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Distribution of blackouts in the power grid and the Motter and Lai model
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Carreras, Dobson, and colleagues have studied empirical data on the sizes of the blackouts in real grids and
modeled them with computer simulations using the direct current approximation. They have found that the
resulting blackout sizes are distributed as a power law and suggested that this is because the grids are driven
to the self-organized critical state. In contrast, more recent studies found that the distribution of cascades is
bimodal resulting in either a very small blackout or a very large blackout, engulfing a finite fraction of the
system. Here we reconcile the two approaches and investigate how the distribution of the blackouts changes with
model parameters, including the tolerance criteria and the dynamic rules of failure of the overloaded lines during
the cascade. In addition, we study the same problem for the Motter and Lai model and find similar results,
suggesting that the physical laws of flow on the network are not as important as network topology, overload
conditions, and dynamic rules of failure.
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I. INTRODUCTION

Cascading failures in the power grids continue to happen
in spite of efforts to make power grids more resilient [1–3].
The standard criterion of resiliency is the N − 1 criterion [4]:
the grid must safely operate in the event of the failure of any
single line. Carreras et al. have studied empirical data on the
sizes of the blackouts in real grids [5] and modeled them with
computer simulations using the direct current (dc) approxi-
mation [6–8]. They have found that the resulting blackout
sizes are distributed as a power law and suggested that this
is because the grids are driven to the self-organized critical
(SOC) state [9–11]. In their model, they assume that at any
stage of the cascade, one of the lines with loads exceeding
the maximum values imposed by the N − 1 condition fails
and immediately all the currents in the grids are redistributed
adjusting to the new network topology. The motivation for
this “one-by-one” failure rule of the cascade propagation
comes from investigation of real blackouts. It is documented
[1,12] that the failures of overloaded lines do not happen
instantaneously but require a certain period of time, during
which overloaded lines undergo heating expansion. When the
expanded line touches the ground or foliage, the current in the
line dramatically increases and the line breaks, after which the
current in other lines changes almost instantaneously, so that
if the current in a previously overloaded line reduces to nor-
mal, that line’s length reduces and it may eventually survive
the cascade of failures. In a recent work [13] which models
U.S.-south Canada power grid with the dc approximation and
starts the cascade with the removal of nr � 4 power lines,
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the overheating has been modeled directly using a realistic
model of temperature evolution [14]. This work reproduces
the power-law distribution of blackouts, but more importantly
finds a small set of vulnerable nodes responsible for the failure
cascades.

Ren et al. [4] suggested that the power grid is driven
to the SOC state by recursive upgrading of the power grid
with constantly growing power demand, applying the N − 1
condition, or upgrading lines involved in the recent cascade of
failures. They simulated this model of self-organization and
found that the system converges in the infinite time limit to
a steady state characterized by an exponential distribution of
the blackout sizes, while the SOC models typically display
power-law distribution of avalanche lengths associated with a
second-order critical point as in percolation theory [15–17]. In
contrast, recently [18] a power-law distribution of the black-
outs has been related to Zipf’s law distribution of city sizes
[19].

Other recent studies [20,21] have suggested that the distri-
bution of cascades is bimodal, resulting in either a very small
blackout or a very large one. In all these studies, the cascades
of failures were started by a random failure of a single line,
and the currents were computed from a given distribution
of loads and generators using the dc current approximation.
The difference between Refs. [6–8] and Ref. [20] was that
the maximal loads in Ref. [20] were computed not by using
N − 1 criterion, but by a uniform tolerance algorithm as in
Refs. [22,23] and that the overloaded lines during each stage
of the cascade were eliminated all at once [15,16,24], not one
by one.

The difference in the outcome between the “one-by-one”
rule and the “all-at-once” rule suggests that the cascade prop-
agation in the overload models inherently depends on the
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dynamics of the cascade, which makes these models very
different from the simple topological models of cascading fail-
ures in which the final outcome depends on only the network
topology and initial failures and is the same for any sequence
of removals of the unfunctional elements [25].

Here we reconcile the two approaches and show that the
power-law distribution of cascades emerges for high protec-
tion level of the grid and also in cases where the network
topology is close to the percolation point. We also show
that the “one-by-one” removal rule significantly reduces the
sizes of large blackouts and their probabilities, replacing the
bimodal distribution of blackouts by an approximate power
law for intermediate protection levels when the “all-at-once”
rule still leads to a bimodal distribution. We show that these
features are held for both the dc model of a power grid and
the much simpler Motter and Lai model [22,26], suggesting
that the exact physical laws of flow on the network (Kirch-
hoff’s laws versus minimal path rule) are not as relevant as
the protection level, network topology, and cascade dynamics
rules.

The rest of the paper is organized as follows: In Sec. II we
first review phase transitions for cascading failures in topo-
logical and overload models with massive and single-element
initial attacks. Next we interpret the cascading failure after a
single-element initial attack as a branching process.

In Sec. III we first describe the models of power grids we
simulate. Then we describe the implementation of the N − 1
condition, and uniform tolerance conditions for node failure
and the one-by-one versus all-at-once cascade update rules
for power grids. Next we investigate the effect of the N − 1
condition with the one-by-one and all-at-once rules. Finally,
we investigate uniform tolerance condition with both update
rules.

