parameters that are difficult to characterize. Equation (1)
describes a center of mass (CM)-balancing effect of the differ-
ent wavelength channels about the mean output power level.
A simplified version of Eq. (1) was developed based on a set of
basic characterization measurements and is given by [8]

ĝ(λi)= g(λi)+

∑n
j=1

[
gs

(
λj
)
− g

(
λj
)]

n
, (2)

where ĝλi is the gain of wavelength λi when a set of wave-
lengths {λ1, . . . , λn} are input to the EDFA, g(λi) represents
the gain of channel λi when all WDM channels are lit, and
gs(λj) denotes the gain spectrum when only a single chan-
nel λj is present. Although the CM model Eq. (1) is a more
accurate physical model compared with the simplified CM
model Eq. (2), model Eq. (2) conveniently provides a method
to estimate the EDFA gain spectrum from easily measured
configurations. An ANN model potentially offers a way to
use similar additional collected data to obtain a more accurate
model. However, the training time to cover a wide range of
operating conditions could still be a factor, and therefore,
more efficient training methods are needed. The simplified
CM model Eq. (2) can also be a solution to improve the ANN
model performance as it describes the CM effect in the EDFA
gain spectra.

B. Artificial Neural Networks

The ANN is a mathematical model widely used in ML that
mimics the human brain’s learning and memory functions pro-
vided by neurons to solve problems with complex nonlinearity
[20]. It is generally a flexible parametric model for regression
or classification to capture data distributions when correct data
features and sufficient datasets are available. The ANN can
automatically fit the data distribution by tuning the neuron
weights in each model layer with simple hyperparameters such
as the number of layers, number of neurons in each layer, acti-
vation function, and learning rate. Commonly, the structure
of the ANN model is composed of three types of layers: input
layer, hidden layers, and output layer. The input layer consists
of many neurons corresponding to distinct input data features.
Multiple hidden layers are connected with the input layer to
bring together all features from the input layer and form neural
networks. An activation function is applied in each neuron
from the input layer to the output layer. Thus, a non-linear
transformation is added on the weighted linear combinations
of all inputs from previous layers. Most commonly used acti-
vation functions include sigmoid, hyperbolic tangent, and
rectified linear unit (ReLU). The output layer generates the
target values following the generated marginal distribution
probability from the network of neurons.

To obtain an accurate ANN model, a learning process is
executed to determine the ANN parameters. As Fig. 2 shows,
supervised learning is a commonly used training process in
which input data features and target output data values are
used to adjust the weights of neurons in each layer and find the
optimal weights by supervising a loss function. A supervised
ANN model is initialized with a predefined structure where
random or customized weights are given for each layer. When
the input training data forward propagate through the neural
networks, the results are generated by the output layer. The loss
function will first calculate the deviation between generated
outputs and the given reference outputs. Then, the total loss is
minimized by decreasing the loss contributed by each weighted
neuron where the derivative of the loss function regarding all
neurons’ weights is evaluated from the last to the first layer.
Stochastic gradient descent (SGD) is implemented to tune
neurons’ weights and minimize the prediction error of the
ANN model. The feedforward and backpropagation of the
training datasets across the neural networks are repeated so that
neurons’ weights are updated to obtain the least global loss at
each learning process iteration. After certain learning process

Fig. 2. Artificial neural networks supervised learning process.
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iterations, the complete ANN model is applied to new input
datasets to predict the target values.

3. EXPERIMENTAL SETUP AND EDFA ANN ML
MODELS

In this section, we present the experimental testbed in which
the EDFA input/output power spectrum data are collected,
and the automated data collection scheme is implemented.
The collected data samples include the EDFA power spectrum
with varying channel-loading configurations (channel on/off
status, input channel power). Then two supervised ANN ML
regression models are constructed for model training to esti-
mate the output channel power levels based on input channel
power levels. The original EDFA ANN model is trained with
only the input channel power spectrum data as the input model
parameters. The hybrid EDFA ANN model is trained with the
addition of the channel gain calculated by the simplified CM
analytical model.