In Sec. IV we first describe the implementation of the
betweenness centrality model and the implementation of the
N − 1 condition and uniform tolerance conditions for node
failure. Next we study the uniform tolerance condition with
various tolerance levels and both cascade update rules. After
this we discuss the effect of the average degree and the size of
the system on the cascade distribution for the N − 1 condition
and one-by-one update rule. Finally, we investigate such a
cascade as a SOC dynamics.

In Sec. V we present the summary and conclusions.

II. POWER-LAW VERSUS BIMODAL DISTRIBUTIONS

A. Overview

In this section we review the conditions under which the
distributions of cascade sizes in overload models are power
law or bimodal, and compare these overload models with
the topological models [27–34], in which the outcome of the
cascade depends only on the initial topology of the network
and location of the initially damaged elements. Topological
or overload models can be investigated for three different
classes of initial attacks. (The third class of initial attacks,
characterized by a hybrid transition, [35,36] will be briefly
reviewed in the Appendix).

In the first well-studied class [31,32,35–37], the cascade is
started by a massive attack, after which only a fraction p of

elements survive. For this class, an interesting problem is to
study the behavior of the order parameter S(p), which is the
fraction of the surviving nodes at the end of the cascade, as a
function of the fraction p of the initially surviving elements.
Many topological and overload models exhibit a first-order
phase transition at p = pt , at which the order parameter S(p)
exhibits a step discontinuity, or a second-order transition at
p = pc, at which the order parameter is continuous but its
derivative with respect to p exhibits a step discontinuity. For
finite systems, near p = pt the distribution of the order param-
eter becomes bimodal, and the transition point pt is defined
as the point at which the population of the two peaks is
equal. At the second-order transition the distribution of the
order parameter is always unimodal. For some topological
and overload models, the line of the first-order transitions, pt ,
in a plane of two parameters may transform into the line of
second-order phase transitions, pc, at a certain value of the
second parameter [32,36–38].

B. Cascading failures as branching process

In the second class of initial attacks, such as in the above
mentioned discussion of power grids [6–8,13,18] and a recent
work on the Motter and Lai model [26], the cascade is started
by the failure of a single element. Here it is informative to
study the distribution of the “blackout” sizes, i.e., the num-
ber of nodes that failed during the cascade and how such
a probability distribution depends on the model parameters.
In this case the system before the attack exists in a state
characterized by some set of parameters, but the parameter
p describing the size of the initial attack is not applicable at
all. In this case, in both topological and overload models, the
cascading failures evolve as a branching process in which the
failure of one element leads to the failure of b elements, which
depend on the failed element in the topological models, or
get overloaded due to the removal of the failed element in the
overload models. The critical point of the simplest branching
process with a fixed distribution of the branching factor P(b) is
defined by 〈b〉 = 1 [39]. For the mean-field variant of the fixed
distribution model, the distribution of the avalanche sizes is a
power law with an exponential cutoff P(s) ∼ s−τ exp(−s/s∗),
where s∗ ∼ (〈b〉 − 1)−1/σ . Here σ = 1/2 and τ = 3/2 are
the critical exponents [17,40]. These in turn give the values
of the two other critical exponents, γ = (2 − τ )/σ = 1 and
β = (τ − 1)/σ = 1, where γ governs the divergence of the
average finite avalanche size for 〈b〉 → 1 and β governs the
probability of a giant avalanche for 〈b〉 > 1, i.e., the avalanche
which in the thermodynamic limit N → ∞ constitutes a finite
fraction μ of the entire system. Note that μ plays the role
of the order parameter of the phase transition. This phase
transition is the second-order transition as in percolation. For
〈b〉 > 1, μ > 0, while for 〈b〉 � 1, μ = 0. In a finite network,
the size of the giant avalanche fluctuates around μN and,
thus, forms the second peak of the bimodal distribution of
avalanche sizes. Other avalanches, which do not scale as a
finite fraction of the network, form a first peak of the size
distributions, which is separated from the second peak by a
huge gap because there are no avalanches of size s, such that
s∗ << s << μN (Fig. 1). Thus, this simple branching process
model predicts the existence of regimes with bimodal (〈b〉 >
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FIG. 1. Cumulative distributions of the avalanche sizes in the
failure branching process with the Poisson branching degree distribu-
tions, with the average branching factors 〈b〉 = 0.9, 0.95, 1, 1.05, 1.1
for finite system of N = 100 000 and N = 200 000 nodes. One can
see that the bimodal distribution of avalanches, characterized by
a wide horizontal plateau of the cumulative distribution, emerges
for 〈b〉 > 1. For 〈b〉 < 1, the distribution has an exponential cutoff.
Exactly at the critical point 〈b〉 = 1, the distribution is a power law
with a finite-system cutoff. The power-law region with the exponent
τ − 1 = 0.5 increases with the size of the system.

1, μ > 0) and power-law distributions with exponential cutoff
(〈b〉 � 1, μ = 0), depending on the parameters of the model.
Carreras et al. conjecture [5] that the power grid is a SOC
system, which somehow drives itself to the critical point of
this branching process, at which the distribution of blackouts
is a power law. It is not clear how this SOC process works.
It may be created by the long-term effect of the application
of the N − 1 criterion [4] or, more likely, by some empir-
ical compromise between safety and price of keeping 〈b〉
small: electric companies want to eliminate large catastrophic
blackouts which exist for 〈b〉 > 1, but, trying to save money
on the infrastructure, are willing to accept finite blackouts.
Obviously this compromise is achieved for 〈b〉 = 1 − ε. In
the following sections we will check this failure-branching
process model with computer simulations.

III. SIMULATIONS OF THE POWER GRIDS

A. Models of power grids

In order to verify that the N − 1 condition, in addition
to the one-by-one failure rule, is responsible for the emer-
gence of the power-law distributions of the blackouts, we
perform simulations of several grid topologies including a
simplified model of the U.S. Western Interconnect (USWI)
[41], Learning Based Synthetic Power Grid (LBSPG) [42,43],
Degree and Distance attachment model (DADA) [20], and two
models of artificial topologies: a random 2D graph with given
maximal line length (RML) and random regular 2D graph
with given degree of a node (RR). The method of solving
Kirchhoff’s equations for the dc approximation is given in
Ref. [20]. In all models there are np generator nodes which
produce power, nc loads which consume power, and nt trans-

mitter nodes, which do not produce or consume power but
redistribute the flow between several power lines. Within the
dc approximation we assume that the power transmitted by a
line connecting nodes i and j is simply its current Ii j . Each
generator i is characterized by the power (current) I+

i > 0,
while each load is characterized by the power (current) it
consumes, I−

i < 0. For transmitter nodes, I+
i = I−

i = 0. In
the USWI, LBSPG, and DADA models, the np, nc, and nt

as well as their powers I±
i are given in Refs. [20,42,43].

In RML and RR models we assume that all generators or
loads produce or consume equal power I = I+

i = I−
i and that

np = nc = 1000 and nt = 8000. The power balance condition∑
i I+

i + ∑
i I−

i = 0 is satisfied in all models. The resistances
of lines Ri j are proportional to their lengths. In the RML and
RR models all N = np + nc + nt nodes are randomly placed
on a square of edge L and periodic boundaries. In the RR
model, each node is connected to its k nearest neighbors. In
order to make sure that each line is connected to exactly k
nodes, we make a list of all nearest neighbor pairs and start to
select pairs from this list in ascending order of length, creating
a link between them if both of the nodes in the pair have
less than k links. At the end of the process, the majority of
nodes have k links with a few exceptions which have only
k − 1 links. In the RML model, each node is surrounded with
a circle of radius r = L

√〈k〉/(πN ) and is connected to all
the nodes within this circle. Since the nodes are randomly
distributed geographically, the degree distribution of nodes
becomes a Poisson distribution with average degree 〈k〉. We
used k = 4 for RR and 〈k〉 = 5.0 for RML. If the grid does
not form a single connected cluster, we discard all the nodes
which do not belong to the largest connected cluster.

B. Implementation of the two schemes of protection: N − 1
condition and uniform tolerance

To implement the N − 1 condition for all of our models, we
proceed as follows: Assuming that the grid contains nL links,
we obtain the current in a given link i j between nodes i and j
after the removal of each one of the other (nL − 1) links, and
we find the maximal current I∗

i j through that link i j obtained
over the set of those (nL − 1) currents. We use this value I∗

i j as
the maximal possible load that the link i j may sustain.

We also perform simulations for networks with uniform
tolerance protection in which I∗

i j = (α + 1)Ii j , where Ii j is the
current in line i j in the unperturbed network.

C. Implementation of the cascade update rules

Under the N − 1 condition case, we start each simulation
with the removal of a random pair of links, ia ja and ib jb, while
in the case of uniform tolerance we remove just one random
link ia ja.

Having done that, we recompute the currents in all re-
maining links, I1

i j . If in some links I1
i j > I∗

i j we find the link
with maximal overload I1

i j/I∗
i j , we remove it and find the

new currents I2
i j (one-by-one update rule). To implement the

all-at-once update rule, at each stage k of the cascade, we
delete all overloaded links with Ik

i j > I∗
i j and compute the new

currents in the remaining links. For both rules, we continue
this process until, at the nth stage of the cascades, for all re-
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maining links, In
i j � I∗

i j . If, at a certain stage, the grid splits into
several disconnected clusters, we apply the power production-
consumption equalization for each cluster using the minimal
production-consumption rule described in Ref. [20]. We com-
pute the blackout size as a fraction of the consumed power
lost in the cascade |I0 − I f |/I0, where I0 = ∑

i |I−
i | for the

intact grid and I f = ∑
i |I−

i | at the end of the cascade. Another
method of measuring the blackout size is to compute the
fraction of the lines lost in the cascade fd = nd/nL, where nd

is the number of lines removed from the grid due to overload.
In summary, for each network model, we study four cases:

the N − 1 condition together with one-by-one or all-at-once
update rules, and uniform tolerance together with one-by-one
or all-at-once update rules.

D. Results for different models of power grid
with the N − 1 condition

First, we consider the N − 1 condition, along with the
one-by-one rule. Implementing the N − 1 condition signifi-
cantly improves the robustness of the grid, as compared to the
uniform tolerance model with small α. This is not surprising
because for all four models of the power grid the effective
tolerance of line i j under the N − 1 rule, αi j ≡ I∗