A. Experimental Setup and Data Collection

Figure 3 shows the EDFA data collection setup built using a
Nistica wavelength selective switch (WSS) (FFLB-C58L200-
1NI) and JDS Uniphase EDFAs (P/N 22068325). The
experimental setup consists of a comb source that generates
a full set of optical channels (90 channels) with a flat output
spectrum. The Nistica WSS turns individual channels on/off
and tunes the power of individual channels to within 0.1 dB
accuracy. A two-stage DWDM line amplifier (EDFA) is the
device under test (DUT). Two optical channel monitors
(OCM) that are integrated with the WSS are used to capture
the EDFA input and output power spectra, respectively [19].
The OCMs are calibrated using separate measurements with a
powermeter and optical spectrum analyzer to take into account
the tap (and output attenuator not shown) and connector
losses, to obtain the powers at the input and output of the
DUT EDFA. The channel gains are calculated from the linear
ratio of these powers and converted to decibels. An additional
EDFA shown with dashed connections is inserted to emulate
input noise when measuring the input noise dependence.
Using WSS controls and the line system OCMs to train the
ANNs ensures that they are trained and tested with the same
devices used in the commercial line systems.

The comb source paired with a WSS—to turn on/off
specific channels and tune the optical power for each “on”
channel—and an EDFA—for adding dynamic input amplified
spontaneous emission (ASE) noise together—provides arbi-
trary input-channel-loading configurations, where the channel
on/off status and its power level are accurately controlled.

A controller is designed to obtain automatic data collection
for ML model training and evaluation. There are several func-
tional modules in the controller, including comb source power
control, EDFA gain/tilt adjustment, WSS channel on/off con-
trol, WSS attenuation setting, and OCM data collection. The
automatic data collection process controlled by the controller
is illustrated with the following steps: (1) turn on the comb
source to ensure that each output optical channel has power
above −10 dBm; (2) set the target gain/tilt for the EDFA

Fig. 3. (a) Experimental setup for automatic data collection.
(b) Control logic of automatic EDFA data collection.

(e.g., 18 dB gain with 3 dB tilt); (3) set the WSS to a default
channel attenuation (i.e., 6 dB attenuation for each channel) to
leave enough space for power adjustment; (4) set the WSS with
90 channels lit once, a single channel lit once for each channel,
and then random channel loading configurations; (5) wait 30 s
for the EDFA gain to settle; (6) collect the EDFA input/output
power spectrum from the OCMs; (7) detect if the total num-
ber of collected data reaches the target (i.e., 2500 samples);
(8) adjust the attenuation in an adaptive manner to generate
the channel input power variation; (9) detect if the actual
power reaches the target value (i.e., the difference between
the actual power and target power is below a threshold such
as 0.1 dB); and (10) when the data collection is completed,
all data are sent to the ANN ML model for model training
and evaluation. Steps (4)–(7) are repeated to collect data with
various channel loads at a given channel power-level until the
total number of collected samples reaches the target. Then
Steps (8)–(9) are triggered to collect data with various channel
input power levels.

For the DUT EDFA configured with the 18 dB gain, there
are 15,000 collected samples with random channel-loading
configurations with channel input power variations, 90 sam-
ples for the single-channel gain function, and one sample for
the fully loaded gain function. Often, EDFAs are operated
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Fig. 4. Measured and calculated (using the simplified CM analyti-
cal model on 22 of the 90 channels) EDFA gain spectrum with tar-
get gain values of 14, 18, and 22 dB. The single channel gain function
is the gain spectrum of individual channels (only the measured indi-
vidual channel is turned on while the others are all turned off ), which
are measured one by one and then plotted together. The fully loaded
gain function is the gain spectrum with an input of fully loaded opti-
cal channels (all channels are turned on).