i j/Ii j − 1
(where Ii j is the initial current in the line i j), has a wide
distribution with almost 5% of lines having αi j > 1. Thus, the
fraction of runs that result in any additional line overload is
about 0.03; for most pairs of initially attacked lines, no further
lines are overloaded. For the tolerance model with a uniform
α, this level of protection is achieved only for α > 1. Thus,
implementation of the N − 1 condition and the one-by-one
rule reduces the sizes of blackouts and creates many small
cascades that end after a few failures [Figs. 2(a) and 2(b)]. For
all four models of the power grid we observe the emergence of
the approximate power-law part in the size distribution of the
small cascades. However, for each model except RML with
〈k〉 = 5.0 (which is close to the RML percolation threshold
for 〈k〉 = 4.5), in addition to small blackouts characterized
by an approximate power-law distribution, we still find some
large blackouts with a significant fraction of power loss. Note
also that the power-law part of this distribution is still prac-
tically absent in the case for the USWI and LBSPG models.
Thus, the entire distribution remains bimodal with two peaks
for small and large cascades and practically no cascades of
an intermediate size. This absence can be observed on the
cumulative distribution graph as a large plateau [Fig. 2(a)].
The value of the exponent characterizing the power-law part
of the cumulative distribution of small cascades varies for
different models but remains in the range between 0 and 1.
The presence of large cascades is indicated by the sharp drop
of the cumulative distribution functions [Figs. 2(a) and 2(b)]
at blackout fractions x = μ, for all cases except the RML
model. This sharp drop corresponds to the maximum of the
probability density function at x = μ, which can be defined
as the order parameter of the system. Note that the value of μ

is different for different grid models.
We next consider the N − 1 condition, but with the all-

at-once update rule. The power-law part of the blackout
distribution disappears [Fig. 2(c)]. The distribution becomes
strictly bimodal, with the positive order parameter μ > 0,

FIG. 2. Cumulative distributions of blackout sizes, measured as
a function of the fraction of the consumed power lost in the blackout
for different grid topologies described in this paper, with the dc ap-
proximation and the N − 1 condition implemented. (a) One-by-one
update rule. All distributions remain bimodal except for the RML
model with 〈k〉 = 5.0. (b) The same as (a) in double logarithmic
scale. A power-law distribution with τ − 1 = 0.5 emerges for the
case of the RML model. (c) All-at-once update rule. All distributions
remain bimodal.

even for the case of RML model with 〈k〉 = 5.0, for which the
N − 1 condition together with the one-by-one rule produces a
power-law distribution of blackouts. Additionally, large black-
outs become much larger with the all-at-once rule than with
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the one-by-one rule; the system is more prone to failure, which
is indicated by the larger values of the order parameter μ.

E. Comparison of different cascade models for the USWI
and the LBSPG

Next, we systematically explore how the N − 1 condi-
tion, uniform tolerance, and different dynamic rules affect
the blackout distributions in the USWI and LBSPG models
(Fig. 3). First, we see that the behaviors of the two models are
very similar. This is not surprising because the LBSPG has
been designed to reproduce the topological features of USWI.
Figure 3(a) shows that the N − 1 condition with all-at-once
rule or with one-by-one rule leads to bimodal distributions.
Although the chance to obtain a cascade of any length bigger
than one is very small, once a cascade starts, the chance of
obtaining a blackout of a significant fraction of the system
size is quite large. The difference between the one-by-one
and all-at-once rules is that for the latter, the typical maximal
blackout corresponds to approximately 40% of all lines, while
for the former it is only 6% of all the lines.

If, instead, we return to the uniform tolerance condition of
Ref. [20] and still use the all-at-once rule for line removal as
in that work, the shape of the blackout distribution depends
only on the tolerance level α [Figs. 3(b) and 3(c)]. As be-
fore, we start a cascade with an initial removal of a single
line. In agreement with the original results of Ref. [20], the
bimodality disappears for α > 1 and a power-law distribution
appears instead. The introduction of the one-by-one update
rule together with the uniform tolerance condition shows the
emergence of the power law for lower values of the tolerance,
α = 0.8, and a significant reduction of the sizes of the largest
blackouts [Fig. 3(b)]. Again, the positions of the sharp drops
of the cumulative distribution functions indicate the value of
the order parameter μ = x. The disappearance of these drops
at large protection level α indicates that μ = 0.

F. Summary of the power grid simulations

All in all, our simulations suggest that neither the N − 1
condition nor the one-by-one update rule is necessary nor
sufficient for the emergence of the power-law distribution
of the blackouts. The important condition is an overall level
of line protection which also can be efficiently achieved by
increasing enough the uniform tolerance α. The N − 1 con-
dition alone does not eliminate large catastrophic blackouts
in the bimodal distribution; instead it significantly reduces
the chance of any blackout caused by initial removal of two
lines. The one-by-one update rule also reduces the sizes of
largest blackouts (the value of the order parameter μ) and re-
moves the bimodality at smaller values of α, but is not strictly
necessary. Another important aspect is the network topology.
For sparse homogeneous networks whose topologies are close
to the percolation threshold such as our RML model, the
power-law distribution of blackouts emerges for smaller levels
of protection, while for the other models similar failure rules
still yield a bimodal distribution.

IV. BETWEENNESS CENTRALITY OVERLOADS

As one can see, the models of the power grids we study are
relatively complex and have many different parameters, the

FIG. 3. Cumulative distributions of blackout sizes, measured as a
function of the fraction of failed lines, fd , for the USWI and LBSPG
models. (a) Both models for the N − 1 condition with all-at-once
and one-by-one update rules. (b) USWI model and (c) LBSPG for
different uniform tolerance α and both update rules. For sufficiently
large values of the tolerance, α > 1.2, the distribution becomes
approximately power law with large values of τ − 1 � 1. The imple-
mentation of the one-by-one update rule with the uniform tolerance
model shows that the power-law distribution emerges for a smaller
value of the tolerance, α = 0.8.

role of which is difficult to clarify. Therefore, it is desirable
to study a simpler model of overloads in which the role of
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each parameter becomes clear. It is also interesting to see if
the emergence of the power-law distribution is a universal
phenomenon for different overload models. A good candi-
date for such a model is the betweenness centrality model,
which displays a clear bimodal distribution of blackouts for
the all-at-once removal rule and uniform tolerance condition
employed by Motter and Lai [22,26]. However, we can expect
that, similarly to the power grid models, the implementation
of the N − 1 condition and one-by-one removal rule in the
betweenness centrality model will also lead to the emergence
of a power-law distribution of the blackout sizes. Testing of
this hypothesis will allow us to better understand the general
mechanism of the emergence of the power-law distribution of
the sizes of blackouts in the overload models.

A. Implementation of the betweenness centrality model

We build the betweenness centrality model as in Ref. [37].
Namely, we create a randomly connected graph with a given
degree distribution P(k) and compute the shortest paths be-
tween each pair of nodes. The length of each edge is assumed
to be equal to 1 + ε, where ε is a normally distributed random
variable with a small standard deviation σε 
 1. This precau-
tion is taken in order to make sure that each pair of nodes i j
has a unique shortest path connecting them. The betweenness
centrality b(k) of each node k is computed as the number of
all shortest paths i j passing through node k, such that k �= i,
k �= j.

B. Implementation of the N − 1 condition

The N − 1 condition in the betweenness centrality model
should be understood in the following way: If any one node
i is deleted, the rest of the nodes remain connected and the
betweenness centrality of each remaining node j, bi( j) does
not exceed its maximal possible load b∗( j). Thus

b∗( j) = max
i �= j

bi( j), (1)

and the original graph must be biconnected. Note that in
the original Motter and Lai model with a uniform tolerance
α > 0,

b∗( j) = (1 + α)b( j), (2)

where b( j) is the initial betweenness of node j in a completely
intact network.

To implement this model, we first construct a randomly
connected graph of N nodes with a given degree distribu-
tion P(k) with the Molloy-Read algorithm [44] and find
its largest biconnected component with Nb nodes using the
Hopcroft-Tarjan algorithm [45]. After that, we compute the
betweenness centrality of each node and repeat Nb simulations
with each node removed in turn to find b∗(i) for each node.
To find the distribution of cascades of failures we remove a
pair of random nodes and find the nodes i with overloads
z = b(i)/b∗(i) > 1. In the first case of all-at-once removal,
at each stage of the cascade we remove all the nodes with
overloads, recompute the betweenness centrality of the re-
maining nodes and repeat this process until no overloaded
nodes are left. In the second case of one-by-one removal,
at each stage of the cascades we remove only one of the

FIG. 4. (a) Cumulative distributions of blackout sizes, Sb, mea-
sured as the number of failed nodes in the Motter and Lai model
with different values of tolerance α and all-at-once update rule. The
system consists of N = 10 000 nodes. Black lines indicate graphs for
values of α = 0.02, 0.03, . . . , 0.19. (b) Comparison of all-at-once
and one-by-one update rules for selected values of the tolerance. The
emergence of the power-law distribution in the one-by-one removal
case for much smaller values of tolerance is seen.

overloaded nodes, the one with the largest overload z. We then
recompute all the centralities, and repeat this process until no
overloaded nodes are left. We study several cases of Erdős
Rényi (ER) networks with different average degrees 〈k〉 and
different number of nodes in the biconnected component Nb.
The size of the blackout is computed as the number of failed
nodes at the end of the cascade, Nd , or as the fraction of nodes
failed nodes, Sb = Nd/Nb. We also study the distribution of
the number of nodes disconnected from the giant component.

C. Uniform tolerance condition for the betweenness
centrality model

Again, the N − 1 condition is not necessary for the emer-
gence of the power-law distribution of the cascades in the
Motter and Lai model. For example, if we take an ER network
with 〈k〉 = 1.5, all-at-once update rule, and uniform tolerance,
for 0.1 < α < 0.2, we see the transition from a bimodal dis-
tribution of the blackout sizes to a power-law distribution with
an exponential cutoff [Fig. 4(a)] as α increases.
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FIG. 5. Cumulative distributions of blackout sizes, Sb, measured
as the number of failed nodes in the Motter and Lai model with
the N − 1 condition and one-by one update rule for different system
sizes and different average degrees.

The value of the order parameter μ indicated by the sharp
drops of the cumulative distribution function preceded by a
plateau, as in Fig. 1, becomes smaller and disappears as α

increases, suggesting a second-order transition. Replacing the
all-at-once update rule by the one-by-one rule shifts the tran-
sition from bimodal to a power-law distribution to a smaller
value of α [Fig. 4(b)], but both behaviors can still be seen.

Note that the first-order phase transition and the bimodal
distribution of the blackouts have been recently observed in
Motter and Lai model and in its multiplex variant [26]. In
this model the cascade is started by elimination of a single
node with the largest betweenness, and the dynamics of the
cascade follows all-at-once rule. They use the size of the giant
component of the network at the end of cascade as the order
parameter. Here we show that when the initially eliminated
node is random this transition turns into the second-order
transition characterized by a gradual reduction of the order
parameter μ (size of the giant blackout) as α increases, and
by a power-law distribution of avalanches with an exponential
cutoff for α above the critical value. This difference most
probably arises from the difference in the type of the initial
attack from a targeted one on the node with highest centrality
in Ref. [26] to a random one in this article. This question
deserves further investigation.