with a tilted gain to compensate for stimulated Raman scat-
tering. Here, the EDFA tilt was set to 3 dB to evaluate the
performance for a relatively high tilt setting under which the
amplifier-channel-loading dependence would be maximized.
Lower tilt settings would exhibit less variability with chan-
nel loading based on previous studies [7]. For the simplified
CM model, the g and gs gain parameters must be obtained
for different target gain settings, either by measurement or
interpolation of measurements at other gain settings. Figure 4
shows examples of measured gain spectra for an EDFA with
14, 18, and 22 dB target gain values, each including a single
loaded channel at the channel index varying from 1 to 90 and
the fully loaded gain function for which the input is the full
spectral load of 90 channels. To obtain the single-channel gain
spectrum, we did 90 gain measurements where only a single
channel was lit. The fully loaded gain spectrum was measured
when all 90 channels were lit. The simplified CM model calcu-
lation results using these spectra are also presented for 22 of the
90 channels, singly and with all 22 turned on. Note that the
calculation with 22 uniformly distributed channels is slightly
different from the 90-channel case because the effective center
of mass of the 22-channel case differs from the 90-channel
case, mostly from the gain difference between the channels at
the two ends of the spectrum. In each case (Fig. 4), the input
power level is fixed at −18 dBm for all lit channels. For the
18 dB gain case, the total output power has a maximum value
of approximately 20 dBm (channels fully loaded with 0 dBm
output per channel). For the maximum gain of 22 dB, the total
output power is approximately 22 dBm, which is 3 dB lower
than the maximum output power of the DUT EDFA. Since
Eq. (2) does not take the input power level into consideration,
it implicitly assumes that the input power level is within a
typical range, which is here around−18 dBm/channel.

B. EDFA ANN (H)ML Models

The ANN ML method for EDFA gain profile characterization
has been investigated in optical transmission systems in recent
years [11–15]. The supervised algorithm is preferred where the
EDFA input spectrum is fed into the ANN input layer, and the
output power spectrum or the gain spectrum is generated in
the output layer during the training process. When the training
samples represent the full data distribution and the model
tuning parameters are appropriately adjusted, the EDFA ANN
ML models can obtain better prediction accuracy than the
analytical models [18].

In our work, TensorFlow [21] is used to train the EDFA
ANN ML model. The ANN architecture is shown in Fig. 5(a).
We developed an ANN ML model containing 90 sub-models
where each had 90 input features corresponding to the input
power levels (mW) from the 90 channels and the targeted
channel’s output power (mW). This sub-model approach (use
90 independent neural networks for each output channel)
was chosen because this model resulted in a better prediction
accuracy than a model that had 90 input and output features
within a single neural network. The max–min normalization
and a linear scaler with a factor 300 are used for data prepro-
cessing. The four hidden layers and the final output layer use
ReLU, Linear, ReLU, Linear, and ReLU activation functions,
respectively. The input layer and four hidden layers are fully
connected with 90 neurons at each layer. The mean square
error (MSE) function and SGD are chosen as the loss function
and optimizer, respectively.

Although we can achieve a higher prediction accuracy using
neural networks instead of the simplified CM analytical model,
the knowledge from the simplified CM analytical model is lost.
If we can instead combine the two models (ML and the sim-
plified CM analytical model), we may have a comprehensive
model that can combine the knowledge from both models and
obtain better performance. As a result, other than the power
of each channel and channel loadings (which channels are
on or off ) as two features of the input spectrum, we improve
our EDFA ANN ML model with predicted output power
levels (estimated gain spectra) calculated by the simplified CM
analytical model as a third set of input features in the neural
network. The inaccuracy of the simplified CM model will not
degrade the enhanced ANN model since the backpropagation
will automatically neglect the corresponding inputs by min-
imizing the weights during the training process. As Fig. 5(b)
shows, 90 extra neurons were added to the input layer to form
the enhanced ANN hybrid HML model. Each hidden layer
contained 90, 90, 90, and 45 neurons, respectively. All the
activation functions and data preprocessing methods are the
same as in the previous ANN model. Based on previous studies
of different ML methods for describing amplifier behavior, we
chose an ANN and optimized its structure. We tried different
configurations for the ANN models considering model com-
plexity and accuracy. The implemented configurations are the
best architecture for the EDFA power prediction in our trials.