D. The effect of the average degree and system size

Simultaneous application of the N − 1 condition and the
one-by-one removal rule leads to the emergence of the power-
law distribution of the small cascades for small values of
〈k〉 (Fig. 5). For small 〈k〉, close to the percolation threshold
and small system sizes, the bimodality of the blackout size
distribution disappears, and the distribution of blackouts be-
comes an approximate power law with an exponential cutoff.
As the size of the network increases, the exponential cutoff
disappears and the bimodality emerges again, with a peak for
large blackouts emerging. The beginning of the cumulative
distribution for all values of 〈k〉 and all sizes of the system
exhibits the same slope of −1/2, which is the mean-field value

for the SOC models [11]. For large 〈k〉, we observe only a
small fraction of blackouts distributed as a power law, while
the entire distribution remains bimodal. However, the increase
of the system size leads to the relative increase of the range
of the power-law behavior. As the system size increases, we
observe similar changes in the distribution of the blackouts for
all values of 〈k〉 studied (Fig. 5). For small system sizes, we
observe a smaller initial negative slope (>−1/2) and a sharp
exponential cutoff. For larger system sizes the slope increases
to almost exactly −1/2, and the cutoff shifts to larger values.
For even larger sizes, the slope of the initial part of the cu-
mulative distribution increases even further (<−1/2) but an
inflection point appears in the distribution, indicating the start
of bimodality. As the system size continues to increase the
negative initial slope continues to grow, and the plateau region
of the cumulative distribution separating giant blackouts from
small blackouts becomes longer and longer, and the average
size of the giant blackouts indicated by the sharp drop of the
distribution becomes proportional to the system size, N , where
the proportionality coefficient μ can be regarded as the order
parameter of the transition.

Overall, the behavior of the cumulative distribution of the
blackout sizes when 〈k〉 decreases is similar to the behavior
of the avalanche size distribution in the failure branching
process when 〈b〉 decreases and thus resembles a second-order
transition. However, in the branching process, the dependence
on the system size N is simple (Fig. 1); i.e., for 〈b〉 < 1
there is no dependence at all, while for 〈b〉 > 1 the part of
the distribution for small avalanches and its cutoff s∗ is still
independent of N , but the average size of the giant avalanches
(and hence the length of the plateau) increases as μN . In
contrast, in the betweenness centrality model with the N − 1
condition protection and a one-by-one failure rule (Fig. 5), the
dependence on N is more complex. For each 〈k〉 > 0, there
exist N = Nc(〈k〉) below which the distribution is a power law
with an exponential cutoff that increases with N , while above
N > Nc(〈k〉) the distribution is bimodal, and the average size
of giant blackouts increases as μN Thus for each 〈k〉 > 1 it
exists an effective critical point at N = Nc(〈k〉) of the second-
order transition, at which μ → 0. Note that Nc(〈k〉) → ∞
when 〈k〉 → 1.

E. Cascade dynamics as a SOC model

As we saw, Carreras et al. [5] suggested that the power-law
distribution of the blackouts is due to the long-term evolution
of the power grids, driven by simultaneous growth of power
consumption and upgrades of the most vulnerable power lines
[4]. However, the propagation of cascades in a power grid
of fixed size, when applying the N − 1 condition and the
one-by-one update rule, resembles SOC models, in which the
most vulnerable element is removed, and the vulnerability of
other elements changes instantaneously. To test this hypoth-
esis, we perform a detailed study of the propagation of the
cascade in a biconnected component with N − 1 protection
and one-by-one update rule. One can see that during the
cascade the number of overloaded nodes fluctuates near zero
and never gets too large. In the mean-field variant of SOC,
the simplest of the SOC models [11], an array of N real
numbers,“fitnesses,” uniformly distributed between 0 and 1 is
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FIG. 6. (a) Dependence of the number of overloaded nodes as
function of the cascade step for the Motter and Lai model for 〈k〉 =
1.2 and N = 500 000, with the N − 1 condition and one-by-one up-
date rule. (b) Dependence of the size of the biconnected component
and the giant component as a function of the cascade step.

created. At each time step the smallest element in the array
and m randomly selected elements are replaced by new values
selected from the same uniform distribution. As a result, after
a certain transition period, the majority of elements have fit-
ness above the critical value fc = 1/(m + 1). The number of
active elements (elements with fitness less than a certain value
f ) performs a random walk, and an avalanche ends when the
number of active elements returns to zero. When the value of
the selected fitness is equal to the critical value f = fc, the
random walk is unbiased, and the distribution of avalanche
lengths coincides with the distribution of returns to the origin
of a random walker, which has the exponent τ − 1 = 1/2
[46]. The number of active elements for f = fc scales as Nd f

with d f = 1/2. We see [Fig. 6(a)] that in our model the be-
havior of the number of overloaded nodes is similar to the
behavior of the random walk, which is consistent with the
observed value of τ ≈ 0.5. However, the detrended fluctuation
analysis [47,48] of the number of overloaded nodes during the
cascade gives the value of the Hurst exponent ≈0.1, which is
much smaller than the exponent for the uncorrelated random
walk of the mean-field SOC model. The number of overloaded
nodes scales as ln Nb, or a very small power law. In our model,
the fitness of a node is its relative overload zi, and the level of
zi is not arbitrary as in the SOC models, but is defined initially
as zi = 1. When, after implementing the N − 1 condition, we
initially remove two nodes, the system is placed near the
critical point, because the number of overloaded nodes after
the initial attack is usually very small. However, this is done
not automatically, as in the SOC models, but by implementing
the N − 1 condition and the initial removal of two nodes. This
action results in the overload of very few nodes, because the
combined effect of the removal of two nodes rarely creates
overloads larger than the maximal overloads created by the
separate removal of each of these nodes. This is due to a long-
tail effect; the removal of a single node will greatly increase
the load of a few nodes, but barely affect most of the other
nodes. However, when more nodes are removed in the process

of the cascade, the topology of the network changes, and the
system is slowly driven away from the critical point.