All collected data from the DUT EDFA with the 18 dB tar-
get gain and 3 dB tilt were divided into the training, validation,
and test datasets with the ratio 8:1:1. The learning rate was
selected as 0.00025. For the given 15,000 data samples, the
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Fig. 5. Design of the ML model based on an ANN and the simplified CM analytical model.

training process was done with 12,000 training samples and
over 15,000 epochs to obtain models with converged predic-
tion accuracy (high accuracy after 5000 epochs). Although a
large number of epochs and small learning rate were used in
our ANN model training process, the high prediction accuracy
for both evaluation and testing datasets ensures no overfitting
was present.

4. RESULTS AND ANALYSIS

A. EDFA ANN ML Models with Power Spectrum Only

The EDFA ANN ML model was completed with 15,000
epochs. First, we compared the performance between the sim-
plified CM analytical model and the original EDFA ANN ML
model.

Further, we analyzed the normalized frequency density
(NFD) of the prediction error for channel gain using the
trained ANN ML model. Figure 6 shows the NFD of the
prediction error using the simplified CM analytical model and
the ANN model. The dynamic range is defined as the range
over which the input channel power is varied around the target
power at−18 dBm in a uniform random distribution. It shows
that a wider dynamic range in the input power leads to higher
error in the prediction of the gain spectrum for the analytical
model. The simplified CM analytical model cannot predict
the EDFA gain spectrum accurately because the actual input
channel loading (lit input channels and their power levels)
affects the gain spectrum.

Figures 6(a), 6(c), and 6(e) present the results compared
with the simplified CM analytical model. With the ±3 dB
channel input power dynamics, 99.95% and 94.9% of test
datasets are within the 0.5 dB prediction error for the ANN
ML model and the simplified CM analytical model, respec-
tively. At the low input power dynamic range, both models
show similar performance. However, as the input power
dynamics increase, the ANN ML model shows much better
accuracy than the simplified CM analytical model. For the
±6 and ±9 dB power dynamics, the ANN ML model has
the prediction error <0.5 dB for 98.37% and 93.57% of test
datasets, while the simplified CM analytical model achieves the
same accuracy only for 85.11% and 81.07% of test datasets,
respectively. As the predicted error decreases, the ANN ML
model has higher NFD than the simplified CM analytical

Fig. 6. NFD versus prediction error of the simplified CM analyti-
cal model and ANN ML model with a dynamic range of±3,±6, and
±9 dB. The EDFA is set with a 3 dB tilt and 18 dB target gain.

model, regardless of power dynamics. This means more evalu-
ation datasets obtained a lower predicted error using the ANN
model.

More severe optical channel power excursions may occur
when fewer channels are active in the system [22]. To validate
the ANN ML model performance, the prediction accuracy for
these corner cases should be considered. Thus, we took these
corner case samples where only two channels were activated to
verify the model. Figures 6(b), 6(d), and 6(f ) show the results.
Similarly, the ANN ML model had better performance than
the simplified CM analytical model regarding different power
dynamics. The ANN ML model had more accurate prediction
for the EDFA output power spectrum that 99.38%, 95.87%,
and 95.62% of test datasets were distributed within the 0.5 dB
prediction error, when the simplified CM analytical model can
only obtain the same prediction accuracy for 95.88%, 87.78%,
and 83.18% with the power dynamics of ±3, ±6, and ±9 dB,
respectively. The results show that the EDFA ANN ML model
can handle various channel loading configurations, including
some extreme cases in which channel power has the highest
power excursion.
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Table 1. RMSE of the Simplified CM Analytical Model
and ANN ML Model with Various Channel Noise Levels

Noise Level (OSNR
Level) [dBm] Analytical [dB] ANN ML [dB]

−30 (19.0) 0.3136 0.2840
−35 (25.7) 0.3511 0.2346
−40 (29.3) 0.4904 0.2368

In commercial optical transmission systems, several EDFAs
can be used on multiple spans between nodes in a cascad-
ing way. In this scenario, the ASE noise can become large in
portions of the spectrum that are not occupied by channels.
For this situation, the channel input power level includes the
optical signal, the input ASE noise internally generated from
the target EDFA itself, and input ASE noise from previous
EDFAs. To apply the ASE from prior EDFAs, we add another
EDFA between the comb source and WSS, as Fig. 3(a) shows.
By using this first EDFA, we can adjust its gain and the WSS
attenuation to monitor the dynamic channel noise levels into
the second EDFA, which is maintained at the 18 dB gain and
3 dB tilt (the DUT EDFA). Additional 1500 data samples were
collected in the noise loaded EDFA setup and merged with the
previous datasets without input noise for the EDFA ANN ML
model training, validation, and test. The model prediction per-
formance is shown in Table 1. Compared with the simplified
CM analytical model, the ANN ML prediction results show
the root mean square error (RMSE) is reduced by 51.71%,
33.18%, and 9.44% with unoccupied channel noise levels at
−40, −35, and −30 dBm per channel, respectively. Although
the EDFA ANN model was trained with signal power data at a
certain OSNR level, the results show that the re-trained model
using a few new data points can still achieve high prediction
accuracy for commercial networks where signals experience
different ASE noise levels along a path or series of spans with
EDFAs.

B. EDFA ANN HML Models with Extra Predicted Gain
Spectra

The EDFA ANN HML model is enhanced by adding the
third data feature, the predicted output power spectrum using
the simplified CM analytical model. We compare the model
performance using datasets with ±3, ±6, and ±9 dB input
channel power dynamic ranges in this section. Table 2 shows
the prediction accuracy in mean absolute error (MAE) with
input channel power variations. The ANN models outperform
the simplified CM analytical model in terms of different input
channel power dynamics. The ANN ML (HML) model can
reduce the RMSE by 67% (61%), 63% (63%), and 45%
(58%) compared with the simplified CM analytical model
where the dynamic ranges are ±3 dB, ±6, and ±9 dB, respec-
tively. The corresponding NFDs and cumulative distribution
functions (CDFs) versus the prediction error of three models
are shown in Figs. 7(a)–7(c), respectively. Both ANN ML and
HML models were built with 5000 epochs and had better
performance than the simplified CM analytical model.

For trained ANN models with 25,000 epochs, the RMSE of
the predicted channel power was 0.362 dB for the simplified
CM analytical model, 0.160 dB for the ANN ML model, and

Table 2. Predicted MAE Results of the Simplified CM
Analytical Model and ANN Models with Various Channel
Input Power Dynamics

Dynamic Range
[dB]

Analytical
[dB]

ANN ML
[dB]

ANN HML
[dB]

±3 0.18 0.06 0.07
±6 0.27 0.10 0.10
±9 0.31 0.17 0.13

Fig. 7. NFD/CDF versus the prediction error of the simplified
CM analytical and ANN models after 5000 epochs for ±3, ±6, and
±9 dB channel input power dynamics. The EDFA is set with a 3 dB
tilt and 18 dB target gain.

0.144 dB for the ANN HML model, as shown in Table 3.
The ANN HML model has a 10.5% RMSE reduction com-
pared with the ANN ML model. Although the ANN HML
has almost the same prediction accuracy as the original ANN
ML for the overall view, the ANN HML has improved the
worst-case prediction by decreasing the maximum error from
2.6 dB (the simplified CM analytical model and ANN ML
model) to 1.6 dB based on multiple testing results. We have
investigated the input power spectral data that correspond to
the maximum prediction error. As expected, these worst-case
configurations exhibit a small number of channels (<10), with
a subset of channels at the gain curve extrema (here primarily at
the low channel indices; see Fig. 4) and with a large variation in
the relative input powers of the channels.