We also see that the disintegration of the biconnected com-
ponent is approximately a random removal of nodes due to
subsequent overloads, with a slight preference for the removal
of nodes with k = 2 over nodes with k = 3. At the beginning
of the cascade the removals take place in the biconnected com-
ponent, reducing it by the length of a chain of nodes with k =
2 in between a pair of nodes with k � 3. Each such removal
reduces the size of the giant component only by one. But as
more and more nodes are removed, further removals may hap-
pen in the singly connected part of the network. Figure 6(b)
shows the size of the biconnected component to which the
removed node belongs as function of the cascade stage. If it
belongs to a singly connected part of the remaining network,
we plot zero instead of the size of the biconnected component.
When a node that is part of the singly connected part fails,
the network separates into disconnected parts and the size of
the giant component drops significantly. At the beginning, the
smaller part is usually a dangling end, and the drop in size
is relatively small, but eventually two approximately equal
parts get separated. At this point the betweenness of all nodes
decreases dramatically (approximately by factor of 4) and the
cascade ends. Thus, although the cascade dynamics has some
similarities with SOC, (at each time step the node with the
largest overload is removed and the overloads of the rest of
the nodes are changed), our model does not stay at the critical
state but moves away from it.

The comparison between a mean-field variant of SOC and
our network overload dynamics is also instructive to help us
understand when a bimodal distribution occurs and when a
power-law distribution does. A power-law distribution, such
as in a branching process, occurs when there is a series of
failures, each of which has a chance of precipitating b = 1
additional failures. Since there is the possibility, at each stage
of the cascade, of no new nodes failing and the process
stopping, the chance that exactly one more node will fail de-
creases exponentially. At the critical point, the cascade begins
with b = 1, but as the network disintegrates b changes. The
all-at-once update rule causes the network to disintegrate in
fewer steps, since multiple nodes are removed at each step,
and thus b increases during the cascade of failures without
many chances for the cascade to end prematurely. Thus, after
a few steps b > 1, and the process will not stop itself with
an intermediate level of destruction. However, there are two
different conditions that will prevent b from increasing dras-
tically as the network begins to disintegrate. One is a high
level of overall protection, whether through the implemen-
tation of the N − 1 condition or through a high uniform α.
High overall protection means that minor network destruction
will not cause widespread overload and drive b away from
one; only severe network destruction can do that. Thus, the
overload process has a chance to stop spontaneously before it
reaches that stage. The other condition is if the network is near
the percolation point, where the failure of a single node has
a high chance of separating a small, but sizable, component
from the network. This will drastically decrease the overall
load and thus stabilize the network, arresting the cascade of
failures [37]. In conclusion, a one-by-one update rule and a
high overall protection both contribute to the formation of a

032309-8



DISTRIBUTION OF BLACKOUTS IN THE POWER GRID … PHYSICAL REVIEW E 103, 032309 (2021)

power law. The effect of the system size discussed above can
also be understood in light of the comparison to a branching
process. The larger the system, the more nodes (as an absolute
number, not a fraction) fail following the initial attack. Thus,
the chance that none of the overloaded nodes will cause an-
other node to overload (i.e., a spontaneous end to the cascade)
becomes increasingly unlikely as the number of overloaded
nodes increases, even if b remains close to one for many steps
of the cascade. Thus, the chance that the cascade of failures
will end with an intermediate amount of damage becomes
more unlikely when the size of the original system increases.

V. DISCUSSION AND CONCLUSION

We have shown that the dc model of the power grid has
remarkable similarities to the Motter and Lai model of be-
tweenness centrality, suggesting that the exact physical laws
governing the flux do not play as big a role as the network
topology and the dynamics of the cascade propagation. We
have shown that both overload models have similarities and
differences with the topological models [27–34]. In the topo-
logical models the outcome of the cascade depends only on
the topology of the network and the location of the initial
damage, while in the overload models the outcome signifi-
cantly depends on the dynamics of the cascade, which itself
depends on the order of removal of overloaded elements and
the relative speed of failure of overloaded elements and re-
distribution of flux after the failure. In general, if the failure
is slow compared to the redistribution of flux (one-by-one
removal rule) the cascades become smaller, while for fast
failures of overloaded elements (the all-at-once removal rule)
the blackouts can be larger by an order of magnitude than
in the one-by-one case. But the one-by-one removal rule is
neither necessary nor sufficient for the elimination of “giant”
blackouts engulfing a finite fraction of the entire system.

We also find that the N − 1 condition is neither neces-
sary nor sufficient for the disappearance of large cascades
destroying a finite fraction of the elements in the system, but it
reduces the probability of any cascade by an order of magni-
tude compared to the universal tolerance condition even for a
large tolerance α, if two elements are deleted simultaneously
at the beginning of the cascade.

The general picture of the behavior of the overload models
is consistent with the simple model of the failure branching
process, which demonstrates a second-order phase transition.
For large protection levels (small 〈b〉) the distribution of
blackout sizes is a power law with exponential cutoff, while
for low protection levels (large 〈b〉) the distribution of black-
out sizes becomes bimodal, when a fraction of large blackouts
engulfing a finite fraction of the entire system emerges. This
fraction and the size of these “giant” blackouts (which serve as
the order parameter of the problem μ) continuously decrease
when the protection level increases and vanishes when 〈b〉
reaches its critical value 〈b〉 = 1.

The protection level can be increased by several factors: (1)
increase of the tolerance α, (2) introduction of the one-by-one
removal rule, (3) the reduction of the network connectivity,
i.e., bringing the network closer to the percolation threshold,
by reducing the average degree 〈k〉, and (4) by decreasing the
system size. These methods have an additive effect, i.e., when

applied simultaneously they will achieve larger protection
levels than when applied separately. For example, application
of the one-by-one removal rule alone may not change the
bimodal distribution of blackouts to unimodal; however, when
implemented together with the uniform tolerance condition,
it will help to achieve the unimodal distribution for smaller
values of the tolerance α.

The empirical observation of the power-law distribution
of the blackout sizes in real power grids indicates that these
grids are near the critical point of the correspondent failure
branching process. However, this is unlikely to be caused by
a SOC mechanism in which the model is driven to the critical
point by a certain dynamic rule. One hypothesis would be that
it is the N − 1 criterion and the one-by-one update rule that
brings the grid to the SOC state. However, we observe here
that these two conditions are neither necessary nor sufficient
for the existence of a power-law distribution of blackout sizes.
Most likely the power grids are brought to the vicinity of
the critical point by a risk-price compromise, in which the
utilities, with the firm goal of avoiding the catastrophic black-
outs that engulf a significant fraction of the entire system,
increase the level of protection up to the critical point of the
branching process 〈b〉 < 1, but, in order to minimize costs
under this condition, allow 〈b〉 to be as close as possible to
the critical point from below, so that limited but occasionally
very large blackouts are still possible. It is still desirable to
develop a model of long time evolution of power grids similar
to Ref. [4], which reproduces the power-law distribution of
avalanches. The observation of power-law distribution of the
blackouts in the sparse networks close to the percolation point
also emphasizes the role of islanding for preventing large
blackouts.

A plausible reason for the emergence of the power-law
distribution of cascades is presented in a recent work of Nesti
et al. [18], who relate it to the power-law distribution of city
sizes and hence the distribution of loads (“sinks”) in the dc
approximation of the grid. They observe τ > 2 in agreement
with empirical observations [5]. However, our study suggests
that the distribution of loads is irrelevant for the emergence of
the power-law distribution of blackouts for large protection
levels. In fact, the USWI model has a lognormal distribu-
tion of the loads I−

i with a sharp cutoff, while the LBSPG
model has a power-law distribution P(|I−

i |) ∼ |I−
i |−2.2 of the

loads, but their behavior is very similar in our study, and in
both models the transition from a bimodal distribution to a
power-law distribution of the blackouts occurs at high level of
protection (high tolerance). The appearance of the power-law
distribution of blackouts also in the Motter and Lai model
suggests that this feature might be a very general phenomenon
not necessarily related to the power-law distribution of the
loads.
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APPENDIX

As mentioned in Sec. II A there is a third class of initial
attacks in which the system first undergoes a cascade of fail-
ures caused by a massive initial attack with p > pt and the
order parameter stabilizes at S(p). This is analogous to the first
class of initial attacks. Afterwards, the avalanche is started
by the removal of one additional element. In the well-studied
topological models, it is known [35,36] that

S(p) − S(pt + 0) ∼ (p − pt )
1/2, (A1)

where S(pt + 0) is the limit of S(p) for p → pt above
the step discontinuity. Because in the topological models
the order of removal elements does not play any role, the
removal of one element after the system is stabilized at
p is identical to the initial removal of pN + 1 elements,
where N is the total number of elements in the system.
In either situation, the average avalanche size under this

initial conditions is s = N[S(p + 1/N ) − S(p)] ≈ ∂S(p)/
∂ p ∼ (p − pt )−1/2. Hence, the avalanche size diverges above
the transition point pt , with the divergence characterized by
the critical exponent γ = −1/2.

In network theory this transition is called a hybrid tran-
sition, but in fact this behavior is completely equivalent to
the mean-field behavior near the spinodal of the first-order
phase transition [49], such as the behavior of the isother-
mal compressibility near the spinodal of the gas-liquid phase
transition. This follows from the fact that the isothermal
compressibility is equivalent to the susceptibility in the Ising
model, which in turn is equivalent to the average cluster size
at the percolation transition.

The divergence takes place only for p > pt , while for p <

pt the avalanches remain of finite size or do not exist at all,
since S(p) = 0 for p < pt . For p → pt + 0, the distribution
of the avalanche sizes develops a power-law behavior with
an exponential cutoff S∗: P(s) ∼ s−τ exp(−S/S∗) with the
mean-field exponent τ = 3/2 [35,36], and S∗ ∼ (p − pt )−1/σ

with σ = −1; they, together with γ = −1/2, satisfy a usual
percolation scaling relation γ = (2 − τ )/σ , but with different
γ and σ than in the percolation theory [17,40].
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