In addition, other EDFA gain configurations were collected
and trained with the ANN model to evaluate its performance.
Figure 8 shows the CDF versus prediction error distribution of
three prediction models for the same EDFA. The target gain
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Table 3. Predicted RMSE and Max Error Results of
the Simplified CM Analytical Model and ANN (H)ML
Models for ±6 dB Power Dynamics

Model RMSE [dB] Max Error [dB]

Analytical 0.362 2.6
ANN ML 0.160 2.6
ANN HML 0.144 1.6

Fig. 8. CDF versus prediction error of the simplified CM ana-
lytical model and ANN models for the ±9 dB channel input power
dynamics. The EDFA is set with 3 dB tilt and target gain of (a) 14 dB
and (b) 22 dB, respectively.

values were set as 14 dB and 22 dB with the power dynamics of
±9 dB. A total of 5000 data samples were used for the model
training, validation, and test. Our model can still achieve high
accuracy. The overall MAE values are 0.195 (0.172) dB and
0.195 (0.183) dB for the ANN ML (HML) models for the
14 dB and 22 dB configurations, respectively.

Figure 9(a) shows the training epoch reduction versus the
model accuracy of the ANN MHL model compared with the
ANN ML model using the same 12,000 training samples.
Although both ANN models can achieve the prediction accu-
racy as low as 0.14 dB after 20,000 epochs, the ANN HML
has a much faster converged training speed. If a 0.4 dB RMSE
is the model target, ANN HML requires 1400 fewer training
epochs than the original ANN ML model. For 0.14 dB target
RMSE, the ANN HML model requires 5300 fewer epochs.
Overall, the enhanced ANN model reduces at least 20% of
the epochs compared to the original model to achieve the
same prediction accuracy. In Fig. 9(b), the training sample
size reduction versus model accuracy is shown for the case
of 25,000 training epochs processed to complete the ANN
models. The same test datasets are used to examine the predic-
tion RMSE with varying training data sample sizes for both
models. The ANN HML can always outperform the original
ANN model. Especially, the ANN HML model can achieve
the best prediction accuracy of 0.14 dB RMSE with 3050
fewer data samples, which is a 46% sample size reduction. The
results show that the extra ANN inputs of predicted EDFA
gain spectra using the simplified CM analytical model improve
the model performance. Although this feature uses estimated
parameters, these inputs indeed induce more heavyweight
couplings between varying input channel configurations to
speed up the ANN model built with less datasets during the
neurons’ weight tuning.

The results indicate that very similar mean error is obtained
without using the hybrid model, so the main savings come

Fig. 9. ANN MHL model performance compared with the ANN
ML model: (a) training epoch reduction versus model accuracy using
the same 12,000 training samples, (b) training sample size reduction
versus model accuracy when there are 25,000 training epochs.

from the maximum error and the reduction in training time,
the value of which will depend on the manufacturer.

5. CONCLUSION

We examined the use of ANN ML models to predict a single
EDFA output power spectrum as a means of accurate channel
power estimation for use in QoT estimation. The model was
constructed from multiple, separate ANNs to predict the out-
put power of each channel in a 90-channel WDM transmission
system. A method for rapid, automated pre-deployment testing
was developed. The use of a posteriori knowledge derived
from a simplified CM analytical model as input features to
the ANNs to further improve the accuracy and convergence
time was studied in a hybrid ML approach. Each of these were
compared with the CM-based analytical model and shown to
be more accurate under a wide range of operating conditions,
including variable noise loading, channel powers, and amplifier
gain settings. The hybrid approach was particularly effective in
reducing the maximum power error and the convergence time,
and training dataset size, which are important for efficient
amplifier characterization.
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